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1 Introduction
•Dense granular flows are encountered in many industrial and geophysical processes, where the deformation rate often changes due to topographical variation, for example.

• It has been shown that the history effect is important for quasi-static flows. It, however, remains an open question how well a model without history effect can capture unsteady
inertial flows.

•We use simulations of shear-reversal and rate-change flows to demonstrate the evolution of stresses and microstructure during the unsteady state.

2 Simulation methodology and setup

•Discrete element method (DEM) using LAMMPS

• 2000 monodisperse spheres in three dimensional triclinic simulation box

•Homogeneous simple shear flow using deforming box and the Lees-Edwards boundary
condition

•A mechanical force Fi = myi
dγ̇
dt , where yi is the particle coordinate in the shear

gradient direction, is applied to each particle to realise ’instantaneous’ velocity change

Visualisation of the particle assemblies (left) and streaming velocity profiles (right) to illustrate
the shear reversal flow

3 Stress and microstructure evolution in quasi-static
shear-reversal flow
The stresses of a granular material with solid volume fraction φ greater than the shear
jamming volume fraction φc exhibit rate-independent characteristics. The evolution of
stresses in unsteady shear reversal flow correlates well with that of the microstructure, which
is characterised by the coordination number Z = 2Nc

N and fabric tensor A = 1
Nc

∑
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where Nc is the number of contacts and N is the number of particles and n is the branch
vector pointing from one particle centre to then centre of a contacting particle.594 J. Sun and S. Sundaresan
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Figure 1. (Colour online available at journals.cambridge.org/flm) Evolution of (a) scaled
pressure pd/k (where k = kn), (b) stress ratio, (c) coordination number and (d ) Axz for an
assembly subjected to unsteady shear under the constant volume condition with φ = 0.60.
Blue square symbols denote the data from DEM simulations and the red solid curves are
the constitutive model results. The shearing was stopped during 1 < γ̇0t < 2. The interparticle
friction coefficient µ is 0.5 and the inertia number I ≈ 0.0003 at steady state.

An assembly with particle volume fraction φ of 0.6 was first sheared at a shear rate

of γ̇0 = 2|D0|, where |D0| is the modulus of the initial strain rate tensor (: =
√

1
2D

T
0 : D0),

to reach a statistical steady state under the CV condition and the time t =0 was chosen
as an arbitrary state in this statistical steady state. The assembly was then subjected
to a specific shear pattern as described below. Figure 1 shows the variation of various
statistical quantities with accumulated shear strain γ̇0t . The shearing was stopped at
γ̇0t = 1, and hence the quantity γ̇0t within the range of 1 < γ̇0t < 2 should be interpreted
as a non-dimensional time measure. The pressure scaled by particle diameter and
elastic spring constant, and the shear stress-to-pressure ratio are shown in figures 1(a)
and 1(b), respectively. They clearly exhibited a rate-independent response as the
stress level was retained during the no-shear period (1 < γ̇0t < 2) with little change
from the steady state. The rate-independent characteristic has also been verified by
collapsing the stress data from simulations at various values of shear rates; those
results add no significant information and are not shown in the figures. At γ̇0t =2,
the flow direction was reversed and the shear rate became γ̇ = −γ̇0. The pressure
and stress ratio exhibited significant variations over strain intervals of order unity
following the reversal. The pressure dropped to a lower value and slowly returned
to the steady state. As the volumetric strain was kept at zero, this behaviour rules
out volume fraction change as a necessary cause of the pressure variation. The

Evolution of (a) scaled pressure pd/k (where d is the particle diameter and k = kn is
the particle stiffness), (b) stress ratio, (c) coordination number and (d) Axz for an assembly
subjected to unsteady shear under the constant volume condition with φ = 0.60. Blue
square symbols denote the data from DEM simulations and the red solid curves are the
constitutive model results. The shearing was stopped during 1 < γ̇0t < 2. The interparticle
friction coefficient µ is 0.5 and the inertia number I ≈ 0.0003 at steady state.

4 Microstructure characterisation in inertial flow
As binary collisions dominate in inertial flow, the definitions of coordination number and
fabric tensor need to be suitably modified to be statistically meaningful.

•A cutoff distance of 1.01d is used to count the
particles considered to be ’in contact’.

•The redefined coordination number and fabric
tensor have been checked to vary insignificantly
against the cutoff distance of 1.01d – 1.03d .

r’=
1.
01
d

r=1d

5 Stress and microstructure evolution in inertial
shear-reversal flow

The inertial number I = γ̇d
√
ρ/p and stress ratio µxy = σxy/p change at

shear reversal at γ = 2 and evolve over a significant strain about unity despite
shearing at a contant volume. The redefined coordination number and the shear
component of the fabric tensor display similar evolution pattern.

6 Modelling options in inertial shear-reversal flow

The steady-state functional relationships between µ, I and φ are no longer valid.
The coordination number and fabric tensor are found to be promising in modelling
the transient data.

7 Small disturbance with rate magnitude change

•The magnitude of shear rate
γ̇
√

m/k is decreased from
4 × 10−4 to 2 × 10−4.

•The stresses and
microstructure have small
deviations from the steady
state and recover within 0.2
strain.


