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Summary

♣ We need an elastic stress aware of the microstructure to capture shear jamming and thickening

♣ Relaxation of the microstructure is necessary to obtain rate-dependent effects

♣ From transient flows we obtain important information to identify different stress contributions

♣ The dissipative stress needs to take into account contact friction but also details of lubrication

Evolving the microstructure

We denote by ϕ(X , t) the mapping that sends material points X
into their position at time t and by ϕ̃(x , t) its spatial inverse.

The deformation gradient is F̂(X , t) := Gradϕ(X , t) and its
spatial counterpart F(x , t) := F̂(ϕ̃(x , t), t) evolves with

∂F

∂t
+ (u · ∇)F = (∇u)F.

We introduce a tensorial field FR(x , t) that describes a relaxed
microstructure, while the current microstructure is described by

Fmic := FF−1
R , Bmic := FmicF

T
mic, Cmic := FT

micFmic.

We postulate the evolution equation
∂FR

∂t
+ (u · ∇)FR =

1

2τr(. . .)
(logCmic)FR

to obtain a frame-invariant rate that vanishes when the
microstructure is fully relaxed and is driven by a possibly varying
relaxation time.

Shear thickening and shear jamming
Shear jamming sets in once the microstructure is sufficiently
developed and leads to an elastic response with a diverging τr.
We introduce the excess measure

δ = max

{
1− J

‖ logBmic‖
, 0

}
.

with J a critical build-up of the microstructure and the elastic stress

Tel = (κ1 + δκ2) logBmic,

with κ1 and κ2 shear moduli.

Setting constant parameters τ 0
r > 0 and α > 0 and assuming

τr = τ 0
r exp(αδ), we obtain shear thickening with an intensity that

increases with α.
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Anisotropic response in transient flows
An initial microstructure that is not compatible with the steady
shear flow is produced by shearing a sample for a given strain and
then suddenly rotate the shear plane about the gradient direction by
an angle θ ∈ [0, π]. After the rotation, the apparent viscosity η12

shows a drop that is larger for larger θ.
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The measured behaviour (left) can be reproduced by the model
(right) thanks to the elastic term and with an additional dissipation.

Additional dissipation and anisotropy

Transient phenomena are important to suggest the details of a
tensorial model. By considering experimental and computational
data about shear rotation, published in Blanc et al., PRL 130,
118202 (2023), we see that the elastic contribution is important but
not sufficient to capture all effects.

The following dissipative stress includes a proxy for frictional
contacts due to the development of micristructure

Tdiss = 2η
(

1 + β1‖ logBmic‖2
)
D,

useful to reproduce the viscosity.

Nevertheless, the transient component η32 = σ32/γ̇ displays a more
complicated behavior. We can capture the contact contribution
measured in DEM simulations, but we still miss a term affecting the
transient hydrodynamic contribution (see figures below).

η32(γ, θ)/ηSS12 - Experiment

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-0.0325

-0.0125

0.0075

0.0275

0.0475

0.0675

0.0875

Full DEM data
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Model
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