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Introduction
-Amorphous Solids under Athermal-Quasistatic Shear (AQS)

Questions
• The mechanical response of amorphous solids 

under AQS is characterized by smooth elastic 
segments separated by abrupt stress drops. 
The non-affine displacement fields are 
generally complex and towards the end often 
exhibit quadrupolar-like features.

• Can we explain the structures observed in 
these fields in terms of some underlying 
defects?

Methods
-Discrete Eshelby Formulation

Solution Approach
• The quadrupolar-like nature of these fields 

suggests that we search for defects in term of 
Eshelby-like inclusions.

Methods
-Eshelby’s Equivalence Relations for Discrete Systems

Triangular Inclusions
• We start from a perfect hexagonal lattice and 

consider triangle units of vertices as discrete 
Eshelby inclusions as triangles contain the 
same number of degrees of freedom as 
ellipses. 

• We observe that a pure shear eigenstrain on 
a single triangle unit corresponds to an ideal 
Eshelby quadrupole. 

• We apply Eshelby’s equivalence principle to 
decompose an elastic mismatch under a 
global strain to the sum of the global strain 
solution plus an eigenstrain applied to the 
triangular inclusion containing the elastic 
mismatch.

Results
-Applications to initially stress-free isostatic systems

Results
-Applications to pre-stressed systems
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Conclusions
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• We developed the discrete analog of the Eshelby inclusion problem by 
considering triangle units of particles/vertices as inclusions.

• We reformulate Eshelby’s equivalence principle for discrete systems to 
determine what local eigenstrains in a uniform system are needed to 
reproduce the same displacement field as that of a system with elastic 
mismatches under a global strain. 

• We consider packings as a series of elastic mismatches and apply our 
reformulated equivalence principle to generate the corresponding 
eigenstrains.

• These local eigenstrains of triangle units compose a basis for describing 
the non-affine displacements fields of packings.

• As the jamming regime is approached, more defects are required to 
reconstruct the general features of the displacement field.
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