

SALUD DEL SUELO

IMPORTANCIA:

- Filtro de agua
- Provee hábitat y medio de crecimiento para organismos (aire, agua, espacio físico, temperatura)
- Aporta nutrientes a las plantas
- · Almacena la materia orgánica

Microorganismos del suelo

El suelo es un medio extremadamente complejo, que contiene una enorme cantidad de microorganismos.

Un gramo de suelo seco contiene aproximadamente:

- ✓ 10⁷ bacterias
- √ 10⁶ actinomicetes
- **√** 10⁵ hongos
- ✓ 10⁵ protozoos
- √ 10⁴ algas

IMPORTANCIA DE LOS MICROORGANISMOS DEL SUELO

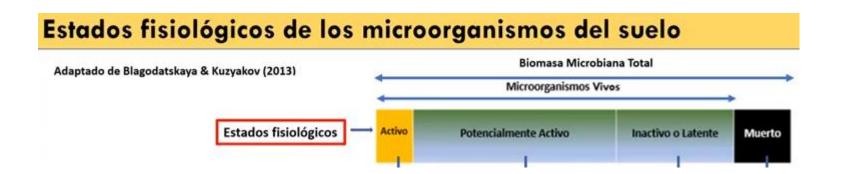
 Contribuyen al mantenimiento de la fertilidad química, física y biológica del suelo

- Transforman nutrientes inorgánicos, que de otra forma no podrían ser absorbidos por la planta
- Favorecen la descomposición y mineralización de la materia orgánica.

FERTILIDAD MICROBIANA DEL SUELO

La vida microbiana tiene un rol esencial en la formación y el mantenimiento de la fertilidad y sustentabilidad del suelo

El monitoreo de la abundancia, actividad y diversidad de los microorganismos edáficos es de suma importancia en ecosistemas agrícolas a fin de evaluar el impacto de las diferentes prácticas de manejo productivo.


INDICADORES DE CALIDAD DEL SUELO

- a) Indicadores físicos: textura, porosidad, Densidad aparente
- **b)** <u>Indicadores químicos:</u> materia orgánica, pH, capacidad de intercambio catiónico, cationes de intercambio, nitrógeno total, CE
- c) <u>Indicadores biológicos:</u> NAN, CBM, grupos funcionales, perfil enzimático, perfil de hormonas.

Carbono de la Biomasa Microbiana (CBM)

Es considerado un bioindicador de calidad de suelo. Su evolución proporciona una medida del tamaño y actividad potencial de la comunidad microbiana.

El CBM es la fuente de C lábil más importante de la materia orgánica del suelo y de vital importancia para el mantenimiento de la calidad del ambiente del suelo.

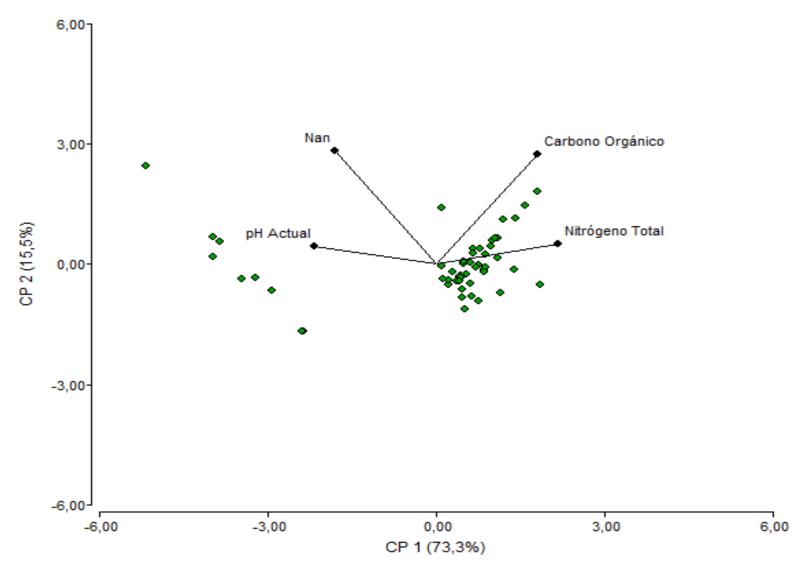
Carbono de la Biomasa Microbiana (CBM)

Técnica puesta a punto en: Laboratorio de Biología de suelos. EEA INTA Marcos Juárez.

Carbono de la Biomasa Microbiana por fumigación-extracción y la alternativa, utilizando microondas como sustituto del cloroformo.

El Coeficiente microbiano (qMic) *refleja la contribución de la Biomasa Microbaiana al COT C orgánico total del suelo (Anderson & Domsch, 1989)

* qMic = CBM/COT


Indicador bioquímico de calidad del suelo

Nitrógeno mineralizado en anaerobiosis (NAN)

El nitrógeno incubado en anaerobiosis (NAN) es una alternativa rápida y precisa para estimar el nitrógeno potencialmente mineralizable (NPM), siendo este una fracción del N orgánico del suelo muy relacionada con los cambios en las fracciones lábiles de la MO y está muy afectado por las prácticas de manejo.

El NAN presenta una estrecha relación con el contenido de CO total y más aún con el CO de la MOP (COP)

Utilizado como indicador de la salud del suelo

Datos obtenidos (n= 54) en el laboratorio Análisis Agropecuarios en el año 2022 a partir de muestras de suelos agrícolas aportadas por Asesores técnicos de la región.

Análisis de Grupos funcionales

El análisis microbiológico del suelo estudia la presencia, abundancia y actividad de las poblaciones microbianas y las interacciones entre los microorganismos y entre ellos y las plantas.

Se emplean técnicas de laboratorio que manifiesten lo más fidedignamente posible las condiciones presentes en el ambiente

Análisis de Grupos funcionales

TÉCNICAS PARA ESTIMAR LA ABUNDANCIA MICROBIANA:

Recuento de células viables aplicadas a grupos funcionales

- Celulolíticos
- Amonificadores
- Nitrificadores
- Fijadores de nitrógeno de vida libre
- Solubilizadores de Fosfatos

Análisis de Grupos funcionales

Celulolíticos

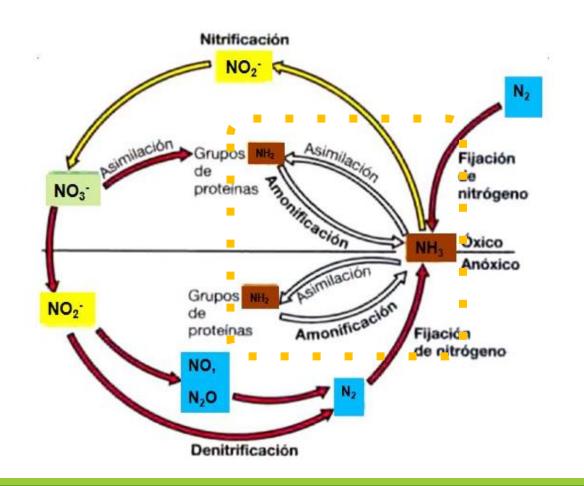
La celulosa es el compuesto orgánico más abundante en la naturaleza.

Los microorganismos degradadores de la celulosa, incluyen hongos, bacterias, aerobios y anaerobios, y poseen un complejo de celulasas.

Análisis de Grupos funcionales

Análisis de Grupos funcionales

Amonificadores


Llevan a cabo en la ruptura del enlace amina y la consecuente liberación de amonio.

Grupo muy numeroso y diverso: hongos, actinomycetes y bacterias aeróbicas y anaeróbicas, esporuladas o no.

Análisis de Grupos funcionales

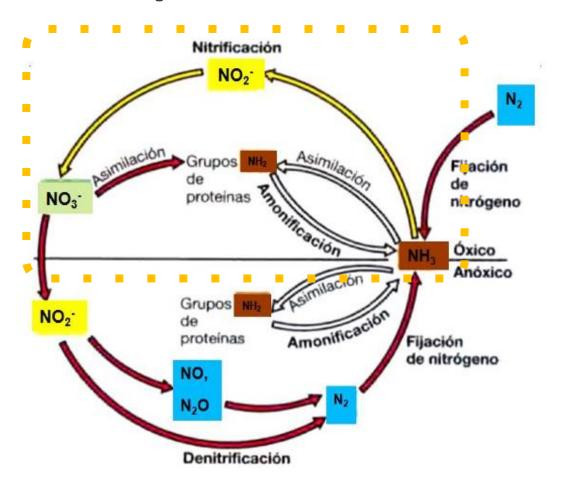
Análisis de Grupos funcionales

Nitrificantes

La nitrificación consiste en la oxidación del amonio (NH_4) produciendo nitrito (NO_2) y nitrato (NO_3) .

La nitrificación la realizan dos grupos de microorganismos:

- Nitritadores (gen. Nitrosomonas) que oxidan amonio (NH_4) a nitrito (NO_2^-) .
- Nitratadores (gen. Nitrobacter) que oxidan nitrito (NO₂-) a nitrato (NO₃-).


Los Nitritadores son estrictamente aeróbicos muy poco abundantes. Se reproducen muy lentamente, lo que los hace sensible a las variaciones ambientales y de manejo y que cualquier cambio en el suelo afecte su abundancia y actividad.

Dependiente de la temperatura, el contenido de agua y el pH del suelo.

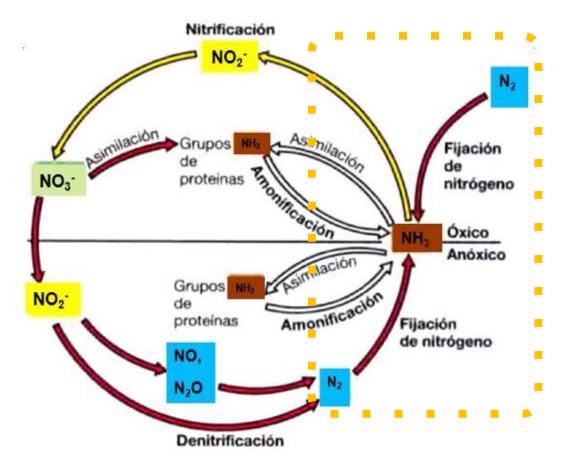
Análisis de Grupos funcionales

Análisis de Grupos funcionales

Fijadores de nitrógeno de vida libre

Son aquellos microorganismos que poseen la enzima nitrogenasa, capaz de transformar el nitrógeno atmosférico (N_2) en amoníaco (N_3) .

Presente en diferentes organismos procarionte: de vida libre o vivir en simbiosis con otros organismos


Bacterias, cianobacterias y actinomicetes.

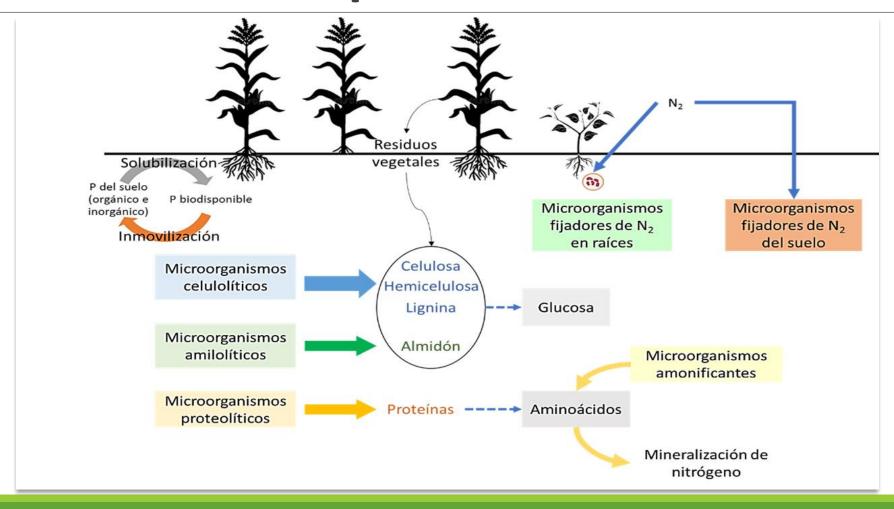
Ej: Aerobios (*Azotobacter*), microaerófilos (*Azospirillum*), anaerbios (*Clostridium*), simbióticos (*Rhizobium*, *Bradyrhizobium*)

Análisis de Grupos funcionales

Análisis de Grupos funcionales

♦ Solubilizadores de Fosfatos

El P disponible para las plantas proviene de reacciones químicas inorgánicas y de la actividad de los microorganismos (procesos biológicos) del suelo.


Además de la mineralización del PO_4^{-3} los microorganismos juegan un importante rol en la disponibilidad de P a través de procesos de solubilización, producir ácidos (orgánicos e inorgánicos) que bajan el pH del suelo favoreciendo la solubilización del $Ca_3(PO_4)_2$ precipitado.

Los hongos son los principales microorganismos que participan de la dinámica del P en interacción con las raíces de las plantas.

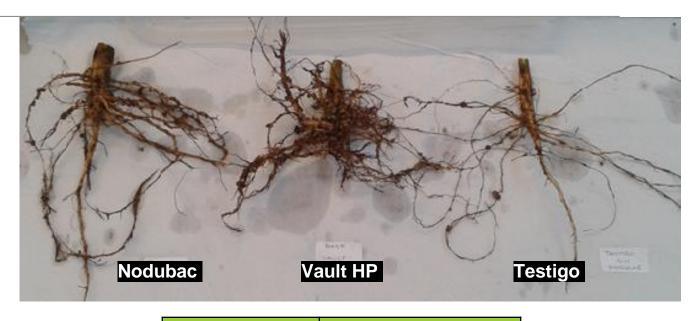
Análisis de Grupos funcionales

Uso de análisis biológicos en CONTROLES y MONITOREOS

Evaluar la abundancia de microorganismos con una función específica:

- Caracterización de una enmienda
- Calidad de bioinoculante (producto orgánico o comercial).
- Evaluar el efecto de su aplicación en suelo, semillas, etc.

Ensayo de bioinoculantes de soja


Tabla 1. Recuento de Bacillus subtilis, expresado en UFC/ml.

Tratamientos		Recuento (UFC/ml)	
P1V	Vault HP para su empleo inmediato.		4,33 x 10 ⁷
P2V	Vault HP posterior a las 18 hs de preparación.		4,00 x 10 ⁷
PN	Nodubac preparado para su empleo inmediato.		2,67 x 10 ⁷
S1V+	Semillas con Vault HP primer tratamiento más pintado.		5,00 x 10 ⁵
S1V-	Semillas tratadas con Vault HP primer tratamiento menos pintado.		1,76 x 10 ⁵
S2V	Semillas tratadas con Vault HP segundo tratamiento posterior a 18 hs de prep.		2,10 x 10 ⁵
SN	Semillas tratadas con Nodubac.		9,33 x 10 ⁴
SS	Semillas tratadas con Vault HP sembradas, extraíadas 6 horas posteriores a la		1,17 x 10 ⁵
	siembra.		

Ensayo de bioinoculantes de soja

Tabla 2. Recuento promedio de Rhizobium de nódulos con y sin aplicación de inoculantes.

Tratamiento	Recuento (UFC/ml)
TESTIGO	2,95 x 10 ⁸
NODUVAC	5,40 x 10 ⁸
VAULT HP	7,425 x 10 ⁸

Tratamiento	Rendimiento		
Vault HP	42,9		
Nodubac	40,8		
Testigo	39,8		

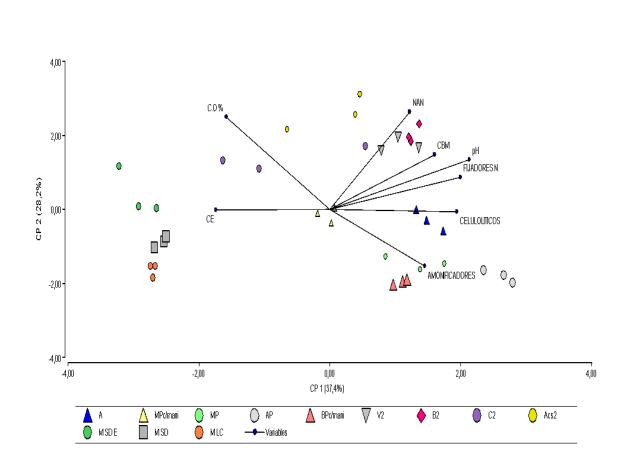
Ensayo en té de compost

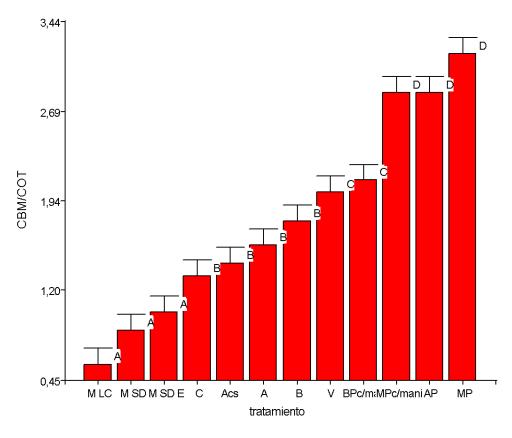
Recuento	Rdo TESTIGO	Rdo ACTIVADO	Unidades	Medio de cultivo
Pseudomonas spp.	< 10000	< 10000	UFC /ml	Agar Cetrimide
Hongos	7,60E+04	7,00E+06	UFC /ml	Agar PDA
Trichoderma spp.	1,70E+04	4,00E+06	UFC /ml	Identificación microscopio
Azospirillum	1,00E+07	3,60E+07	UFC /ml	Agar Rojo Congo

Uso de análisis biológicos en ENSAYOS para evaluar impactos de diferentes manejos de suelos

A través de ensayos en suelos representativos de la región bajo diferentes manejos, nuestro grupo de trabajo evaluó la sensibilidad de una serie de parámetros químicos, bioquímicos y biológicos, con la finalidad de comprobar si reflejan de manera sensible y temprana, el grado de degradación o recuperación de estos suelos.

Uso de análisis biológicos en ENSAYOS para evaluar impactos de diferentes manejos de suelos


Ensayo	Maíz con y sin estercolado en Alto Alegre Análisis agropecuarios
MSDE	Maíz en Siembra directa estercolado
MSD	Maíz en Siembra directa sin estercolar
MLC	Maíz en labranza convencional sin estercolar


Ensayo	Soja de diferente productividad en Arroyo Cabral Ing.RafaelBoiero
A	Alambrado
AP	Soja Alta productividad
BP	Soja Baja productividad
AP c/maní	Soja Alta productividad con maní en la rotación
BP c/maní Soja Baja productividad con maní en la rotación	

	Cultivos de servicio en Villa María Aapresid Regional Villa María
Acs	Alambrado
В	Barbecho
С	Centeno
V	Vicia

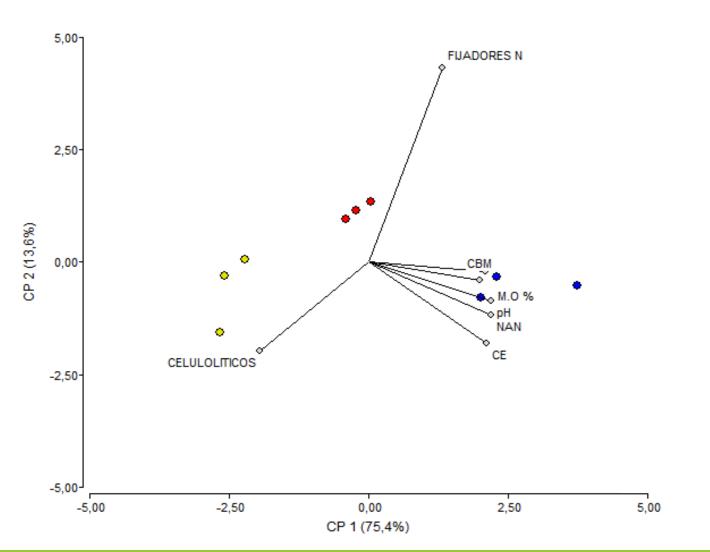
Sensibilidad de los indicadores

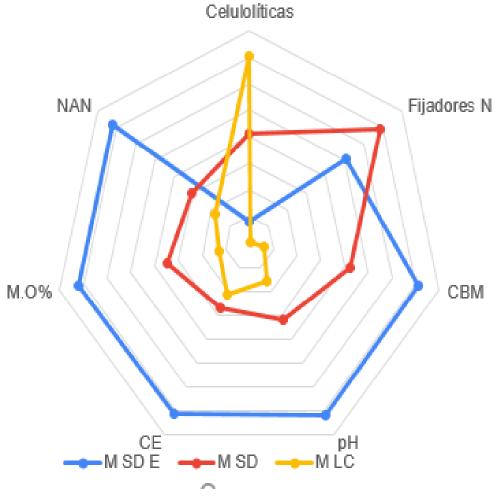
Las variables microbiológicas (indicadores biológicos) pueden tener un rol fundamental como indicadores tempranos y sensibles de degradación o restauración de suelos como consecuencia de diferentes prácticas de manejo.

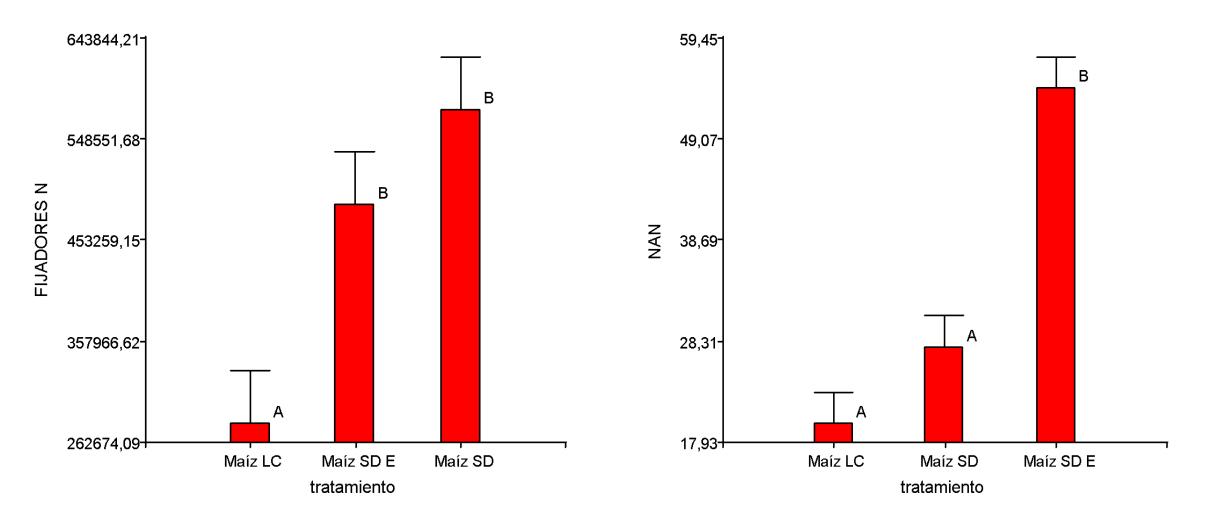
Suelo Ba3

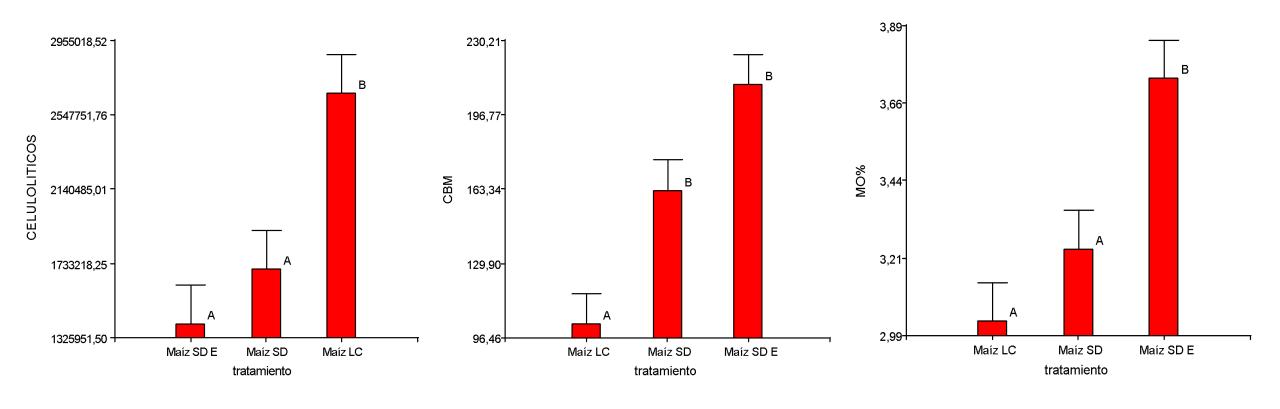
Fecha de estercolado: 15 de Noviembre de 2022

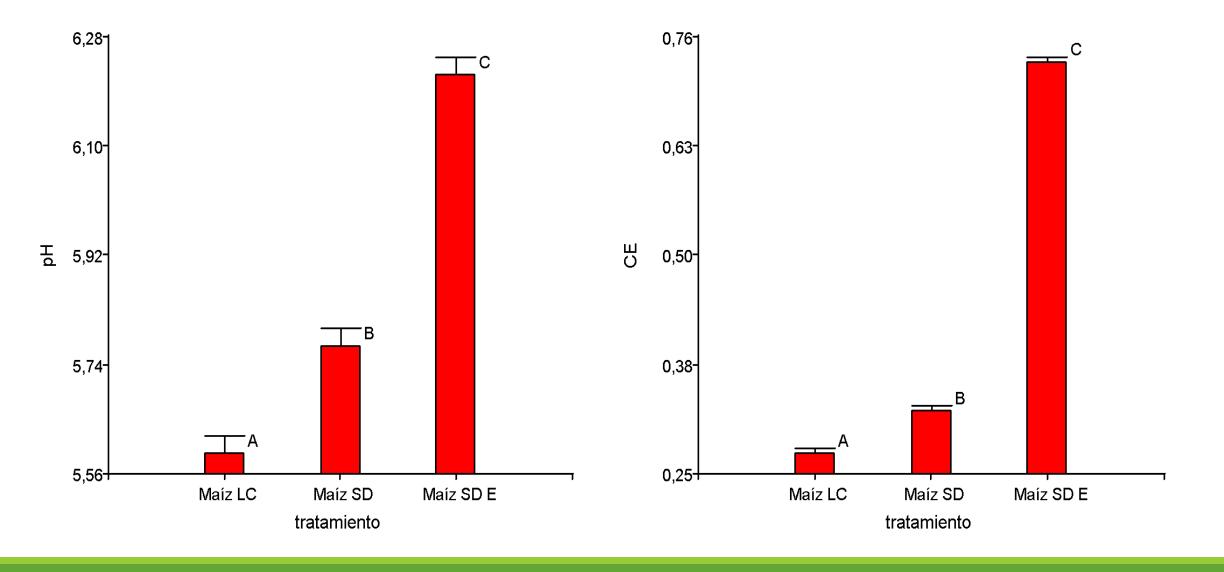
Siembra del maíz: 5 de Enero de 2023


Muestreo de suelo : 15 de febrero de 2023


Tratamientos


MSDE: Maíz en Siembra directa estercolado (Estiércol de barrido de corrales)

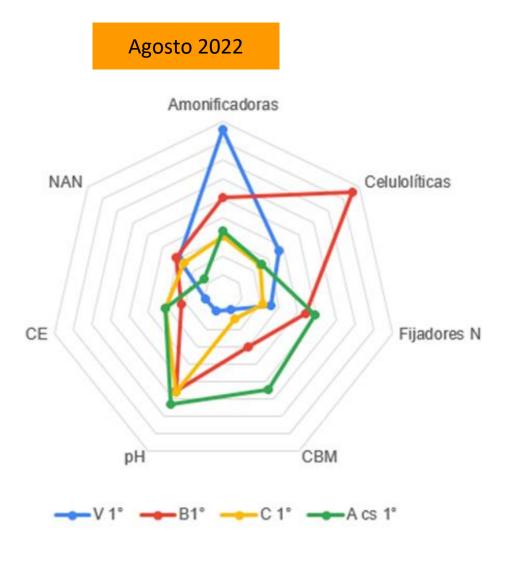

MSD: Maíz en Siembra directa sin estercolar


MLC: Maíz en labranza convencional sin estercolar

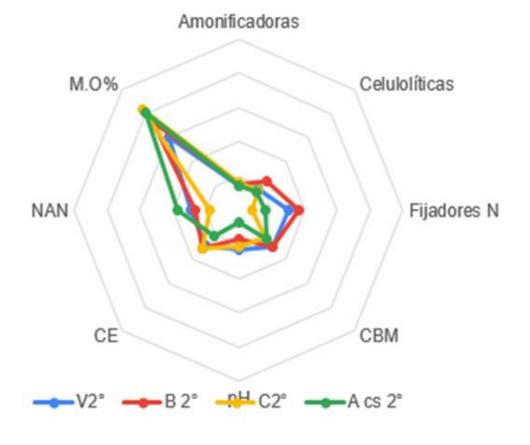
Ensayo con cultivos de servicios Aapresid regional Villa María

Ensayo del equipo Aapresid Villa María en un lote próximo a la ciudad, en dos fechas, la primera medición se realizó cuando los Cultivos de Servicio (CS) tenían escaso desarrollo (agosto 22) al comienzo del ensayo y la segunda fecha al secado de los CS (diciembre 22)

<u>Tratamientos</u>


Acs: Alambrado

V: Vicia


C: Centeno

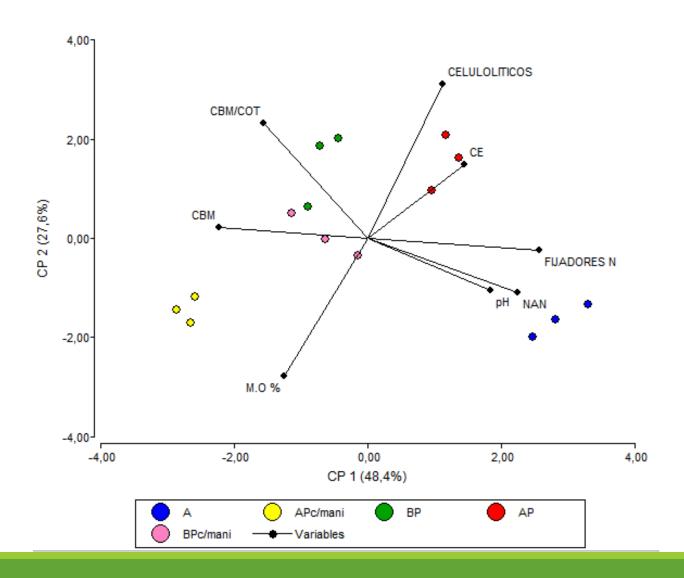
B: Barbecho

Ensayo con cultivos de servicios Aapresid regional Villa María

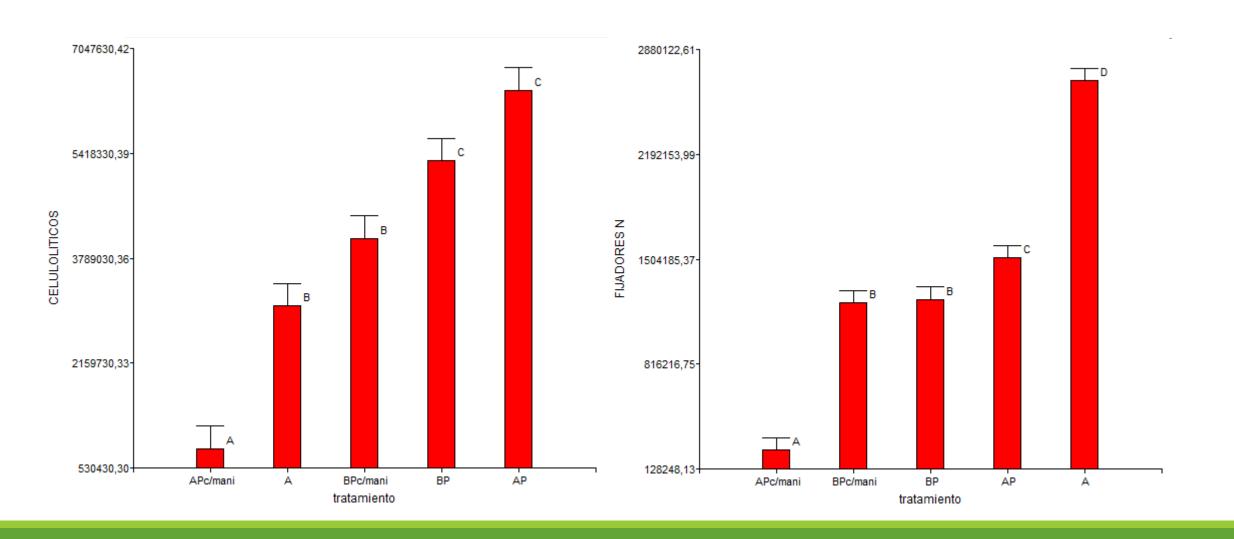
Diciembre 2022

Ensayo de soja con diferente productividad

Tratamientos


A: Alambrado

AP: Alta productividad sin maní en la rotación


BP: Baja productividad sin maní en la rotación

APc/mani: Alta productividad con maní en la rotación

BPc/mani: Baja productividad con maní en la rotación

Ensayo de soja con diferente productividad

Ensayo de soja con diferente productividad

Ensayo en lote con Alta y baja productividad

Tratamientos

A: Alambrado

AP: Suelo Alta productividad

BP: Suelo Baja productividad

Grupos Funcionales	ALAMBRADO	AP	ВР
Amonificadores	2,80E+05	1,50E+05	1,50E+05
Celulolíticos	8,20E+05	4,50E+06	6,70E+06
Fijadores de Nitrógeno	6,50E+05	6,30E+05	3,90E+05
Nitratación	2,10E+04	1,10E+06	1,10E+06
Solubilizadores de P	1,00E+04	5,00E+04	6,30E+04

CONSIDERACIONES PARA EL USO DE ANÁLISIS BIOLÓGICOS DE SUELO

- Muestreos en el primer horizonte
- Siempre considerar una situación de referencia
- Una vez obtenida la muestra mantenerla refrigerada y remitir al laboratorio evitando la exposición al sol y a las altas temperaturas.
- Las condiciones ambientales tienen gran influencia en los resultados.
- NO existen umbrales para interpretar los resultados

OTROS ANÁLISIS QUE PODRÍAN IMPLEMENTARSE PARA EVALUAR LA SALUD DEL SUELO

Indicadores microbiológicos:

- Respiración Microbiana
- ✓ Perfil de hormonas: Acido indol acético, giberelinas, etc.
- ✓ Perfil enzimático: (Ej: fosfatasa, ureasa), recuento de microrganismos caseinolíticos, proteolíticos, amilolíticos
- ✓ Determinación del equilibrio de biomasa: Recuento de HyL y Trichoderma.
- ✓ Recuento de bacterias, géneros específicos (Bacillus, Pseudomonas, Actinomicetes, Streptomices)

GRACIAS POR SU ATENCIÓN

PREGUNTAS Y COMENTARIOS

