# Discrete Eshelby Inclusions in Amorphous Solids

**Evan P. Willmarth**<sup>1</sup>, Weiwei Jin<sup>1</sup>, Dong Wang<sup>1</sup>, Mark D. Shattuck<sup>2</sup>, and Corey S. O'Hern<sup>1,3,4</sup>

<sup>1</sup> Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, U.S. <sup>2</sup> Benjamin Levich Institute and Physics Department, The City College of the City University of New York, New York, NY 10031, U.S. <sup>3</sup> Department of Physics, Yale University, New Haven, CT 06520, U.S. <sup>4</sup> Department of Applied Physics, Yale University, New Haven, CT 06520, U.S.





## Introduction

-Amorphous Solids under Athermal-Quasistatic Shear (AQS)









#### Questions

- The mechanical response of amorphous solids under AQS is characterized by smooth elastic segments separated by abrupt stress drops. The non-affine displacement fields are generally complex and towards the end often
- exhibit quadrupolar-like features. Can we explain the structures observed in these fields in terms of some underlying defects?

#### **Solution Approach**

The quadrupolar-like nature of these fields suggests that we search for defects in term of **Eshelby-like inclusions.** 



### $V_{ij}(r_{ij}) = \frac{1}{2}k_{ij}(l_{ij} - r_{ij})^2$

#### **Triangular Inclusions**

- We start from a perfect hexagonal lattice and consider triangle units of vertices as discrete Eshelby inclusions as triangles contain the same number of **degrees of freedom** as ellipses.
- We observe that a **pure shear eigenstrain** on a single triangle unit corresponds to an ideal Eshelby quadrupole.
- We apply Eshelby's equivalence principle to decompose an **elastic mismatch under a** global strain to the sum of the global strain solution plus an eigenstrain applied to the triangular inclusion containing the elastic mismatch.



### Methods

-Eshelby's Equivalence Relations for Discrete Systems



Results -Applications to initially stress-free isostatic systems







# Results

#### -Applications to pre-stressed systems

### $\vec{\epsilon}^* = \hat{C} \left( \hat{A} \vec{u}_{stressed} + \vec{b} + \vec{\Delta l} \right) - \hat{C} \left( \hat{A} \vec{u}_{unstressed} + \vec{b} \right)$

#### Tension difference in the bonds due to added pre-stress.





Non-affine displacement field between the two consecutive strain steps before a stress drop (N=1200).

Displacement field produced by the local eigestrains of 21 bonds.



### Conclusions

- We developed the discrete analog of the Eshelby inclusion problem by considering triangle units of particles/vertices as inclusions.
- We reformulate Eshelby's equivalence principle for discrete systems to determine what local eigenstrains in a uniform system are needed to reproduce the same displacement field as that of a system with elastic mismatches under a global strain.
- We consider packings as a series of elastic mismatches and apply our reformulated equivalence principle to generate the corresponding eigenstrains.
- These local eigenstrains of triangle units compose a basis for describing the non-affine displacements fields of packings.
- As the jamming regime is approached, more defects are required to reconstruct the general features of the displacement field.

# Acknowledgements

We thank financial support from NSF-DMREF-2118988. We also thank the support by the High Performance Computing facilities operated by Yale Center for Research Computing.