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Model 
A sphere of radius R, mass m, and moment of inertia I rolls over a corrugated surface inclined to the 

horizontal at an angle  composed of contacting circular cylinders of radii r. The gravitational 
acceleration is g, coefficient of sliding friction is µ, components of the velocity vector v of the center of 
the moving sphere parallel and perpendicular and to the line of centers of the fixed cylinders are u and v. 
Both u and v are functions of coordinate x along the line of centers, measured from the center of a fixed 

disk; transverse coordinate y, measured upward from the same center. 
 

 

 
 
 
 
 
 
 
 
 
 
 

The periodic geometry, when R = r, and two radii differences: R/r = 2 and the R/r = 1/2. The maximum value 
of f,  determines the bumpiness. As R/r decreases from 2 to 1/2, the bumpiness increases 

from 19.50 to 41.80.   
 
 

Periodic Rolling and Bumping 
On the interval  along the line of centers of the fixed spheres the normal and tangential 

components of the force exerted by the fixed cylinder upon the moving sphere are N and T, respectively. 
Then, the balances of linear and angular momentum are 

 

 and   
 

The unit vectors n and t are normal and tangent to the cylinders, and the angular velocity vector w is in 
the direction of  The dimensionless moment of inertia,  is equal to 2/5 for a 

homogeneous sphere, 
 

The differential equations are solved analytically when the sphere rolls without sliding for the entire 
periodic trajectory and when sliding occurs for some part of the trajectory. The constants of integration in 

the solutions are evaluated by consideration of the transfer of momentum in the bump. The sphere is 
assumed to maintain contact with the cylinders during the bump. The sphere may roll without sliding both 

before and after the bump, or roll with sliding before the bump and without sliding after. 
 

 
 Rolling without sliding 

 
Normal force, parallel velocity, and force ratio for a homogeneous sphere at inclinations when 

 and µ = 0.30. 
 

Average squared velocity 

 

 
 

 Rolling with sliding 

The angle  at which sliding begins is determined approximately as  where 
 

 

 

 
Normal force, parallel velocity, and the force ratio for a homogeneous sphere at inclinations 

when and  
 
 

Average squared velocity 

 

 
 

Regime Transitions 
With the analytical solutions, the transitions between stoping, rolling with sliding, and loss of contact can 

be determined. 
 

 

Curves of q versus for stopping of rolling without sliding and stopping of rolling with some sliding (solid), 
transitions between the two (dashed-dot), and loss of contact for rolling with some sliding (dashed) are shown for 
homogeneous spheres, with µ = 0.15 (light) µ = 0.30 (dark). For a given coefficient of friction, rolling stops below 
the solid red line; rolling without sliding takes place between the solid line and the dot-dashed line, there is a region 
of transition between the dot-dashed and dotted lines, rolling with some sliding takes place between the dotted line 

and the dashed line; and contact is lost above the dashed line. 
 
 

Numerical Tests 
The theory is tested against Discrete Element Method (DEM) simulations of a sphere of radius R rolling over a 

corrugated surface inclined to the horizontal at an angle q composed of contacting circular cylinders of radii r with 
their axes horizontal and perpendicular to the motion of the sphere. The DEM simulation solves the equations of 

motion for the sphere subject to both gravity and contact forces with the cylinders of the corrugated surface. 
 

 
Curves showing predicted values of dimensionless RMS velocity, urms, as a function of inclination, q, for three 

values of bumpiness,  17.50 , 22.50, and 30.00, from upper to lower, and µ = 0.30. Dashed regions indicate rolling 
without sliding; solid regions indicate rolling with some sliding. The symbols are values measured in the numerical 

simulations. 
 

 
Transition curves of for a homogeneous sphere with µ = 0.30 and values of the transitions measured in the numerical 

simulations (symbols). 
 

Conclusions 
The model for periodic rolling with bumping leads to differential equations that can be integrated to 

provide expression for the average velocity of a sphere that rolls down a corrugated surface. Constant 
values of this velocity are possible for ranges of inclination and bumpiness because of the energy lost in 
bumping. The transitions between the various modes of motion may be calculated and agree well with 

those seen in numerical simulations. The model is limited by the assumption that contact is not lost during 
a bump. The numerical simulations indicate that for coefficients of restitution as large as 0.1, the results 

of the calculation are unaffected; for values as large as 0.5, the motion is still periodic, but jumps are 
present that influence the results. 
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