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We focus on simple extensional flow of a dense suspension in which the interaction between closely pairs of particles, with radius a, is governed by a lubrication force and by a short-range
repulsion force responsible for the variations in approaching and departing velocities. We employ force and moment equilibrium to determine normal and tangential velocities of a typical pair
of particles that are integrated into a flux condition incorporating a radial distribution. The problem is then governed by a differential equation that is solved by the method of characteristic
with a boundary condition applied to the radial distribution function that approaches unity at far distance. Trajectories are derived and compared with those obtained through Stokesian
dynamics simulations.

Characterization of the Flow
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Kinematics
In a pure shearing flow the average rate of deformation D has componentsD11 = −D22 = γ̇.
The relative motion of the center of particle B with respect to the center of particle A is

v(BA)
α = vsd̂

(BA)
α + vθ

(BA)t̂(BA)
α ,

where vs = ṡ, vθ = 2aθ̇ and s is the separation of the edges along the line of centers and
an over-dot indicates a derivative with respect to time. The relative velocity of their points
of near contact is, then,

v(BA)
α + a(ω(A) + ω(B))t̂(BA)

α ,

where ω is the angular velocity of the sphere. The interaction of A with k − 1 near
contacting neighbors n, other than B, is treated differently; the sphere n is assumed to
move relative to A with the average flow. Then, the relative velocity of centers of pair nA
is

v(nA)
α = 2aDαβd̂

(nA)
β

and the relative velocity of the points of near contact nA is

v(nA)
α + aω(A)t̂(nA)

α .

Equilibrium

Viscous Force
The dimensionless force F(BA) exerted by sphere B on sphere A is

F (BA)
α =

3

2

1

γ̇

vs
s
d̂α +

1

γ̇

[
ln

(
1

s

)
+ 3.84

]
vθ −

F̂

s
d̂α − 9.54 sin 2θt̂α

+
1

γ̇

[
ln

(
1

s

)
− 0.96

]
ω(A)t̂(BA)

α +
1

γ̇
ln

(
1

s

)
ω(B)t̂(BA)

α ,

Force equilibrium for particle A F
(BA)
α +

∑N (A)

n6=B F
(nA)
α = 0;

Moment equilibrium for particle A εκαF
(BA)
α + εκα

∑N (A)

n6=B F
(nA)
α = 0

Similar equations for particle B

Solutions

Normal component velocity

vs =
2

3
F̂

(
1 +

4bs

s̄

)
+

4bs

s̄
cos 2θγ̇

Tangential component velocity

vθ = (2 + s)c2 sin 2θγ̇

with F̂ the dimensionless repulsive force and s̄ the average distance between
particles edges, and

c2 =
6b/ [s̄ (4b− k + 1)]

ln (1/s̄)− 0.96
b = −3

√
3(k − 1)

16π
.

Flux Condition

∇ · (vg12) = 0

(s + 2)vs
∂g12

∂s
+ vθ

∂g12

∂θ
= −g12

[
∂vθ
∂θ
− (s + 2)

∂vs
∂s
− vs

]
b.c. g12(s = 2, θ) = 1

Method of Characteristics
ds

dτ
= (s + 2)vs s(τ = 0, θ0) = 2

dθ

dτ
= vθ θ(τ = 0, θ0) = θ0

dg12

dτ
= −g12

∂vθ
∂θ
− (s + 2)g12

∂vs
∂s
− vsg12 g12(τ = 0, θ0) = 1

Solutions

g12 =
(s

2

)−(1/q+1)

× e(1−s/2) ×
(

tan θ

tan θ0

)−(4q+1)F̂ /3

× e[−4qF̂ /(3 sinq 2θ0)]
∫ θ
θ0

1/(sin 2ξ)q+1dξ

in which

q = −1

3

[
3
√

3(k − 1)

4π
+ k − 1

] [
ln

(
1

s̄

)
− 0.96

]
; θ0 =

1

2
sin−1

[(
2

s

)1/q

sin(2θ)

]
and

s = 2

(
sin 2θ

sin 2θ0

)q
+ F̂

1

(sin 2θ)−q

{
2

3c2

∫ θ

θ0

[
1 + 4qc2

sin(2ξ)q

sin(2θ0)q

]
sin(2ξ)(−q−1)dξ

}

Particles trajectories at closest proximity, area fraction ν = 0.64

Numerical simulations
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Theoretical prediction: solid lines(F̂ = 10−4), dashed lines (F̂ = 0)
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