Experiments with non-convex particles

Ralf Stannarius, Jonas Schulze, Torsten Trittel, Dmitry Puzyrev, Mahdieh Mohammadi

Motivation

Shape matters

Most studies deal with the simplest grain shapes: hard, monodisperse spheres. Recently, the role of anisotropic grain shape has gained focus, e.g. rice grains cylinders or lens-shaped ellipsoids. They add the aspect of orientational order.
Also, soft, elastic grains have been introduced. These materials can exhibit fundamentally new features.
Non-convex grains received comparably little attention so far. U-shaped particles, flat crosses and even spherical crosses introduce novel features, like catching or entanglement. They may also cause unexpected dynamic effects.
We present experimental results of packing and shear experiments with crossshaped particles

Random packing of flat crosses

Setup

Random packings for aspect ratios $\rho=a / b$. $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ clips of photos after compaction

$\rho=0.25$
Preparation of random 2D packings: Place crosses loosely on a flat table, compactify the arrangement with a slider until the crosses give resistance.
Take a photo and compress further with force. Take a second photo.

$\rho=2.0$

Crystalline Packing
One cross per unit cell

tilted rhomboid, square,SQ TRH

More than one cross per unit cell

Split-bottom shear experiment

2. 3D camera for a complete 2D surface profile determination. Simultaneous optical recording of surface images.

Granular "Weissenberg effect"?

Earlier findings for convex particles

Secondary flow: convection between shear zone and center
Heap formation in the center of the split-bottom container
Effect exists for oblate and prolate grains, NOT for spherical particles

Heaping sensitively depends on container fill height, at optimum fill height it is fastest and most efficient Upon reversal of the rotation sense, the heap collapses and reappears in the same way as before

Spatial crosses under shear

Spatial crosses with aspect ratios 3 (left) and 4 (right)

Direction of secondary flow is reversed!

Top views of the bed of 3D
crosses in the split-bottom crosses in the split-bottom container, recorded with a stereoscopic camera. color-coded surface profile (blue: low, red:high)
Top view of the rotation center: Colored crosses are placed at the surface as markers before the rotation starts. Overlay of initial marker positions in white and positions after 5 (top) and 15 (bottom) full rotations of the bottom disk in black.
Image sizes $24 \mathrm{~cm} \times 24 \mathrm{~cm}$ Crosses at the surface within the sheared ring zone migrate inward.
.

Packing of 2D crosses

Packing fractions in dependence of aspect ratios
Local positional and orientational correlations

Mohammadi et al. Phys. Rev. E 106 L052901 (2022)

Results

Shearing of 3D crosses (hexapods) Dimple formation in the center of sheared granular bed
Flow reversed with respect to convex (rodlike and lentil-shaped) particles

