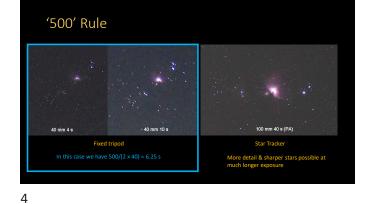


Basic Concept

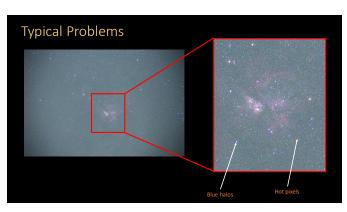
- Need long exposures to capture enough light
- But the earth's motion will result in star trails
- This gets worse at longer FL

2

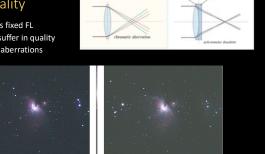

'500' Rule

- Approximation of maximum exposure time to avoid star trails
- Divide 500 by the (effective) FL

Beginners Astrophotography


Week 2: Lens, Cameras & Telescopes

- Include any crop factor in FL
- Depends on actual equipment set-up- use test shots
- Longer exposures will require use of star tracker


Hot Pixels

- Spurious coloured pixels due to long exposures
- Sensor gets hot -> random fluctuations
- Worse on hot summer nights
- Can be reduced by: Cooled camera Dithering 'Noise reduction' in camera

Lens Quality

- Prime lens has fixed FL • Zoom lenses suffer in quality
- Distortions & aberrations

8

7

Chromatic Aberration

- CA leads to Halos
- Can be reduced in post processing (e.g. ImagesPlus)
- ✓ Lenses with ED glass, doublets or achromatic best

Typical problems

10

Star Distortions

- If this is same across FOV -> problems with tracking
- If worse at corners likely to be lens
- Causes distortions & soft focus
- On telescopes we use field flatteners to correct this
- Dark signal in each corner is vignetting

aperture

eles causes 6 spike

Focussing

- We need to reliably focus at infinity for astrophotography
- Lens (∞) markings cannot be used
- Lenses are not as good as telescopes for infinity

Note: that focus can change throughout the night!

✓ Aim at bright star and manually focus until get smallest dot
 ✓ OR use focussing mask (next)

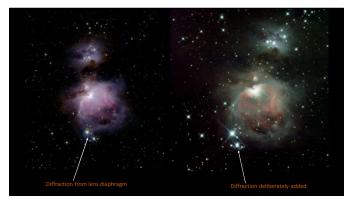
Bahtinov Mask

- Aperture specific fit and provides diffraction spikes
- These are symmetrical at infinity focus
- Use live view in camera

14

Diffraction Spikes

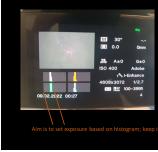
• Lens diaphragm can introduce unwanted spikes


> Open up aperture

- Can be introduced artificially (software or physical) to enhance photos
- Also useful to distinguish star brightness

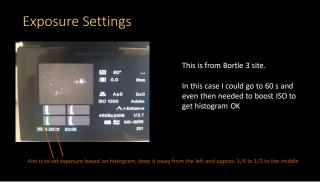
ebab sticks and blutak!

15


16

18

Exposure Settings


- Combination of shutter speed and ISO (gain) to get sufficient signal
- Exposure time is limited by set-up (lens speed, FL, tracking etc)
- \succ Increasing ISO will reduce the dynamic range in post processing
- ≻ Practical limit will be set by sky conditions
- ≻F-ratio of lens also changes exposure
- Without any calculation: use camera histogram as good estimate

Exposure Settings

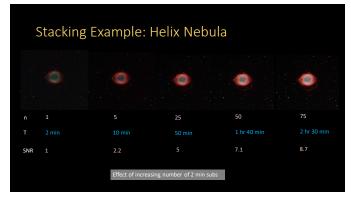
This is from my Backyard.

In this case LP means exposure was limited to 30 s and ISO 400


19

f-Ratio

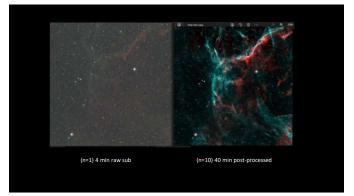
- f-ratio is the ratio of the FL to the aperture
 e.g. 1250/90 = f/14
 360/60 = f/6
- Ideally we need a wide ('fast') aperture as possible
- This will allow shorter exposures
- Compare these lenses next..


20

Bulb Mode

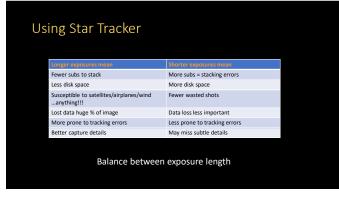
- Use shutter release cable to avoid camera shake
- Most cameras have maximum exposure of 30-60s
- Longer than that need 'bulb mode'
- Will also need intervalometer
- Good to have delay between shots

22



Stacking Data

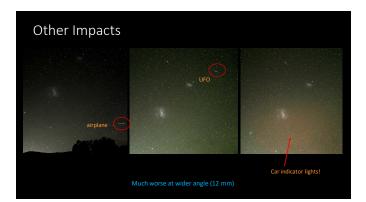
- Single sub exposure is very noisy
- Basic concept is to collect more (n) data = improve SNR
- Individual sub exposures (t) anywhere between few secs to few min
- Final 'integration time' T = n x t


Stacking Data

- Should aim for 20<n<100 subs depending on t
- Some bright targets 10-20 mins integration time
- More often 1 to several hours needed
- In LP you will always need more data
- Stacking software (DSS, Sequator) required

26

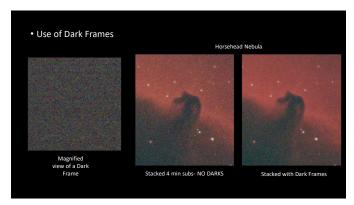
25



27

28

Calibration


• In addition to our sub exposures which we call light frames

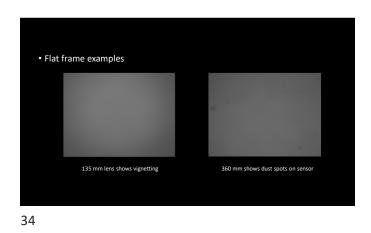
• You will (*may*) need:

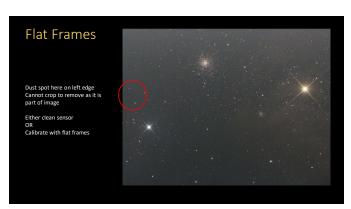
- ✓ Dark frames
- ✓ Flat Frames
- Bias Frames
- Dark Flat Frames

Dark Frames

- These remove hot pixels, amp glow- bad effects from long exposure photos
- ≻Add lens cap
- Acquire at same settings (ISO/gain, exposure, focus)
- \succ Should also be at same temperature
- ➢Software can also reduce hot pixels

32


Flat Frames

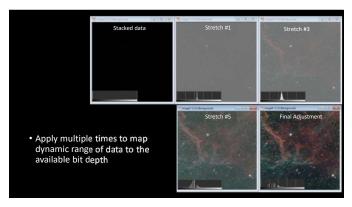

- These remove vignetting & any dust spots on sensor
- Attach white piece of paper or cloth to lens
- Aim at screen or daylight sky
- Acquire at same ISO/gain, focus and sufficient exposure time

33

31

Typical Workflow

- Acquire light frames
- Attach lens cap and acquire 20+ dark frames same night
- Leave equipment set-up overnight, including any filters
- Next day attach white cloth and acquire 20 flat frames
- Has to be done for every new dust spot that appears



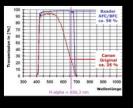
37

Stretching Data

- After stacking the data is in very low range of values
- Need to 'stretch' it several times
- This is process of setting the black and mid point without clipping or losing data
- Done many times to increase dynamic range
- Based on image histogram
- Can also be done automatically in some software

38

Types of Camera


- Standard DSLR or Mirrorless cameras
- Astro modified
- Dedicated Astro (cooled) cameras
- Planetary (video) cameras

39

40

Modified

- Stock cameras block IR
- ...also stop a lot of red spectrumModification replaces filter with wider bandpass
- Costs about \$800
- Increases sensitivity to emission nebula (only)

Astro Cameras

- Very low read noise
- Allow full computer control (unlike my old mirrorless camera)
- Flexible in terms of filters- already red sensitive
- Cooled cameras allow temperature to be controlled/reduced
 >Darks can be done at any time
- ✤Will need to be powered
- Can be expensive

More on Filters

43

45

- Common types are AR (just antireflective glass)
- IR/UV cut: defines sharp cut-off above visible light
- IR pass: the opposite of the above
- Duo or triband let in OIII, HII (and S) emissions
- Monochrome cameras need individual filters for R, G & B and therefore need much more time

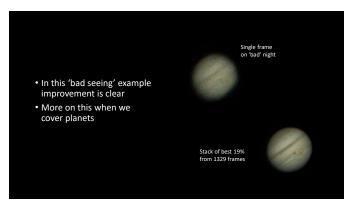
Astro Cameras • Example ZWO cameras • MC means colour • MM means mono ZWO ZWO ASI533MC ASI533MC • Pro means cooled Pro Colour [COLOUR] | zwo ZWO ASI533MM.. Astronomy. Testar. ASI533MM \$1,599.00 \$999.00 \$1,349.00 \$1,839.00 OpticsCentra Testar Au estar Aust Testar Austr

44

Planetary Cameras

- Frame rates up to 120 fps
- Can also change FOV to further increase FR
- Colour or monochrome
- Usually very small sensor size

ZWO ASI120MCS 3.75 um 1280 x 960mpixels 1/3" sensor 100g


'Seeing'

- Space telescopes have no atmosphere to deal with
- Adaptive optics used on professional observatory terrestrial telescopes
- For the rest of us seeing restricts our quality
- Resolution limit of telescope (Dawes limit) equal to 115/aperture (mm) e.g. 115/90 = 1.28 arc secs
- Seeing can be much worse than this limit

46

'Lucky Imaging'

- Use of FFR cameras to capture windows of good 'seeing'
- Useful technique for moon & planets
- Select the best images to be stacked
- Right balance between too many and too few will improve SNR

Telescopes

Refractors

Cheaper achromatic suffer from chromatic aberration
 Apochromatic uses ED glass to reduce chromatic aberration
 May need field flattener

Reflectors

- > Cheaper, use mirrors only, has diffraction
- > Require collimation, coma correction
- ➢ No chromatic aberration

Hybrid

Combination of lens and mirror
 Long FL in short tubes

49

Field Flatteners

- Extra glass that corrects any curvature at edges of field
- For some small sensor cameras you might be OK
- Full frame (DSLR) will need flattener
- Some work as 'flattener reducer'' and shorten FL e.g. 0.8 times
- This is my one for my refractor

Toilet roll tube!

50

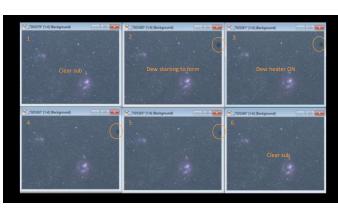
52

Additional Equipment

- Finderscope
- Red dot finder or other
- Wide low mag to assist alignment
- Guidescope
- Fast frame rate video camera for guiding

Dew shield/heate

- Lens hood or integrated dew shield
- heater strap may also be needed


Additional Equipment

- Finderscope
 - Red dot finder or other
 Wide low mag to assist alignment
 - Guidescope
- Fast frame rate video camera for guiding
- Dew shield/heater
- Lens hood or integrated dew shield
- heater strap may also be needed

Summa<u>ry</u>

- Good Astrophotography is about long enough exposure without star trails or other artefacts
- Ultimately best quality will be with star tracker
- Many images always equals better quality
- Things become progressively more difficult at longer FL
- Some basic processing techniques and equipment <u>will deliver</u>
 <u>good results</u>

