

On granular flows: from kinetic theory to inertial rheology and nonlocal constitutive models Diego Berzi, Phys. Rev. Fluids, 9, 034304 (2024)

Collisions can be sticking or sliding

 $e_n \leq 1$ normal coefficient of restitution $e_t \leq 1$ tangential coefficient of restitution $\mu \ge 0$ surface friction

Origin of stresses for granular gases: transfer of momentum associated with velocity fluctuations

Granular temperature T one third of the mean square of velocity fluctuations (Ogawa 1978)

MOMENTUM EXCHANGE AND ORIGIN **OF RATE-INDEPENDENT BEHAVIOUR**

MEASURING THE CRITICAL POINT

CRITICAL POINT: ROLE OF FRICTION

STEADY, HOMOGENEOUS FLOWS

Discrete simulations of Chialvo et al PRE 2012, Chialvo and Sundaresan PHF 2013, Vescovi and Luding SM 2016

STEADY, HETEROGENEOUS FLOWS

Funded by

ν

the European Union

Cooperativity length measured in discrete simulations (inclined flows over erodible beds)

