The Danger of Using Math "Tricks"

David Hornbeck dhornbeck@rockdale.k12.ga.us

Georgia Math Conference

October 19, 2023

• • = • • = •

David Hornbeck dhornbeck@rockdale.kl2.ga.us The Danger of Using Math "Tricks"

・ロト ・四ト ・ヨト ・ヨト

臣

Table of Contents

David Hornbeck dhornbeck@rockdale.kl2.ga.us The Danger of Using Math "Tricks"

Basics 1: General Number Properties

1 is not a prime number!

• • = • • = •

크

Basics 1: General Number Properties

1 is not a prime number!

If it was, then the Fundamental Theorem of Algebra, which states that every integer can be <u>uniquely</u> written as a product of primes, would be violated.

A B F A B F

Basics 1: General Number Properties

An even number is a multiple of 2, and an odd number is a multiple of 2 plus or minus 1.

伺 ト イヨト イヨト

Basics 1: General Number Properties

An even number is a multiple of 2, and an odd number is a multiple of 2 plus or minus 1.

These define evens and odds *constructively*, instead of defining evens by division and odds by what they aren't ("an odd number isn't divisible by 2").

• • = • • = •

Basics 2: Definitions

Asymptotes approximate how a function behaves for inputs or outputs of large magnitude.

伺 ト イヨト イヨト

Basics 2: Definitions

Asymptotes approximate how a function behaves for inputs or outputs of large magnitude.

They are not (necessarily) *lines that the function can't pass through*. Many functions pass through horizontal asymptotes.

A B K A B K

Basics 2: Definitions

Factoring is rewriting an expression as a product. For example,

$$12 = 3(4)$$

$$2x - 4 = 2(x - 2)$$

$$x^{2} - x - 6 = (x - 3)(x + 2)$$

$$3x^{2} - 3x - 9 = 3(x^{2} - x - 3)$$

are all examples of factoring.

э

Basics 2: Definitions

Factoring is rewriting an expression as a product. For example,

$$12 = 3(4)$$

$$2x - 4 = 2(x - 2)$$

$$x^{2} - x - 6 = (x - 3)(x + 2)$$

$$3x^{2} - 3x - 9 = 3(x^{2} - x - 3)$$

are all examples of factoring.

When we teach factoring like this, it helps students remember that not *all* factoring is simply rewriting a quadratic trinomial as the product of two linear binomials.

伺下 イヨト イヨト ニヨ

Basics 2: Definitions

Absolute value is not just "the value made positive." It is the $\underline{\text{magnitude}}$ of a number (expressed for a real number as the distance from 0).

• • = • • = •

Basics 2: Definitions

Absolute value is not just "the value made positive." It is the <u>magnitude</u> of a number (expressed for a real number as the distance from 0).

This will become important when students transform graphs (dilate by |a|), compute vector magnitudes, and express absolute value functions as piecewise functions.

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

• • = • • = •

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

• Expressions of the form $\frac{\frac{a}{b}}{c}$

<>>> < ≥> < ≥>

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^3\left(x^{\frac{1}{3}}\right)$

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\ddot{b}}{c}$
- Exponent rules with fractions or negatives like $x^3\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\ddot{b}}{c}$
- Exponent rules with fractions or negatives like $x^3\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)
- ullet Expressions with variables that aren't x

• • = • • = •

Basics 3: Rules in Numerous Settings

Students often get hung up on "unusual" looking problems because we often apply rules in very controlled settings.

Examples include:

- Expressions of the form $\frac{\frac{a}{b}}{c}$
- Exponent rules with fractions or negatives like $x^3\left(x^{\frac{1}{3}}\right)$
- Parentheses that just represent grouping (not multiplication)
- \bullet Expressions with variables that aren't x
- Functions being represented by their name (f(x), s(t), etc.)and not y =

伺 ト イヨト イヨト

Table of Contents

David Hornbeck dhornbeck@rockdale.kl2.ga.us The Danger of Using Math "Tricks"

▲圖▶ ▲屋▶ ▲屋▶

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

伺 ト イヨト イヨト

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Example What Students Do

 $6\left(\frac{12}{3}\right)$

伺 ト イヨト イヨト

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Example	What Students Do
$6\left(\frac{12}{3}\right)$	Calculator $\rightarrow \frac{72}{3} = 24$

▲圖▶ ▲屋▶ ▲屋▶ -

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Example	What Students Do
$6\left(\frac{12}{3}\right)$	Calculator $\rightarrow \frac{72}{3} = 24$
$3x^2\left(\frac{14}{15}\right)\left(\frac{10}{6x}\right)$	

- * 伊 * * き * * き * - き

Arithmetic 1: PEMDAS

The rule/trick in question: multiplication comes before division

Example	What Students Do
$6\left(\frac{12}{3}\right)$	Calculator $\rightarrow \frac{72}{3} = 24$
$3x^2\left(\frac{14}{15}\right)\left(\frac{10}{6x}\right)$	Calculator $\rightarrow \frac{420x^2}{90x}$

(本部) ((日) (日) (日) (日)

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

• • = • • = •

臣

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

Therefore,

$$6\left(\frac{12}{3}\right) = \frac{6}{3}(12) = 24$$

• • = • • = •

The Alternative

Division by x is multiplication by $\frac{1}{x}$, hence the order doesn't matter!

Therefore,

$$6\left(\frac{12}{3}\right) = \frac{6}{3}(12) = 24$$

$$3x^2\left(\frac{14}{15}\right)\left(\frac{10}{6x}\right) = x^2\left(\frac{14}{5}\right)\left(\frac{5}{3x}\right) = \frac{14}{3}x$$

• • = • • = •

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

く 聞 と く ヨ と く ヨ と

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

Example	What Students Do
314 5 8	What do I do again?

(本部) ((日) (日) (日) (日)

Arithmetic 2: "Keep-Change-Flip"

The rule/trick in question: division by a fraction requires "keeping" the numerator, "flipping" the operation, and "changing" the denominator

Example	What Students Do
<u>345</u> 8	What do I do again?
$\frac{\frac{2}{3}}{7}$	How do I do this? OR $\frac{14}{3}$

(本部) (本語) (本語) (二語)

The Alternative

Division by x is multiplication by the reciprocal of x.

The Alternative

Division by x is multiplication by the reciprocal of x.

Therefore,

$$\frac{\frac{3}{4}}{\frac{5}{8}} = \frac{3}{4} \cdot \frac{8}{5} = \frac{3}{5}(2) = \frac{6}{5}$$

David Hornbeck dhornbeck@rockdale.k12.ga.us The Danger of Using Math "Tricks"

伺下 イヨト イヨト

The Alternative

Division by x is multiplication by the reciprocal of x.

Therefore,

$$\frac{\frac{3}{4}}{\frac{5}{8}} = \frac{3}{4} \cdot \frac{8}{5} = \frac{3}{5}(2) = \frac{6}{5}$$
$$\frac{\frac{2}{3}}{\frac{7}{7}} = \frac{2}{3} \cdot \frac{1}{7} = \frac{2}{21}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Arithmetic 3: The "Butterfly" Method

The rule/trick in question: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$

Arithmetic 3: The "Butterfly" Method

The rule/trick in question: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$

Example	What Students Do
$\frac{9}{16} - \frac{5}{24}$	$\frac{9(24)-16(5)}{16(24)} \rightarrow \text{Calculator} \rightarrow \frac{136}{384}$

(本間) (本語) (本語) (二語)

The Alternative

Find the least common multiple of the denominators (ideally through factoring).

▲圖▶ ▲屋▶ ▲屋▶

The Alternative

Find the least common multiple of the denominators (ideally through factoring).

Therefore,

$$\frac{9}{16} - \frac{5}{24} = \frac{9}{2(8)} - \frac{5}{3(8)} = \frac{9}{2(8)} \left(\frac{3}{3}\right) - \frac{5}{3(8)} \left(\frac{2}{2}\right)$$
$$= \frac{27 - 10}{48}$$
$$= \frac{17}{48}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Table of Contents

David Hornbeck dhornbeck@rockdale.kl2.ga.us The Danger of Using Math "Tricks"

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

伺 ト イヨト イヨト

-

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3x}$	

伺下 イヨト イヨト

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do		
$\frac{3}{3x}$	The 3's cancel $\rightarrow \frac{3}{3x} = x$		

伺下 イヨト イヨト

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3x}$	The 3's cancel $\rightarrow \frac{3}{3x} = x$
$\frac{3x+6}{3}$	

伺下 イヨト イヨト

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3x}$	The 3's cancel $\rightarrow \frac{3}{3x} = x$
$\frac{3x+6}{3}$	The 3's cancel $\rightarrow x + 6$

伺下 イヨト イヨト

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3x}$	The 3's cancel $\rightarrow \frac{3}{3x} = x$
$\frac{3x+6}{3}$	The 3's cancel $\rightarrow x + 6$
$\frac{1}{x+2} + \frac{3}{2x+1}$	

伺下 イヨト イヨト

Algebra 1: "Cancelling"

The rule/trick in question: saying the word "cancel" without emphasizing rules of distribution, division, and subtraction

Example	What Students Do
$\frac{3}{3x}$	The 3's cancel $\rightarrow \frac{3}{3x} = x$
$\frac{3x+6}{3}$	The 3's cancel $\rightarrow x + 6$
$\frac{1}{x+2} + \frac{3}{2x+1}$	$\frac{(2x+1)+3(x+2)}{(x+2)(2x+1)} = 1 + 3 = 4 $ (or just 3)

伺下 イヨト イヨト

The Alternative

"Cancelling" is hard to eradicate, but at least emphasize the following

- We are typically <u>dividing to make 1</u>.
- Division must distribute over addition, but does not have to over multiplication, i.e.

$$\frac{3x^2}{3y} = \frac{x^2}{y}$$
 is legal
$$\frac{3x^2 + y}{3}$$
 requires
$$\frac{3x^2}{3} + \frac{y}{3} = x^2 + \frac{y}{3}$$

伺下 イヨト イヨト

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

Example What Students Do $\frac{3}{x+1} + \frac{5}{(x+1)^2}$

David Hornbeck dhornbeck@rockdale.k12.ga.us The Danger of Using Math "Tricks"

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

Example What Students Do $\frac{3}{x+1} + \frac{5}{(x+1)^2} = \frac{3^2}{(x+1)^2} + \frac{5}{(x+1)^2} = \frac{14}{(x+1)^2}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

Example What Students Do $\frac{3}{x+1} + \frac{5}{(x+1)^2} = \frac{3^2}{(x+1)^2} + \frac{5}{(x+1)^2} = \frac{14}{(x+1)^2}$ $\frac{9}{x} + \frac{1}{\sqrt{x}}$

David Hornbeck dhornbeck@rockdale.k12.ga.us The Danger of Using Math "Tricks"

Algebra 2: "Anything you do to the top, do to the bottom"

The rule/trick in question: doing "something" to the top and bottom always maintains equality

Example What Students Do $\frac{3}{x+1} + \frac{5}{(x+1)^2}$ $\frac{3^2}{(x+1)^2} + \frac{5}{(x+1)^2} = \frac{14}{(x+1)^2}$ $\frac{9}{x} + \frac{1}{\sqrt{x}}$ $\frac{\sqrt{9}}{\sqrt{x}} + \frac{1}{\sqrt{x}} = \frac{4}{\sqrt{x}}$

(本間) (本臣) (本臣) (臣)

The Alternative

Be precise with students: the only operations that, when simultaneously performed in the numerator and denominator of a fraction, preserve value are multiplication and division.

• • = • • = •

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^2 + bx + c$ into (x+p)(x+q) where p, q multiply to c and add to b

A B M A B M

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^2 + bx + c$ into (x+p)(x+q) where p, q multiply to c and add to b

Example	What Students Do
$3x^2 + 19x - 14$	"Nothing multiplies to make -14 and adds to 19 ."

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^2 + bx + c$ into (x+p)(x+q) where p, q multiply to c and add to b

Example	What Students Do
$3x^2 + 19x - 14$	"Nothing multiplies to make -14 and adds to 19 ."
$-3t^3 + 24t$	

Algebra 3: Factoring - multiply to c, add to b

The rule/trick in question: factoring $x^2 + bx + c$ into (x+p)(x+q) where p, q multiply to c and add to b

Example	What Students Do
$3x^2 + 19x - 14$	"Nothing multiplies to make -14 and adds to 19 ."
$-3t^3 + 24t$	$(-3t+8)(t^2+3t)$ or similar attempts

The Alternative

Have students become fluent with all kinds of polynomial multiplication, including with varied letters and exponents.

Always intermix factoring problems: GCF (positive, negative, include variables), monic quadratic, non-monic quadratic, in non-standard form

• • = • • = •

The Alternative

My own book's first 16 factoring problems:

Factor each as much as possible, if possible.

1. $y^2 - 3y - 54$	5. $6x^2 - 13x + 5$	9. $x^2 + 7x - 10$	13. $9x^4 - 16$
2. $5y - xy$	6. $x^3 + x^2 - 6x$	10. $\frac{1}{4}x^2 + \frac{3}{8}x + \frac{1}{8}$	14. $3x^2 + 5x - 4$
3. $x^2 - 49$	7. $11x^2 - 11x + 22$	11. $6 - 24x^2$	15. $x^4 - 1$
4. $x^3 - 1$	8. $32x - 8$	12. $8x^6 + 13x^3 - 6$	16. $27 - y^3$

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	

▲御▶ ▲理▶ ▲理▶

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	$x^2 + 6x + 9$

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	$x^2 + 6x + 9$
$\sqrt{x^2 + 9}$	

・ロト ・聞 ト ・ ヨト ・ ヨト …

臣

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	$x^2 + 6x + 9$
$\sqrt{x^2 + 9}$	x + 3

・ロト ・聞 ト ・ ヨト ・ ヨト …

臣

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	$x^2 + 6x + 9$
$\sqrt{x^2+9}$	x + 3
$(2x^2)^2$	

イロト イ部ト イヨト イヨト 三日

Algebra 4: Distributing

The rule/trick in question: "don't forget to distribute," "you always have to distribute"

Example	What Students Do
$(x+3)^2$	$x^2 + 6x + 9$
$\sqrt{x^2+9}$	x + 3
$(2x^2)^2$	$2x^4$

イロト イ部ト イヨト イヨト 三日

The Alternative

Emphasize distribution of operations $\underline{\mathrm{over}}$ other operations. For instance:

The Alternative

Emphasize distribution of operations $\underline{\mathrm{over}}$ other operations. For instance:

Multiplication <u>does</u> distribute over addition and subtraction, but does not over multiplication.

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

The Alternative

Emphasize distribution of operations $\underline{\mathrm{over}}$ other operations. For instance:

Multiplication <u>does</u> distribute over addition and subtraction, but does not over multiplication.

Exponentiation and radicals <u>do</u> distribute over multiplication and division, but do not over addition or subtraction.

Table of Contents

Thank You!

To leave feedback on this session, please visit

https://tinyurl.com/2023 GMC sessions

or use the QR code below.

David Hornbeck dhornbeck@rockdale.k12.ga.us

www.davidhornbeck.com

David Hornbeck dhornbeck@rockdale.k12.ga.us

The Danger of Using Math "Tricks"