The Danger of Using Math "Tricks"

David Hornbeck dhornbeck@rockdale.k12.ga.us

Georgia Math Conference

October 19, 2023

Outline

(1) Basics
(2) Arithmetic
(3) Algebra
(4) Feedback

Table of Contents

(1) Basics
(2) Arithmetic

3 Algebra
(4) Feedback

Basics 1: General Number Properties

1 is not a prime number!

Basics 1: General Number Properties

1 is not a prime number!

If it was, then the Fundamental Theorem of Algebra, which states that every integer can be uniquely written as a product of primes, would be violated.

Basics 1: General Number Properties

An even number is a multiple of 2 , and an odd number is a multiple of 2 plus or minus 1 .

Basics 1: General Number Properties

An even number is a multiple of 2 , and an odd number is a multiple of 2 plus or minus 1 .

These define evens and odds constructively, instead of defining evens by division and odds by what they aren't ("an odd number isn't divisible by 2 ").

Basics 2: Definitions

Asymptotes approximate how a function behaves for inputs or outputs of large magnitude.

Basics 2: Definitions

Asymptotes approximate how a function behaves for inputs or outputs of large magnitude.

They are not (necessarily) lines that the function can't pass through. Many functions pass through horizontal asymptotes.

Basics 2: Definitions

Factoring is rewriting an expression as a product. For example,

$$
\begin{aligned}
12 & =3(4) \\
2 x-4 & =2(x-2) \\
x^{2}-x-6 & =(x-3)(x+2) \\
3 x^{2}-3 x-9 & =3\left(x^{2}-x-3\right)
\end{aligned}
$$

are all examples of factoring.

Basics 2: Definitions

Factoring is rewriting an expression as a product. For example,

$$
\begin{aligned}
12 & =3(4) \\
2 x-4 & =2(x-2) \\
x^{2}-x-6 & =(x-3)(x+2) \\
3 x^{2}-3 x-9 & =3\left(x^{2}-x-3\right)
\end{aligned}
$$

are all examples of factoring.
When we teach factoring like this, it helps students remember that not all factoring is simply rewriting a quadratic trinomial as the product of two linear binomials.

Basics 2: Definitions

Absolute value is not just "the value made positive." It is the magnitude of a number (expressed for a real number as the distance from 0).

Basics 2: Definitions

Absolute value is not just "the value made positive." It is the magnitude of a number (expressed for a real number as the distance from 0).

This will become important when students transform graphs (dilate by $|a|$), compute vector magnitudes, and express absolute value functions as piecewise functions.

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^{3}\left(x^{\frac{1}{3}}\right)$

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^{3}\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^{3}\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)
- Expressions with variables that aren't x

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^{3}\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)
- Expressions with variables that aren't x
- Functions being represented by their name $(f(x), s(t)$, etc.) and not $y=$

Table of Contents

(1) Basics
(2) Arithmetic

3 Algebra
(4) Feedback

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division
Example What Students Do
$6\left(\frac{12}{3}\right)$

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division
Example What Students Do
$6\left(\frac{12}{3}\right) \quad$ Calculator $\rightarrow \frac{72}{3}=24$

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\hline 6\left(\frac{12}{3}\right) & \text { Calculator } \rightarrow \frac{72}{3}=24 \\
3 x^{2}\left(\frac{14}{15}\right)\left(\frac{10}{6 x}\right) &
\end{array}
$$

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Example	What Students Do
$6\left(\frac{12}{3}\right)$	Calculator $\rightarrow \frac{72}{3}=24$
$3 x^{2}\left(\frac{14}{15}\right)\left(\frac{10}{6 x}\right)$	Calculator $\rightarrow \frac{420 x^{2}}{90 x}$

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

Therefore,

$$
6\left(\frac{12}{3}\right)=\frac{6}{3}(12)=24
$$

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

Therefore,

$$
\begin{gathered}
6\left(\frac{12}{3}\right)=\frac{6}{3}(12)=24 \\
3 x^{2}\left(\frac{14}{15}\right)\left(\frac{10}{6 x}\right)=x^{2}\left(\frac{14}{5}\right)\left(\frac{5}{3 x}\right)=\frac{14}{3} x
\end{gathered}
$$

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

$$
\text { Example } \quad \text { What Students Do }
$$

$\frac{3}{4}$
$\frac{5}{8}$
What do I do again?

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

$$
\text { Example } \quad \text { What Students Do }
$$

$\frac{3}{\frac{3}{5}}$
What do I do again?
$\frac{2}{3} \quad$ How do I do this? OR $\frac{14}{3}$

The Alternative

Division by x is multiplication by the reciprocal of x.

The Alternative

Division by x is multiplication by the reciprocal of x.

Therefore,

$$
\frac{\frac{3}{4}}{\frac{5}{8}}=\frac{3}{4} \cdot \frac{8}{5}=\frac{3}{5}(2)=\frac{6}{5}
$$

The Alternative

Division by x is multiplication by the reciprocal of x.

Therefore,

$$
\begin{gathered}
\frac{\frac{3}{4}}{\frac{5}{8}}=\frac{3}{4} \cdot \frac{8}{5}=\frac{3}{5}(2)=\frac{6}{5} \\
\frac{\frac{2}{3}}{7}=\frac{2}{3} \cdot \frac{1}{7}=\frac{2}{21}
\end{gathered}
$$

Arithmetic 3: The "Butterfly" Method

The rule/trick in question: $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$

Arithmetic 3: The "Butterfly" Method

The rule/trick in question: $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\hline \frac{9}{16}-\frac{5}{24} & \frac{9(24)-16(5)}{16(24)} \rightarrow \text { Calculator } \rightarrow \frac{136}{384}
\end{array}
$$

The Alternative

Find the least common multiple of the denominators (ideally through factoring).

The Alternative

Find the least common multiple of the denominators (ideally through factoring).

Therefore,

$$
\begin{aligned}
\frac{9}{16}-\frac{5}{24}=\frac{9}{2(8)}-\frac{5}{3(8)} & =\frac{9}{2(8)}\left(\frac{3}{3}\right)-\frac{5}{3(8)}\left(\frac{2}{2}\right) \\
& =\frac{27-10}{48} \\
& =\frac{17}{48}
\end{aligned}
$$

Table of Contents

(1) Basics
(2) Arithmetic
(3) Algebra
(4) Feedback

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example
$\frac{3}{3 x}$

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3 x}$	The 3's cancel $\rightarrow \frac{3}{3 x}=x$

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3 x}$	The 3's cancel $\rightarrow \frac{3}{3 x}=x$
$\frac{3 x+6}{3}$	

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\hline \frac{3}{3 x} & \text { The 3's cancel } \rightarrow \frac{3}{3 x}=x \\
\frac{3 x+6}{3} & \text { The 3's cancel } \rightarrow x+6
\end{array}
$$

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\hline \frac{3}{3 x} & \text { The 3's cancel } \rightarrow \frac{3}{3 x}=x \\
\frac{3 x+6}{3} & \text { The 3's cancel } \rightarrow x+6 \\
\frac{1}{x+2}+\frac{3}{2 x+1} &
\end{array}
$$

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\frac{3}{3 x} & \text { The } 3 \text { 's cancel } \rightarrow \frac{3}{3 x}=x \\
\frac{3 x+6}{3} & \text { The 3's cancel } \rightarrow x+6 \\
\frac{1}{x+2}+\frac{3}{2 x+1} & \frac{(2 x+1)+3(x+2)}{(x+2)(2 x+1)}=1+3=4 \text { (or just } 3 \text {) }
\end{array}
$$

The Alternative

"Cancelling" is hard to eradicate, but at least emphasize the following

- We are typically dividing to make 1.
- Division must distribute over addition, but does not have to over multiplication, i.e.

$$
\begin{gathered}
\frac{3 x^{2}}{3 y}=\frac{x^{2}}{y} \text { is legal } \\
\frac{3 x^{2}+y}{3} \text { requires } \frac{3 x^{2}}{3}+\frac{y}{3}=x^{2}+\frac{y}{3}
\end{gathered}
$$

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

$$
\begin{array}{cl}
\text { Example } & \text { What Students Do } \\
\frac{3}{x+1}+\frac{5}{(x+1)^{2}} &
\end{array}
$$

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\frac{3}{x+1}+\frac{5}{(x+1)^{2}} & \frac{3^{2}}{(x+1)^{2}}+\frac{5}{(x+1)^{2}}=\frac{14}{(x+1)^{2}}
\end{array}
$$

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\frac{3}{x+1}+\frac{5}{(x+1)^{2}} & \frac{3^{2}}{(x+1)^{2}}+\frac{5}{(x+1)^{2}}=\frac{14}{(x+1)^{2}} \\
\frac{9}{x}+\frac{1}{\sqrt{x}} &
\end{array}
$$

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\frac{3}{x+1}+\frac{5}{(x+1)^{2}} & \frac{3^{2}}{(x+1)^{2}}+\frac{5}{(x+1)^{2}}=\frac{14}{(x+1)^{2}} \\
\frac{9}{x}+\frac{1}{\sqrt{x}} & \frac{\sqrt{9}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{4}{\sqrt{x}}
\end{array}
$$

The Alternative

Be precise with students: the only operations that, when simultaneously performed in the numerator and denominator of a fraction, preserve value are multiplication and division.

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^{2}+b x+c$ into $(x+p)(x+q)$ where p, q multiply to c and add to b

Example

$$
3 x^{2}+19 x-14
$$

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^{2}+b x+c$ into $(x+p)(x+q)$ where p, q multiply to c and add to b

Example
$3 x^{2}+19 x-14$ "Nothing multiplies to make -14 and adds to $19 . "$

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^{2}+b x+c$ into $(x+p)(x+q)$ where p, q multiply to c and add to b

Example
$3 x^{2}+19 x-14$ "Nothing multiplies to make -14 and adds to $19 . "$

$$
-3 t^{3}+24 t
$$

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^{2}+b x+c$ into $(x+p)(x+q)$ where p, q multiply to c and add to b

Example
$3 x^{2}+19 x-14$ "Nothing multiplies to make -14 and adds to 19."

$$
-3 t^{3}+24 t \quad(-3 t+8)\left(t^{2}+3 t\right) \text { or similar attempts }
$$

The Alternative

Have students become fluent with all kinds of polynomial multiplication, including with varied letters and exponents.

Always intermix factoring problems: GCF (positive, negative, include variables), monic quadratic, non-monic quadratic, in non-standard form

The Alternative

My own book's first 16 factoring problems:

Factor each as much as possible, if possible.

1. $y^{2}-3 y-54$
2. $5 y-x y$
3. $x^{2}-49$
4. $x^{3}-1$
5. $6 x^{2}-13 x+5$
6. $x^{3}+x^{2}-6 x$
7. $11 x^{2}-11 x+22$
8. $32 x-8$
9. $x^{2}+7 x-10$
10. $\frac{1}{4} x^{2}+\frac{3}{8} x+\frac{1}{8}$
11. $6-24 x^{2}$
12. $8 x^{6}+13 x^{3}-6$
13. $9 x^{4}-16$
14. $3 x^{2}+5 x-4$
15. $x^{4}-1$
16. $27-y^{3}$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

$$
\begin{gathered}
\text { Example } \text { What Students Do } \\
(x+3)^{2}
\end{gathered}
$$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

$$
\begin{array}{cc}
\text { Example } & \text { What Students Do } \\
\hline(x+3)^{2} & x^{2}+6 x+9
\end{array}
$$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example What Students Do

$(x+3)^{2} \quad x^{2}+6 x+9$
$\sqrt{x^{2}+9}$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example What Students Do

$$
\begin{array}{cc}
(x+3)^{2} & x^{2}+6 x+9 \\
\sqrt{x^{2}+9} & x+3
\end{array}
$$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example What Students Do

$(x+3)^{2} \quad x^{2}+6 x+9$
$\sqrt{x^{2}+9} \quad x+3$
$\left(2 x^{2}\right)^{2}$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example What Students Do

$$
(x+3)^{2} \quad x^{2}+6 x+9
$$

$$
\sqrt{x^{2}+9} \quad x+3
$$

$$
\left(2 x^{2}\right)^{2} \quad 2 x^{4}
$$

The Alternative

Emphasize distribution of operations over other operations. For instance:

The Alternative

Emphasize distribution of operations over other operations. For instance:

Multiplication does distribute over addition and subtraction, but does not over multiplication.

The Alternative

Emphasize distribution of operations over other operations. For instance:

Multiplication does distribute over addition and subtraction, but does not over multiplication.

Exponentiation and radicals do distribute over multiplication and division, but do not over addition or subtraction.

Table of Contents

(1) Basics
(2) Arithmetic

3 Algebra
(4) Feedback

Thank You!

To leave feedback on this session, please visit

> https://tinyurl.com/2023GMCsessions
or use the QR code below.

David Hornbeck
dhornbeck@rockdale.k12.ga.us www.davidhornbeck.com

