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1 Introduction

® Dense granular flows are encountered in many industrial and geophysical processes, where the deformation rate often changes due to topographical variation, for example.

® [t has been shown that the history effect is important for quasi-static flows. |t, however, remains an open question how well a model without history effect can capture unsteady
inertial flows.

e \We use simulations of shear-reversal and rate-change flows to demonstrate the evolution of stresses and microstructure during the unsteady state.

2 Simulation methodology and setup 5 Stress and microstructure evolution in inertial

e Discrete element method (DEM) using LAMMPS shear-reversal flow

® 2000 monodisperse spheres in three dimensional triclinic simulation box

® Homogeneous simple shear flow using deforming box and the Lees-Edwards boundary
condition

® A mechanical force F; = myig—j, where y; is the particle coordinate in the shear
gradient direction, is applied to each particle to realise 'instantaneous’ velocity change
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Visualisation of the particle assemblies (left) and streaming velocity profiles (right) to illustrate
the shear reversal flow
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3 Stress and microstructure evolution in quasi-static
shear-reversal flow

The stresses of a granular material with solid volume fraction ¢ greater than the shear
jamming volume fraction ¢ exhibit rate-independent characteristics. The evolution of
stresses in unsteady shear reversal flow correlates well with that of the microstructure, which
is characterised by the coordination number Z = 2Ne and fabric tensor A = NLC > o nn — %I

The inertial number I = 4d+/p/p and stress ratio pty, = 0, /p change at
shear reversal at v = 2 and evolve over a significant strain about unity despite
shearing at a contant volume. The redefined coordination number and the shear
component of the fabric tensor display similar evolution pattern.

N
where N, is the number of contacts and N is the number of particles and n is the branch

vector pointing from one particle centre to then centre of a contacting particle.
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"he steady-state functional relationships between w1, I and ¢ are no longer valid.
"he coordination number and fabric tensor are found to be promising in modelling
Evolution of (a) scaled pressure pd/k (where d is the particle diameter and k = k, is  the transient data.

the particle stiffness), (b) stress ratio, (c) coordination number and (d) Ay, for an assembly
subjected to unsteady shear under the constant volume condition with ¢ = 0.60. Blue
square symbols denote the data from DEM simulations and the red solid curves are the
constitutive model results. The shearing was stopped during 1 < ~gt < 2. The interparticle

friction coefficient v is 0.5 and the inertia number I = 0.0003 at steady state. 03— U
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4 Microstructure characterisation in inertial flow 5+/m/k is decreased from
4 —4 .
As binary collisions dominate in inertial flow, the definitions of coordination number and 4 X107 to 2 X 1077, 0.1

fabric tensor need to be suitably modified to be statistically meaningful.

® [ he stresses and

® A cutoff distance of 1.01d is used to count the ‘ ‘ ’ ‘ microstructure have small jj 00|
particles considered to be 'in contact'. o Y deviations from the steady N4'3_ | _-0.055 | /
® [ he redefined coordination number and fabric “Q\"’“ ’ ctate and recover within 02 fﬂ -0,06._”ﬁ§
tensor have been checked to vary insignificantly “\ ./ "g’ o strain. -0.065]
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