

MANUAL TÉCNICO

CTH-VECTOR Unidade de Controle de Campo Manual de Operação

ÍNDICE

1. Introdução
2. Especificação técnica6
3. Considerações de segurança 13
4. Instalação 14
5. Procedimentos de calibração 24
6. Solução de problemas 35
7. Manutenção
8. Garantias
9. Assistência técnica
10. Peças de reposição 39
Apêndice 1A – Conexão com CTH-UPES 40
Apêndice 1B – CTH-Vector com Sensor CTH-PGU 41
Apêndice 2 – Operações com comunicador HART 42
Apêndice 3 – Mapa de Registro Modbus 46
Apêndice 4 – Sensor de Gás Modelo CTH-PGU 51
Appendix 5 – Explosion Protection Drawing 56
Apêndice 6 – CTH-Vector com Jumper de ligação externa 57

É importante que todo este manual seja completamente lido e compreendido antes de instalar ou operar o CTH-VECTOR. Qualquer desvio deste manual pode prejudicar o desempenho do sistema e comprometer a segurança.

MANUAL DE OPERAÇÃO UNIDADE DE CONTROLE DE CAMPO CTH-VECTOR

1. Introdução

Visão geral do produto

O CTH-VECTOR é uma unidade de controle de campo de última geração que funciona

como um terminal de controle integrado e visor OLED, para a linha de detectores de gás

da Contech-ESP Safety. A unidade de controle de campo (FCU- Field Control Unit) CTH-VECTOR

pode ser instalado remotamente entre 150 a 1.000 metros do local de instalação

de um detector de gás*. O detector também pode ser ligado diretamente ao CTH-VECTOR

tornando uma unidade de detector / monitor unificado.

* Consulte a Tabela de tamanhos de cabos (Apêndice 1) para obter as distâncias máximas

para localização remota de detectores de gás.

Principais características

• Configurável para controlar e monitorar até 02 detectores.

• Tela OLED de 2.7" (diagonal) com resolução de 128x64. Exibe uma ampla gama de dados, incluindo concentrações de gás, níveis de alarme, falhas e modos operacionais.

• Saída analógica 4-20 com HART, RS-485 Modbus RTU, e 4 relés programáveis e 01 relé de falha.

• Calibração não intrusiva do detector no local através de um comunicador de campo HART ou bastão magnético.

• O log de eventos é armazenado na memória interna e acessível via RS-485 Modbus RTU.

• Temperatura de operação na faixa de -50°C a 75°C.

• Certificação SIL por uma agência terceira.

• Construído em aço inoxidável 316, invólucro à prova de explosão, Classe 1, Divisão 1

Visor (display)

• Interface não intrusiva com o menu operacional exibido no display OLED, utilizando bastão magnético.

• LED de status de três cores indica o modo operacional, falha, presença de gás, modo de calibração e nível de alarme.

Contato Contech

Contato Contech para assistência técnica ou solicitação e orçamento:

CONTECH Ind. e Com. de Equip. Eletrônicos Ltda. Av. Dr. Lino de Moraes Leme, 1.094 – Vila Paulista São Paulo – SP Tel.: (11) 5035-0920 fax: (11) 5035-0929 E-mail: contech@contechind.com.br Site: www.contechind.com.br

Princípio de Operação

A unidade de controle de campo CTH-VECTOR usa um link de comunicação digital RS-485 para adquirir e exibir dados de detectores de gás de modo integrado ou remoto. O CTH-VECTOR pode ser monitorado através das saídas de comunicações digitais RS-485, HART, dois circuitos de corrente 4-20 mA padrão industrial ou por contatos de relé.

As ligações de comunicações digitais RS-485 utilizam o protocolo Modbus® RTU. Este protocolo permite que todos os comandos e dados do CTH-VECTOR sejam transferidos. O protocolo Modbus RTU é um protocolo Master-Slave. Dispositivos escravos não podem transmitir dados sem receber uma solicitação de um Mestre. Os dispositivos escravos não podem se comunicar entre si.

Os contatos de relé podem ser usados para disparar alarmes e / ou outras operações de emergência, como ativar exaustão, operar válvulas ou desligar um equipamento. Os relés podem ser configurados usando o ESP Commander ou HART para abrir ou fechar quando um limite de alarme é alcançado. Uma saída de relé de falha é fornecida para indicar mau funcionamento do sensor, falha do sensor ou erros de tensão da fonte de alimentação. As configurações padrão de fábrica para os relés de alarme estão normalmente abertas (NA), o relé de Falha está normalmente fechado (NF).

A saída 4-20 mA_1 transmite o sinal do primeiro sensor e também pode ser usado para comunicação HART, para isto, o DIP "NO420" da placa de terminais deve estar fechado. A segunda saída 4-20 mA, é utilizada para monitorar o segundo sensor e, não permite comunicação HART. Para melhorar a imunidade a ruído, as saídas 4-20 mA são isoladas do terra do sistema, se a fiação não permitir um par de fios de circuito de corrente dedicado, a saída (-) 4-20 pode ser conectada ao terminal OV (retorno de alimentação) e, o DIP "3WIRE" na placa de terminais do controlador deve estar fechado.

Figura 1-1: Comunicação CTH-VECTOR

Componentes do CTH-VECTOR

- A. Caixa à prova de explosão
- B. Entrada para cabos 2 x 3/4" NPT
- C. Display OLED
- D. Entrada para Sensor 2 x 3/4" NPT
- E. Porta de comunicação HART/USB 1 x 3/4" NPT
- F. Indicadores LED
- G. Teclado magnético, 4x

Figura 1-2: Componentes do CTH_VECTOR

Figura 1-3: Dimensões CTH-VECTOR

2. Especificação técnica

Características mecânicas	
Material	Aço inoxidável (Tipo 316)
Conexão	¾″ NPT 2 conexões para Sensores 2 entradas para instalação elétrica de campo 1 conexão para HART/USB
Dimensões	190.5mm x 142.24mm x 108.71mm
Peso (sem sensor)	5.80 kg
Características elétricas	
Tensão de entrada	+24Vcc Nominal (+18 a 32Vcc)
Consumo de energia	4.3 W-repouso 5.3 W-em alarme 12.0 W-com aquecedor ligado (temp ≤ 30°C)
Saídas CTH-VECTOR FCU	2x analógico +4-20mA Digital RS-485 Modbus RTU
Relés de alarme	Classificação dos contatos 1A 0-60V, 1.0A CA / 2.0A CC 3 Relés de alarme programados pelo usuário (configuração padrão de fábrica: NA) 1 relé programado para condição de falha (configuração padrão de fábrica: NF) Todos os relés têm configurações programáveis como retardo, bloqueio, NA / NF.
Interface entre sensores e o CTH-VECTOR	Digital RS-485 Modbus RTU *Nota: Todos os sensores de gás da CTH-ESP Safety são compatíveis com o CTH-VECTOR
Tipos de Sensores/Modelo	Eletroquímico: PGU-E Infravermelho: PGU-IR Infravermelho (pontual): CTH-SGOES Infravermelho (caminho aberto): CTH-TGAES Fotoionizado: PGU-P Catalítico: PGU-C
Características de funcionar	nento
Faixa de umidade	Até 95% de umidade relativa, sem condensação (Suporta até 100% de umidade relativa para curtos períodos)
Temperatura de operação	Operação Padrão: -50oC a +75oC
Grau de proteção	IP67
Proteção RFI/EMI	EN50081-1 / Classe B E> 50270 *Opera sem a interferência de um walkie-talkie de 5 watts (transmitindo) a 1 metro.
Indicadores (LED)	Indica simultaneamente as concentrações de gás, níveis de alarme, falhas e modos operacionais. LED de status de três cores indica o modo operacional, falha e presença de gás. Três indicadores LED para ativação de alarmes Um quarto LED indica que a unidade está no modo de calibração
Informações exibidas	Dados contínuos do sensor Tipo de gás Unidades de medida Três limites de alarme fixos Exibição gráfica da concentração de gás nos últimos 3 minutos

Valores padrão de fábrica do controlador

Relays

Relé de Alarme: Normalmente Aberto Relé de Falha: Normalmente Fechado

Valores Padrão do Detector de Gás

Detector	Nome do Gás	Fórmula	Unidade de Medição	Limite Padrão 1	Limite Padrão 2	Limite Padrão 3	Range
PGU	Metano	CH4	%LEL	20	30	50	0 - 5.0 Vol%
PGU	Propano	C3H8	%LEL	20	30	50	0 - 2.1 Vol%
PGU	Dióxido de Carbono	C02	Vol%	0.5	1	2	0 - 5.0 Vol%
PGU	Buteno	C4H8	ppm	20	50	100	0 - 200 ppm
PGU	Hydrogênio	H2	%LEL	20	30	50	0 - 4.0 Vol%
PGU	Oxigênio	02	Vol%	22.5	19.5	18	0 - 30.0 Vol%
PGU	Monóxido de Carbono	CO	ppm	10	20	30	0 - 100 ppm
PGU	Sulfeto de Hidrogênio	H2S	ppm	10	20	30	0 - 100 ppm
PGU	Dióxido de Nitrogênio	NO2	ppm	5	10	15	0 - 20 ppm
PGU	Dióxido de Enxofre	SO2	ppm	5	10	15	0 - 20 ppm
PGU	Amônia	NH3	ppm	10	20	30	0 - 100 ppm
CTH-SGOES	Metano	CH4	%LEL	20	30	50	0 - 5.0 Vol%
CTH-SGOES	Propano	C3H8	%LEL	20	30	50	0 - 2.1 Vol%

Operações no Display 🗕

Quando usado em conjunto com o bastão magnético (P / N 611-0005), o display do CTH-Vector FCU pode ser usado para executar várias funções básicas de configuração. Existem quatro pontos de toque para o bastão magnético em volta do visor. As funções dos pontos de toque são as seguintes:

- 1. Iniciar Seleciona uma função a ser executada.
- 2. Voltar Cancelar uma função pendente ou sair da função atual.
- 3. Para Cima Seleciona o item acima do atual, ou pode ser usado para aumentar um dígito numérico por + 01.
- 4. Para Baixo Seleciona o item abaixo do atual, ou pode ser usado para diminuir um dígito numérico por 01.

Se manter o bastão magnético nos pontos de toque "PARA CIMA" ou "PARA BAIXO", o display irá percorrer os itens aproximadamente a cada 0,5 segundos.

Figura 2-1: Toque em Pontos do Bastão

A linha de status no visor mostra as seguintes
informações:Código de status:
CHKSM – Erro na verificação da memória ROM.• Mês, dia e ano (2 dígitos) em formato mm/ dd/ aa.
• A hora atual no formato hh: mm 24 horas.LOVLT – Tensão de alimentação do instrumento menor
que 18 Vcc.• Código de status (consulte a tabela para as condições
de código).NOCFG – Tabela de configuração do sensor não carregada.
OVRNG – Sensor acima da faixa de medição.• UNDRG – Sensor acima da faixa de medição.USBER – Erro de gravação USB.
USBOK – Gravação USB completa.

USBWR – Gravação USB em andamento.

Operações no Display

Os menus que contêm um "*" são mostrados com mais detalhes na seção Procedimento de Calibração deste documento. A função de reset de alarme é usada para reiniciar os relés de alarme quando eles estão operando no modo de trava. Esta função não tem um display específico associado a ele.

Figura 2-2: Estrutura do menu do CTH-Vector

Operações no display do CTH- Vector

Figura 2-3: Iniciar Exibição

Informações no display de inicialização:

- 1. Número de série da unidade
- 2. Endereço do escravo Modbus RTU para a porta do host
- 3. Número da versão do firmware
- 4. Soma de verificação do firmware

Figura 2-4: Exibição de Gás Individual

Informações no display de gás individual:

1. Indicador para os limites de alarme 1-3. ">" Indica que valores maiores do que o valor limite especificado serão considerados em alarme. "<" Indica que os valores inferiores ao valor limite especificado serão considerados como estando em alarme.

2. Gráfico com indicação da concentração de gás nos últimos 3 minutos.

3. Gás detectado. Normalmente em sua fórmula química.

- 4. Concentração de gás no momento.
- 5. Unidade de concentração de gás.

6. Valor dos limites de alarme 1-3. As unidades são iguais às da concentração de gás medida

Figura 2-5: Exibição com Dois Tipos de Gases

Informações no Display com dois tipos de gases:

- 6. Gás detectado. Normalmente em sua fórmula química.
- 7. Concentração de gás medida para o Sensor 1.
- 8. Unidade de concentração de gás no Sensor 1.

9. Indicador para os limites de alarme 1-3. ">" Indica que valores maiores do que o valor limite especificado serão considerados em alarme. "<" Indica que os valores inferiores ao valor limite especificado serão considerados como estando em alarme.

10. Valor dos limites de alarme 1-3 do Sensor 1. As unidades são iguais às da concentração de gás medida.

- 1. Gás detectado. Normalmente em sua fórmula química.
- 2. Concentração de gás medida para o Sensor 1.
- 3. Unidade de concentração de gás no Sensor 1.

4. Valor dos limites de alarme 1-3 do Sensor 1. As unidades são iguais às da concentração de gás medida. Note que se a função de alarme estiver desativada, o valor não será mostrado.

5. Indicador para os limites de alarme 1-3. ">" Indica que valores maiores do que o valor limite especificado serão considerados em alarme. "<" Indica que os valores inferiores ao valor limite especificado serão considerados como estando em alarme.

Select		
Calibrate 2 Set Time		
07/09/13	13:20	

Figura 2-6: Função Selecionar

Função Selecionar no Display:

Use os pontos de navegação PARA CIMA / PARA BAIXO para percorrer as funções disponíveis. Toque no ponto ENTRAR para ativar a função. O ponto VOLTAR retornará à tela de gás.

Definir Data no Display:

A data é exibida no formato mês, dia e ano -MM / DD / YY. Toque nos pontos de navegação PARA CIMA / PARA BAIXO para percorrer os dígitos. Toque no ponto ENTRAR para avançar para o próximo dígito.

Figura 2-10: Registro de eventos

Selecionar os Registros de Eventos no Display:

Cada entrada de log de eventos contém as seguintes informações:

- 1. Data e hora em que o evento ocorreu.
- 2. Fonte do evento:
 - Vector FCU Sensor 1 Sensor 2
- 3. Descrição do evento.

Os pontos de rolagem PARA CIMA / PARA BAIXO podem ser usados para percorrer as entradas no log. Para sair, tocar no ponto "VOLTAR".

O programa ESP Commander também pode recuperar logs de eventos para exibição em um PC. Informações adicionais serão exibidas sobre o evento ao usar esse recurso.

Figura 2-7: Definir hora

Definir a Hora no Display:

A hora é exibida em HH: MM. Toque nos pontos de navegação PARA CIMA / PARA BAIXO para percorrer os dígitos. Toque no ponto ENTRAR para avançar para o próximo dígito.

8	vent Log	
Sict Event Last	Log	
07/09/13	13:20	

Figura 2-9: Seleçãor de evento

Exibição de Seleção de Evento:

Toque nos pontos de navegação PARA CIMA / PARA BAIXO para seleccionar "Primeira" ou "Última". Se "First" for selecionado, a exibição do log de eventos começará com o evento mais antigo. Se "Last" estiver selecionada, será iniciado com o evento mais recente. Toque no ponto "ENTRAR" para ativar a exibição do log de eventos.

	Modbus	
Addr Baud	1 11 9600	
07/09/13	13:20	

Modbus:

No menu Modbus pode ser configurado os parâmetros de comunicação da porta host. Use os pontos de navegação PARA CIMA / PARA BAIXO para selecionar o valor de cada dígito. Use o ponto "ENTRAR" para avançar para o próximo dígito.

São válido endereços escravos para dispositivos Modbus entre 1 e 247.

Enquanto a taxa de transmissão é configurável para uma das taxas de baud padrão, as seguintes configurações de comunicação são fixas: 8 bits de dados, sem paridade, dois bits de parada

Certificação

Explosion Proof Intrinsically Safe (XPIS): Class 1; Division 1; Group A, B, C, D; Temp T5 AEx d[ia]: Zone 2; Group IIC, Temp Class T5 Enclosure Type 4X; IP Rating IP67 Temperature Range: $-50^{\circ}C \le Ta \le 75^{\circ}C$

Normas:

FM 3600, FM 3610, FM 3615, FM 3810, FM 6320, FM 3640, ANSI/ISA 60079-1, ANSI/ISA-12.13.01-2002, ANSI/ISA-12.13.04-2007, ANSI/ISA-920001, ANSI/NEMA 250, ANSI/IEC 60529

Explosion Proof Intrinsically Safe (XPIS): Class 1; Division 1; Group B, C, D; Temp T5 Ex d[ia]: Zone 1; Group IIC, Temp Class T5 Enclosure Type 4X; IP Rating IP67 Temperature Range: -50°C ≤ Ta ≤ 75°C

Normas:

CSA C22.2 Nos. 0.4., 0.5, 30, 94, 142, 152, 157, 60529, CAN/CSA 60079-0, CAN/CSA 60079-1, CAN/CSA 60079-11

ATEX IEC 🖾 CE

CE 0470 1 II 2/1 G Ex d[ia] IIC T5 IP 67 Temperature Range: -50°C \leq Ta \leq 75°C

Normas: EN60079-0, EN60079-1, EN60079-29-1-2007, EN 50270, EN 50271, EN 60529

Ex d [ia] IIC T5

IP 67

Temperature Range: -50°C ≤ Ta ≤ 75°C

Normas: IEC 60079-0, IEC 60079-1, IEC 60079-11, IEC 60079-29-1, IEC 60079-29-4, IEC 60529

3. Considerações de segurança

Diretrizes

Antes de instalar e operar o CTH-VECTOR, leia este manual inteiro. O não cumprimento destas diretrizes pode prejudicar o desempenho do produto e resultar em riscos de segurança.

Para máxima segurança:

• A instalação e operação do CTH-Vector devem ser realizados apenas por pessoal devidamente treinado que tenha lido e compreendido este manual.

• A fiação do CTH-Vector deve obedecer a todos os

códigos, normas e regulamentos elétricos aplicáveis. • Nunca utilize o CTH-Vector se o invólucro estiver danificado.

• Não abra a caixa CTH-Vector quando a unidade estiver energizada.

• Realize testes e manutenção regulares conforme descrito na seção Manutenção.

• Certifique-se de que os sistemas de notificação e controle de alarme associados ao CTH-Vector e seus detectores estão desligados antes de qualquer teste ou manutenção, para evitar o funcionamento indesejado de alarmes e equipamentos de controle.

Consulte também as secções individuais deste manual para obter as orientações de segurança específicas relevantes.

Meios de Proteção contra Explosão

A tabela abaixo descreve as características de projeto de proteção contra explosão do CTH-VECTOR.

Consulte o Apêndice 4 para obter detalhes adicionais.

Características	Meios de Proteção
Invólucro	O invólucro inclui "bujões" para atender aos requisitos de prova de explosão para instalação em locais de Classe I, Divisão I, Grupo B, C e D e T5.
Força Mecânica	A alta resistência mecânica da caixa é capaz de suportar altas pressões explosivas sem ruptura ou falhas de peças mecânicas. O design do gabinete está de acordo com as normas FM 3600 e FM 3615.
Controle de Fabricação	Parâmetros importantes incluem: • Largura máxima e comprimento mínimo das juntas • Rugosidade superficial das peças unidas • O número de roscas intactas completas no ponto de entrada dos condutores
Temperatura de Ignição	A temperatura de ignição do ambiente circundante é limitada pela temperatura da superfície externa da caixa, que não excede 212 ° F (100 ° C).
Fixação dos Parafusos, Juntas e Aterramento	As arruelas de pressão, as arruelas de trava e as porcas mantêm a integridade das conexões aparafusadas impedindo o afrouxamento dos parafusos.
Proteção de Peças com Rosca	Lubrificante é aplicado nas roscas críticas.
Proteção nas Entradas do Invólucro	A concepção da carcaça tem grau de proteção IP 67 de acordo com IEC 60529-004.
Prensa Cabos e Conexões de Entrada	Use conexões e prensa cabos selados aprovados para locais perigosos. Para instalações ao ar livre, certifique-se de que a vedação atende aos requisitos do IP67.

4. Instalação

Abaixo, conjunto de componentes fornecido juntamente com o CTH-Vector:

- Um CTH-Vector FCU, P/N 100-0008-хх
- Um manual de operação do CTH-Vector FCU
- Kit de acessórios (parafusos, porcas, arruelas, etc.).
- Imã para calibração (bastão magnético), P/N 611-0005

• Se um sensor de gás CTH-PGU for adquirido com o CTH-VECTOR, o conjunto do CTH-PGU será integrado ao CTH-VECTOR.

Compara o conteúdo de peças com as de mercadorias para se certificar de que todos os itens foram recebidos. Caso esteja faltando qualquer item, entre em contato com a Contech.

Exame visual

Antes de instalar o CTH-Vector, inspecione a unidade para ter certeza que:

• As placas de identificação etiquetas de advertência estejam no lugar;

• As superfícies externas e superfícies ligadas da estrutura do CTH-Vector não contêm deformações ou danos.

• Certifique-se de que todas as peças removíveis estejam unidas à estrutura o mais firmemente possível.

Diretrizes para localizar a CTH-Vector e os detectores de gás associados

Não existe nenhuma regra padrão para selecionar e posicionar os sensores, já que a escolha da localização ideal para o sensor é única para cada aplicação. Antes de instalar o CTH-Vector, verifique as condições no local de instalação para determinar o posicionamento. As orientações a seguir podem auxiliar ao determinar o melhor posicionamento possível do CTH-VECTOR com os detectores de gás:

• Escolha a localização dos detectores CHT-SGOES próximos de potenciais fontes de vazamento de gás e distante de fontes de calor, luz, vento, poeira, água, vibração, choque excessivos e interferência de radiofrequência (RFI);

• Certifique-se que o local tenha espaço suficiente para acomodar a carcaça do CHT-SGOES e todos os cabos necessários;

- Monte o sensor CTH-PGU, na vertical;
- Monte o sensor CTH-SGOES em sentido horizontal;

• Monte o detector de caminho aberto a uma altura mínima de 2,2 metros (se possível);

• Monte o CTH-Vector FCU em um local de fácil acesso para leitura do display digital e verificações de calibração

Preparação para a instalação:

• Antes da instalação, avalie as prováveis fontes de vazamento de gás, direção predominante do vento, entre outras. Configure a unidade para a necessidade específica e consulte as normas de instalações locais.

Selection A seleção do local do sensor de gás é fundamental para o desempenho geral do CTH-Vetor. Cinco fatores têm um papel importante ao selecionar locais para o sensor:

- A densidade do gás a ser detectado;
- As mais prováveis fontes de vazamento no processo industrial;
- A ventilação e as condições de vento predominantes;
- A exposição do gás a pessoas;
- O acesso para manutenção.

Densidade do gás detectado

Caso o gás alvo seja mais pesado do que o ar (>1), o sensor deve ser colocado entre 30 e 40 cm do nível do chão ou baixo do limite da parede da barreira de contenção. Gases mais pesados do que o ar, tendem a se assentar em áreas mais baixas. Para gases mais leves do que o ar (>1), a colocação do sensor deve ser cerca

de 1,20 m a 2,45 m do nível do peso em áreas abertas ou em áreas inclinadas de espaços fechados.

Prováveis fontes de vazamento:

As prováveis fontes de vazamento incluem flanges, válvulas e tubulação. Conexões de tipo selada em que a vedação possa falhar ou desgastar. Todas as fontes de vazamento em potencial e, engenheiros de instalações com experiência em processos similares, podem determinar o melhor local de instalação do CTH-Vector e dos sensores.

Ventilação e ventos predominantes

A ventilação normal ou o vento predominante devem ser considerados para a escolha da localização dos detectores CTH-Vector, de modo que a migração de nuvens de gás em potencial seja rapidamente detectada.

Exposição a pessoas

Deve-se sempre considerar instalações de sensores em áreas onde possam haver pessoas expostas ao gás. Leve em conta a ventilação, a direção do vento e o tamanho em potencial da nuvem de gás, ao determinar o número e a localização dos detectores de gás.

Acesso para manutenção

Deve-se ter atenção para a promoção de acesso fácil para o pessoal de manutenção. A localização do

FIGURA 4-1: CONFIGURAÇÃO REMOTA

CTH-Vector também deve levar em consideração a proximidade a contaminantes que podem poluir ou obscurecer a óptica do CTH-Vector.

Ferramentas necessárias para a montagem

• Chave inglesa ou grifo ajustável com abertura de 2 polegadas ou maior para instalação e remoção do (s) sensor (es) CTH-PGU;

Chave de fenda de 2 mm para o parafuso de bloqueio da tampa protetora e blocos dos terminais de cabos;
Chave Phillips para conector de aterramento • Jogo de chaves Allen

Aparafusadora (até 12g)

• Duas (2) chaves de fenda (75mm x 2.5mm) para remoção do módulo de controle.

Montagem

Monte a caixa do CTH-Vector, preferencialmente, com a placa orientada em um plano vertical para reduzir a possibilidade de sujeira e poeira acumulando no visor.

A figura 4.3 exibe algumas sugestões de montagem.

Conecte a infraestrutura (eleroduto, caixa de junção) ou o cabo à prove de explosão a caixa da unidade de controle de campo CTH-Vector.

Conecte a infraestrutura (eleroduto, caixa de junção) ou o cabo à prove de explosão ao sensor. Todas as conexões requerem prensa-cabos selados e à prova de explosão.

and the second second

ELETRODUTOS E ACESSÓRIOS Á PROVA DE EXPLOSÃO

CAIXA DE JUNÇÃO À PROVE DE EXPLOSÃO

 SENSOR CTH-PGU (Consulte a tabela de tamanhos de cabo para obter a máxima distância entre o controlador Vector e o sensor PGU)

Aterramento

O invólucro da Unidade de controle de campo do CTH-Vector deve seraterrado para segurança do sistema elétrico e para limitar os efeitos da interferência de radiofrequência. Um ponto de aterramento é fornecido fora do invólucro à prova de explosão CTH-Vector.

O CTH-Vector FCU deve ser aterrado para o correto funcionamento. Consulte o Apêndice 5, CTH-Vector FCU com Jumper de Ligação Externa para detalhes de aterramento.

Figura 4-2: Ponto de aterramento

Ponto de Aterramento

Figura 4-3: Sugestão de Montagem

Requisitos gerais de fiação

Cuidado: Todas as entradas para cabos devem ser vedadas com tampões (bujão) de vedação e prensa cabos adequados certificados. Recomenda-se a utilização de cabos blindado. Se a instalação do sensor for em área perigosa usando a configuração remota, é necessária a utilização de cabos blindados para a conexão do detector com o CTH-Vector

 Se os cabos forem passados em eletroduto, recomenda-se que o mesmo seja exclusivo para comunicação.

• Se instalar o sensor remoto em uma área à prova de explosão, é necessário um cabo blindado para a ligação do sensor ao CTH-Vector FCU.

 Para obter um desempenho ideal, são necessários condutores blindado com mínimo de 14 AWG (2,08 mm²). O diâmetro do fio utilizado, determina a distância máxima entre o controlador e o sensor remoto. • Ao utilizar Modbus, utilizar cabos de par trançado, cada par deve ser blindado para eliminar interferência magnética.

• Para comunicações confiáveis entre o CTH-Vector e o Host principal, conecte o RS-485 terminal comum ou terminal terra do Host principal ao terminal comum RS-485 (TB2 ou TB3) do CTH-Vector.

Isto é especialmente importante quando se liga a uma porta RS-485 isolada. Não fazer isso pode

ocasionar falhas nas comunicações e possível danos transceptores Host ou ao RS-485 do CTH-VECTOR.

Passo 1-

Figura 4-4: Remoção da Tampa

Solte o parafuso de ajuste na Tampa de Proteção aproximadamente uma volta.

Remova a tampa de proteção à prova de explosão girando no sentido anti-horário. O punho de uma chave inglesa pode ser usado como uma alavanca com as abas de remoção da tampa.

Parafuso de Fixação

Passo 2-

Remova o Módulo de Controle PCBA

Figura 4-5: Remova o Módulo de Controle

Separe o módulo de controle da placa de terminais, usando os duas (2) chaves de fenda (75mm x 2,5mm). Insira as extremidades das chaves de fenda nos pontos de inserção no módulo. Remova o módulo da placa de terminais, usando a carcaça do CTH-Vector como pontos de apóio e, aplicando pressão uniforme em ambos os lados.

Ponto de Inserção (1 em cada extremidade)

Passo 3- Preparando Cabo	Utilize uma ferramenta de decapagem para remover ¼ de revestimento isolante de cada condutor a ser inserido no l Conector PCBA.	e uma ferramenta de decapagem para remover ¼ de polegada (6mm) do timento isolante de cada condutor a ser inserido no bloco de terminais do tor PCBA.			
Figura 4-6: Preparação do Cabo	Fio multifilar blindado de 14 ou 16 AWG com base no comprimento do cabo. A Contech recomenda o uso de terminais para melhor conectividade e facilidade inserção no bloco de terminais.	3⁄4" (6mm)			
Passo 4- Conexão Elétrica	Figura 4-7: Bloco de Terminais Use uma chave de fenda de cabeça plana	84402			
	de 2mm para girar o parafuso no sentido anti-horário para abrir o terminal, inserir o fio e girar no sentido horário para fixar o terminal.				
Passo 5-	Após a conclusão da fiação, insira o módulo de controle e a proteção à prova de explosão na Unidade de Controle de C	feche a tampa de Campo CTH-Vector			
Remonte o CTH- VECTOR	fixe-a apertando o parafuso de bloqueio da tampa da caixa	a.			

Atenção: Todas as entradas de cabos devem ser seladas com um bujão de vedação, prensa cabos ou infraestrutura apropriados e certificados para área classificada. Recomenda-se a utilização de cabos blindados. Se instalar o sensor remoto em uma área classificada usando, é necessário um cabeamento blindado para a conexão do sensor à unidade de controle de campo VTH-Vector.

Interligação entre o sensor CTH-PGU e o controlador VTHVector

Para facilitar a instalação da unidade de campo CTH-Vector, seja em uma aplicação nova ou substituição de uma instalação existente, existem vários métodos de conectar o CTH-Vector que inclui todo o hardware e conexões para qualquer configuração determinada pelo usuário.

Figura 4-8: PGU Conexão no bloco de terminais TB-4 & TB-5

Terminais de conexões do CTH-Vector

Terminal

TB3-1

TB3-2

TB3-3

TB3-4

TB3-5

TB3-6

Terminal

TB4-1

Figura 4-9:

Rótulo

+24V

RS485A

RS485B

СОМ

SHLD

Rótulo

+24V

٥V

Placa de Terminais

Função

Função

Alimentação do Sensor +24Vcc

Alimentação -24Vcc (Comum/Neutro)

Alimentação +24Vcc

RS-485A RTU

RS-485B RTU

Shield

RS-485 Comum

Terminal	Rótulo	Função
TB1-1	+4-20_1	Canal 1 Saída +4-20mA (sourcing)
TB1-2	-4-20_1	Canal 1 4-20mA laço comum
TB1-3	+4-20_2	Canal 2 Saída +4-20mA (sourcing)
TB1-4	-4-20_2	Canal 2 4-20mA laço comum
TB1-5	FLTA	Contato de Falha (Configurável por software)
TB1-6	FLTB	Contato de Falha (Configurável por software)
TB1-7	AL1B	Contato Nível 1 (alarme) (Configurável por software)
TB1-8	AL1B	Contato Nível 1 (alarme) (Configurável por software)
TB1-9	AL2A	Contato Nível 2 (alarme) (Configurável por software)
TB1-10	AL2B	Contato Nível 2 (alarme) (Configurável por software)
TB1-11	AL3A	Contato Nível 3 (alarme) (Configurável por software)
TB1-12	AL3B	Contato Nível 3 (alarme) (Configurável por software)

TB4-2	ov	Alimentação do Sensor -24Vcc (Comum/Neutro)
TB4-3	RS485A	Conecção com Sensor RS-485A
TB4-4	RS485B	Conecção com Sensor RS-485B
TB4-5	СОМ	RS-485 Comum do Sensor
Terminal	Rótulo	Função
TB5-1	+24V	Alimentação do Sensor
TB5-2	οv	Alimentação do Sensor -24Vcc

Terminal	Rótulo	Função
TB2-1	+24V	Alimentação +24Vcc
TB2-2	0V	Alimentação -24Vcc (Comum/Neutro)
TB2-3	RS485A	RS-485A RTU
TB2-4	RS485B	RS-485B RTU
TB2-5	СОМ	RS-485 Comum
TB2-6	SHLD	Shield

TB5-2	0V	(Comum/Neutro)
TB5-3	RS485A	Conecção com Sensor RS-485A
TB5-4	RS485B	Conecção com Sensor RS-485B
TB5-5	СОМ	RS-485 Comum do Sensor
SW 1-ON	NO420	Se necessário, coloca 250Ω no canal-1 4-20mA para comunicação HART
SW 2-ON	3WIRE	Conecta -4-20mA ao terminal OV para comunicação 4-20mA com 3 fios.
SW 3-ON	TERM	Activa o resistor de terminação RS-485 para

Figura 4-10: Ligação entre o CTH-Vector com sensor único e módulo de entrada analógica

Figura 4-11: Conexão entre o CTH-Vector com o Controlador CTH-UPES

Figura 4-12: Ligação entre o CTH-Vector com dois sensores e módulo de entrada analógica

Figura 4-11: Conexão entre o CTH-Vector e o Contralador CTH-UPES

Figura 4-14: Comunicação entre dois CTH-Vector em série com RS 485

Nota: O dip switch "TERM" do S1-3 deve estar na posição "ON" e os demais em "OFF"

Para comunicações confiáveis entre o CTH-Vector e o Host principal, conecte o RS-485 terminal comum ou terminal terra do Host principal ao terminal comum RS-485 (TB2 ou TB3) do CTH-Vector. Isto é especialmente importante quando se liga a uma porta RS-485 isolada. Não fazer isso pode ocasionar falhas nas comunicações e possível danos transceptores Host ou ao RS-485 do CTH-VECTOR.

Ativação e funcionamento autônomo do CTH-Vector •

VERIFICAÇÃO DA INSTALAÇÃO ANTES DA ATIVAÇÃO

Uma vez que a montagem, a instalação dos cabos e relés de alarme estiverem completas, o CTH-Vector está pronto para iniciar a sequência de ativação.

Antes de ligar o sistema pela primeira vez, reveja os passos abaixo:

· Verifique se o CTH-Vector foi devidamente montado.

· Verifique se todas as entradas de prensa cabos / infraestrutura foram apertadas e seladas, se necessário.

- · Verifique se todas as ligações elétricas foram feitas corretamente.
- \cdot Verifique se o invólucro foi conectado ao terra.

· Verifique se todas as conexões entre o CTH-Vector e o sensor está segura e funcional.

 · Verifique se a tampa CTH-Vector está firmemente instalada e bloqueada com o parafuso de bloqueio na carcaça.

· Desconecte todos os dispositivos de saída para impedir ativações em falso.

Uma vez que estiver pronto para a ativação, verifique se o fornecimento de alimentação está conectado adequadamente e verifique se a tensão de alimentação para o CTH-Vetor está desconectada na fonte. O CTH-Vector é energizado com 24 Vcc (faixa de tensão de 18 até 32).

Após completar os passos acima, o CTH-Vector está pronto para ser ligado.

Procedimento de ativação

Aplique a energia no sistema. Ao ligar pela primeira vez, aguarde o CTH-Vector se estabilizar e o (s) sensor (s) se inicializar.

Após 30 segundos, o LED indicador do estado operacional ficará verde e todas as informações estarão disponíveis no visor.

Figura 4-16 Tela de inicialização

Figura 4-17: Tela em operação

5. Procedimentos de calibração

Componentes, Conjunto de Peças

Os sensores conectados ao CTH-Vector podem ser calibrados por três maneiras:

- · Bastão magnético no display de OLED
- Utilizando a interface Modbus RTU com software CTH-RSP Commander
- · Comunicador HART

As saídas analógicas podem ser configuradas por dois métodos:

Utilizando a interface Modbus RTU com software
 CTH-RSP Commander
 Comunicador HART

O termo "GÁS ZERO" nestes procedimentos de calibração refere-se a um gás com uma concentração de zero do gás a ser detectado pelo detector de calibração.

Figura 5-1: Selecionar a Função no Display

Passo 1

Use os pontos de navegação PARA CIMA / PARA BAIXO, selecione "Calibrate 1 " para calibrar o sensor 01 ou "Calibrate 2" para o segundo sensor (se houver).

Cal	brate 2
# Cal Gases	
07/09/13	13:20

Figura 5-3: Quantidade de Gás de Calibração

Passo 3

Use os pontos de navegação PARA CIMA / PARA BAIXO, com o bastão magnético, para selecionar a quantidade de gás de calibração a ser utilizado, sendo 1 ou 2 gases válidos. Toque no ponto "ENTRAR/ SELECIONAR" para prosseguir.

Nota: O uso de um gás padrão intermediário ajuda na calibração precisa do detector, especialmente se houver uma não-linearidade na resposta do detector.

O termo "GÁS PADRÃO" ou "GÀS DE REFERÊNCIA" (SPAN GAS) nestes procedimentos de calibração se refere a uma mistura de gases de Escala completa.

O termo "GÁS PADRÃO INTERMEDIÁRIO" (MID-SPAN GAS) nestes procedimentos de calibração se refere a uma mistura de concentração intermediária entre zero e escala completa.

Calibração do sensor utilizando Bastão magnético no dysplay de OLED

Consulte a Seção 2, operações no display do CTH-Vector, para obter uma visão geral das

funções de exibição. O exemplo mostrado abaixo é para um sensor de propano conectado como o segundo sensor.

Com o bastão magnético, toque no ponto "START" para exibir a tela de seleção de funções.

Figura 5-2: Tela de Calibração Zero

Passo 2

Aplique o gás zero no sensor e aguarde a estabilização da leitura. Usando o bastão magnético, toque no ponto "ENTRAR". Isso completará a calibração do "zero" do sensor.

Ca	librate 2
Enter Spa 2.04	n Conc i Vol
07/09/13	13:20

Figura 5-4: Concentração do Gás Padão

Passo 4

Usando o bastão magnético, digite a concentração do gás padrão. Toque nos pontos para cima e para baixo para ajustar o valor de cada dígito. Toque no ponto "ENTRAR" para avançar para o próximo dígito. Observe que a posição do ponto decimal é fixa. Toque no ponto "ENTRAR", após o último dígito ser editado, para prosseguir.

Ca	librate 2
C.O Connect S Press Sta	NVol pas Gas rt Who Stabl
07/09/33	13:20

Figura 5-5: Gás Padão de calibração

Passo 5

Conecte o gás de calibração ao sensor. Quando a leitura se estabilizar, toque no ponto "ENTRAR" iniciar a calibração

Ca	librate 2
Enter Mid	Conc Vol
07/09/13	13:20

Figura 5-5: Concentração do Gás Padrão Intermediário

Passo 6

Esta tela não aparecerá se no "passo 3" tiver sido escolhido a opção de O1 gás de calibração. Usando o bastão magnético, digite a concentração do gás padrão intermediário. Toque nos pontos para cima e para baixo para ajustar o valor de cada dígito. Toque no ponto "ENTRAR" para avançar para o próximo dígito. Toque no ponto "ENTRAR", após o último dígito ser editado, para prosseguir

Ca	librate 2
1.0 Cal Compl Remove G Prose Sta	% ¥ol lete ss ri Whn Zero
07/09/33	13:20

Figura 5-7: Calibração Completa

Passo 8

Remova o gás de calibração intermediário do sensor. Aguarde até que a concentração de gás exibida diminua para zero. Toque no ponto "START" para sair do procedimento de calibração. Toque no ponto "Voltar" para sair da tela "Function Select e" retornar ao display inicial.

Na lista "Devices" (dispositivo) do formulário principal do CTH-ESP Commander, dê um clique duplo no sensor a ser calibrado (neste caso, o CTH-SGOES). Isto abrirá o

formulário do sensor selecionado.

Calibração do sensor usando o ESP Commander

Calibração via RS-485 Modbus são idênticas para um ou dois sensores conectados ao CTH-VECTOR FCU.

O exemplo abaixo é para um sensor CTH-SGOES calibrado para propano, conectado como o segundo sensor.

a beense mee helpfonte relt	and the second se
Centres	Come Come/Full Revol Rate
Plant Address 7, 510 (2013) VECTOR FOLID - Address 11 - 5/N (2013)	COMTS N 3800 N 5er
	Pails Add Ideal CRC Exceptor
	Name Frankright (market
	inter the second

Figura 5-8: Formulário principal do CTH-ESP Commander

Av. Dr. Lino de Moraes Leme, 1.094 – Vila Paulista – São Paulo/SP Telefone: (11) 5035-0920 – E-mail: marketing@contechind.com.br

Calibrate 2 2.0 % Vol Connect Mid Gas Press Start Whn Stabl 07/05/13 13:20

Figura 5-6: Gás Padão Intermediário de calibração

Passo 7

Conecte o gás de calibração intermediário ao sensor. Quando a leitura se estabilizar, toque no ponto "ENTRAR" iniciar a calibração.

Figura 5-9: SGOES Form

Observe o painel de calibração no quadrante superior esquerdo do formulário. Um painel semelhante pode ser encontrado nos formulários para os sensores CTH-PGU e CTH-TGAES.

Figura 5-10: Painel de Calibração CTH-SGOES

Passo 1

Pressione o botão (1) "Selecionar / Desmarcar" para iniciar a seqüência de calibração. O botão mudará de cor para mostrar que o modo de calibração está ativo.

Passo 2

Coloque um gás zero no sensor. Quando a concentração de gás estabilizar, pressione o botão (5) "Definir Zero" para ajustar o ponto zero do sensor.

Passo 3

Selecione o (2) "Quantidade de Gases Padrão" a serem utilizados no processo de calibração.

Passo 4

Insira a concentração de gás padrão nas unidades do quadro (6) "Concentração de Gás Padrão".

Passo 5

Aplique o gás de calibração ao sensor. Quando a concentração se estabilizar, pressione o botão (3) "Definir Gás Padrão" para ajustar o ponto de calibração de referência do sensor.

Passo 6

Se foi selecionada uma calibração utilizando dois gases de referência, introduza a concentração de gás padrão intermediário nas unidades do quadro (7) "Concentração de Gás Padrão Intermediário".

Passo 7

Aplique o segundo gás de calibração (Padrão Intermediário) ao sensor. Quando a concentração de gás estabilizar, pressione o botão (4) "Definir Gás Padrão Intermediário" para definir o ponto de calibração (padrão intermediário) do sensor.

Passo 8

Remova o gás de calibração e deixe a concentração de gás do sensor voltar a zero. Quando a concentração voltar a zero, pressione o botão (1) "Selecionar / Desmarcar" para terminar a seqüência de calibração.

Calibração do sensor utilizando um comunicador HART •

Consulte o Apêndice 2, Árvore de menus do comunicador HART, para obter uma visão geral das funções HART.

O exemplo abaixo é para um sensor calibrado para propano, conectado como o segundo sensor.

Figura 5-11: Display Selecionar Sensor

Passo 1

Navegue até a tela "Sensor Trim" (ajuste do sensor). Realce o item 1 "Sensor Select". Em seguida, selecione o sensor a ser calibrado: Sensor 1 ou Sensor 2.

Figura 5-13: Menssagem de Atenção

Menssagem de Atenção 1

Observe a mensagem de aviso. Como precaução de segurança, quaisquer alarmes ou dispositivos controlados pela saída do sensor de gás devem ser desativados neste momento.

Figura 5-15: Calibração "Zero" do Sensor

Passo 3

Aplique o gás zero no sensor e aguarde a estabilização da leitura. Pressione "OK" para completar a calibração do zero do sensor. Pressione "ABORT" para cancelar a seqüência de calibração. Remova o gás zero do sensor.

Figura 5-12: Display Ajuste do Sensor (Zero)

Passo 2

Realce o item 6 "Zero Trim Sensor" (ajuste "zero" do sensor). Em seguida, selecione-o para iniciar a seqüência de calibração do zero.

Figura 5-14: Menssagem de Atenção 2

Menssagem de Atenção 2

Observe a mensagem de aviso. O usuário pode abortar a seqüência de calibração neste ponto se a calibração não é desejada neste momento.

HW	X
VECTOR ??????????	
NOTE Loop may be returned to a control	ukenalis 🚡
	Ξ
	OK .

Figura 5-16: Menssagem de Atenção

Menssagem de Atenção 3

Observe a mensagem de aviso.

Quaisquer alarmes ou dispositivos controlados pela saída do sensor de gás podem ser reativados neste momento.

Q	X
VECTOR 7777777	10.000
Peess GK when caligate here clear	mi 🔳
Current Value 0.00 Vol?5	
A20	97 OF

Figura 5-17: Sair da Calibração "Zero"

Passo 4

Se a calibração com gás padrão não for desejada, quaisquer alarmes ou dispositivos controlados pela saída do sensor podem ser reativados neste momento.

-	Ø		- k	X
VECTOR	11772222		2.000	1000
Sensor tri	m		10.00	and the
2 Sept 1 Ty 3 Sept 1 SA 4 Sept 1 Ga	e Tenda	1	PCOES	
6 Snur 1 Ga 8 Zero Trim	Ib cone Sensor 1	3	100 Vo	N
0 General Inte 9 General Inte	n kraet n pointe			
HELP	SAVE	HOME		

Figura 5-18: Display Ajuste do Sensor (Padrão)

Passo 5

Realce o item 7 "Trim Sensor". Em seguida, selecioneo para iniciar a seqüência de calibração com gás padrão.

Figura 5-19: Menssagem de Atenção

Menssagem de Atenção 1

Observe a mensagem de aviso. Como precaução de segurança, quaisquer alarmes ou dispositivos controlados pela saída do sensor de gás devem ser desativados neste momento.

Figura 5-14: Zero Calibration Exit

Menssagem de Atenção 2

Observe a mensagem de aviso. O usuário pode abortar a seqüência de calibração neste ponto se a calibração não é desejada neste momento.

Figura 5-20: Span Gas Count Select

Passo 6

Selecione o número de gases de calibração a serem usados, 1 ou 2.

Same	Q.	0.0		×
VECTOR	mm	12		
Apply incu	tbebyeen 1	LS Volts and	5-2.4 Von	18
Pass OK	when stable	2		
Carriers Vo	Lec: 0.00			

Figura 5-21: Span Gas Calibration

Passo 7

Conecte o gás de calibração ao sensor. Quando a leitura estabilizar, pressione "OK" para calibrar o instrumento.

-11
10
4
6 1
3

Figura 5-22: Entrada de Dados da Concentração de Gás Padão

Passo 8

Digite a Concentração de Gás de Padrão nas unidades especificadas. Pressione "ENTER" para concluir.

Q	· 0	- là	X
VECTOR 717777	1	1.99.9	1000
Appled proxim 2.00 \	AV16 equal to A	dunsee	
CANADA AND AND AND AND AND AND AND AND AN		-	×2
2 No			
	10007	1.00	-
	MICRI	1.1.8	18,81

Figura 5-23: Confirmar Calibração

Passo 9

Se a calibração com gás padrão foi bem sucedida (a concentração exibida coincide com a concentração do gás de calibração), selecione "Sim". A sequência de calibração prosseguirá. Se não, selecione "Não". A calibração do padrão será repetida.

Figura 5-25: Entrada de Dados da Concentração de Gás Padão Intermediário

Passo 11

Este visor só aparecerá se tiver sido seleccionada uma calibração com 2 gases (de referência e intermediário). Digite a Concentração de Gás de Padrão Intermediário nas unidades especificadas. Pressione "ENTER" para concluir.

Contractor Queres			X
VECTOR. ?????????		1.1	3115
Press GK when cell gas here	i cosmi		E
Current Value 5.80 Volti.			
			E

Figura 5-27: Sair da Calibração

Menssagem de Atenção 13 Sair do modo de calibração

Figura 5-24: Calibração com Gás Intermediário

Passo 10

Este visor só aparecerá se tiver sido seleccionada uma calibração com 2 gases (de referência e intermediário).

Conecte o gás de calibração (padrão intermediário) ao sensor. Quando a leitura estabilizar, pressione "OK" para calibrar o instrumento.

Figura 5-26: Confirmar Calibração

Passo 12

Se a calibração com gás padrão intermediário foi bem sucedida (a concentração exibida coincide com a concentração do gás de calibração), selecione "Sim". A sequência de calibração prosseguirá. Se não, selecione "Não". A calibração do padrão será repetida.

Calibração da Saída Analógica usando o CTH-ESP Commander 🕳

Quando os sinais das saídas analógicas do CTH-Vector variam em ± 0,010 mA, a partir da leitura em um medidor de referência, é necessário calibrar o loop de saída analógica. O ajuste do loop de saída analógica pode ser realizado usando o CTH-ESP Commander. Este procedimento não é indicado a ser realizado em campo. O ajuste em campo do loop de saída analógica é realizado usando um comunicador HART.

Devices	Comm Comm/Por Baud Rate COM15 V 9600 V Set
VECTOR FCU U - Address 11 - S/N 60525	Pully Mong Televit Ofic Everyte
- h	Regon

Figura 5-8: Formulário Principal do CTH-ESP Commander

Na lista de dispositivos "Devices" na página inicial do CTH-ESP Commander, dê um click duplo no item Vector FCU. Isto irá abrir o formulário para o CTH-Vector FCU selecionado.

			Vedtor								
153wiii	Rad Fors	Device Table	Venne	Sect	.Chitun	Supply Yolls	Tano DegC	Seve 1 Cones	Seer 2 Curren	Conig	
1	2600	VECTOR FC.	2.04	1003	DOCH.	23.0	27.8	UK.	UK.		
			Seno 1							Server 2	
4.55mm	Baid Rate	Dense Tase	Vester	Send 9	OkSun	Gai		Core	Units	TANK	
X	9500	59065-R	7.18	2001	330MD	Popere	1	0.0	VDLS	Filent	
			Series 2	-						ang Da	
Addent	Red Foto	Device Type	Vector	Seult	Difuy	бж		Conc	Links	Record	
6	9600	PG+H	2.08	1	048	Lonoria	100	500	PPM	-	

Figura 5–28: Formulário principal do CTH-Vector

Pressione o botão "Anlg Out" (saída analógica) para abrir o formulário de saída analógica CTH-Vector.

Figura 5–29: Formulário Saída Analógica

Observe os painéis no meio do formulário marcado "Calibrar A01" e "Calibrar A02".

O exemplo abaixo mostra as etapas necessárias para calibrar o loop de saída 1:

Figura 5–30: Painel de calibração de loop analógico

Passo 1

Conecte um medidor de corrente de referência no loop de saída que está sendo calibrado. Este medidor deve ser capaz de ler corrente CC com uma precisão de 0,1% ou melhor.

Passo 3

O CTH-Vector FCU emitirá uma corrente de referência de 4,000 mA.

Passo 5

Se o valor medido não for 4,00mA (± 0,010mA), introduza a corrente medida a partir do medidor de referência na caixa (1) "Corrente Medida" e pressione o botão (2) "Ajustar Saída". O valor "AO Offset" e a corrente medida devem mudar para refletir esse ajuste.

Passo 2

Pressione o botão (4) "Selecionar / Desmarcar" para iniciar a seqüência de calibração. O botão mudará de cor para indicar que a calibração está em andamento.

Passo 4

Observe a leitura atual no medidor de referência. Se o valor medido for 4,00 mA ± 0,010 mA, pressione o botão (3) "Aceitar".

Passo 6

Repita este passo de ajuste até obter uma corrente medida de 4,00 mA \pm 0,01 mA. Em seguida, pressione o botão (3) "Aceitar".

Passo 7

Uma vez pressionado o botão (3) "Aceitar", o CTH-Vector

FCU alterará a sua corrente de saída para um valor de 20,000 mA.

Passo 9

Caso contrário, introduza a corrente medida a partir do medidor de referência na caixa (1) "Corrente Medida" e pressione o botão (2) "Ajustar Saída". O valor "AO Offset" e a corrente medida devem mudar para refletir esse ajuste.

Passo 11

A sequência de calibração terminou.

Passo 8

Observe a leitura atual no medidor de referência. Se o valor medido for 20,00 mA ± 0,01 mA, pressione o botão (3) 'Aceitar".

Passo 10

Repita este passo de ajuste até obter uma corrente medida de 20,00 mA ± 0,01 mA. Em seguida, pressione o botão (3) "Aceitar".

Calibração do Loop de Saída Analógica usando um Comunicador HARTC -

Consulte o Apêndice 2, Árvore de menus do comunicador HART, para obter uma visão geral das funções HART.

Navegue até a tela de saída analógica "Analog Output".

Figura 5-31: Display Saída Analógica

Passo 1

Realce o item "DAC Select". Em seguida, selecione a saída a ser calibrada: "DAC 1" ou "DAC 2".

Figura 5-13: Menssagem de Atenção

Menssagem de Atenção

Nota: Como precaução de segurança, quaisquer alarmes ou dispositivos controlados pela saída do sensor devem ser desativados neste momento.

Figura 5-32: Display Saída Analógica

Passo 2

Realce o item "DAC trim". Em seguida, selecione-o para iniciar a seqüência de calibração.

Figura 5-33: Conectar Medidor de Referência

Passo 3

Conecte um multímetro de referência no loop de saída que está sendo calibrado. O multímetro deve ser capaz de ler a corrente contínua com uma precisão de 0,1% ou melhor.

Figura 5-34: Definir a Saída para 4mA

Passo 4 Precione "OK" para continuar.

en Control de	HW		- A	X
VECTOR ?	1717171	lan - 1	12.2.2.2	3125
Enter meter y	olar (4.00	isk)		E
				. 12
4.00				
	Y 44 4 10		1/70	1.9
++ + + +	1 m 1 h 1			6 m
	tinies .	49	0.13	59I
				~
HELP	DEL	ABORT	1 EN	TER

Figura 5-35: Digite a Corrente Medida

Passo 5

Insira a corrente medida no multímetro de referência. Pressione "ENTER" para continuar.

Figura 5-36: Calibração Atual Confirmar 4mA

Passo 6

Se a calibração tiver sido bem sucedida (a corrente medida corresponde à corrente de referência 4,0 mA), selecione "Yes". A seqüência de calibração prosseguirá se não for, selecione "No" A calibração será repetida.

Figura 5-37: Definir a Saída para 20mA

Passo 7 Pressione "OK" para continuar.

Figura 5-38: Digite a Corrente Medida 20 mA

Passo 8

Insira a corrente medida no multímetro de referência. Pressione "ENTER" para continuar.

Figura 5-39: Current Calibration Confirm 20mA

Passo 9

Se a calibração tiver sido bem sucedida (a corrente medida corresponde à corrente de referência 20,0 mA), selecione "Yes". A seqüência de calibração prosseguirá se não for, selecione "No" A calibração será repetida.

Passo 10

Quaisquer alarmes ou dispositivos controlados pela saída do sensor de gás podem ser reativados neste momento.

6. Solução de problemas

Tabela 6.1— Guia de Solução de Problemas - Falhas na Exibição

Condição de Falha	Descrição	Solução
"FAULT" (falha)	Sensor / detector conectado em falha	Inspecione o detector conectado quanto a danos. Consulte o manual de instruções do detector externo para obter maiores informações.
"NO SIG" (sem sinal)	Sensor / detector conectado sem comunicação	Assegure-se de que a alimentação e as conexões RS485 estão seguras e a polaridade correta entre o CTH-Vector e o detector / sensor
"CHKSM error"	Erro na verificação da ROM	ROM Remova e envie a Contech para reparo
"LOVLT error"	Tensão de alimentação do instrumento menor que 18 volts	Verifique a tensão de alimentação
"NOCFG error"	Tabela de configuração do sensor não carregada	Entre em contato com a Contech para obter mais instruções
"OVRNG error"	Sensor acima da faixa de medição	Realize o teste funcional e a calibração, se necessário.
"UNDRG error"	Sensor abaixo da faixa de medição	Realize o teste funcional e a calibração, se necessário.
"USBER"	Erro de gravação USB	Certifique-se de que soquete USB esteja conectada e o LED verde esteja aceso. Certifique-se de que a unidade flash possui memória disponível adequada.
Tela OLED e LED de Falha de alimentação	Não ligado	Certifique-se de que a tensão de entrada de 18-32VDC está conectada (Nota a tensão menor que 18VDC será indicada no display OLED)
desligados		Certifique-se de que a montagem do controlador está correta.
"Sensor/detector calibration error"	Valores de gás imprecisos	Realize a calibração, se necessário.
Corrente de saída fora de tolerância ± 0,010mA	A corrente de saída da unidade não corresponde à corrente medida em um multímetro de referência	Calibre a saída analógica com o CTH-ESP Commander ou o HART

O CTH-Vector FCU não contém peças que possam ser consertadas pelo usuário. Qualquer reparo no CTH-Vector FCU deve ser realizado pelo pessoal da CONTECH. Qualquer tentativa de concerto ou reparar o CTH-Vector FCU por pessoal não autorizado, incorrerá em perda da garantia do produto.

7. Manutenção

Antes de realizar qualquer teste, certifique-se de desligar todas as saídas que normalmente são ativadas pelo sistema de detecção de gás. Isto impede a ativação incorreta.

Manutenção periódica

Esta seção descreve as atividades de manutenção a serem executadas no CTH-Vector FCU

- i. Inspeção visual;
- ii. Limpeza;
- iii. Verificação dos sistemas de aterramento e proteção contra explosão;
- iv. Teste de performance.

Atividades de manutenção

O CTH-Vector precisa de pouca manutenção de rotina; mas as verificações periódicas de calibração para manter as funções adequadas do sistema são altamente recomendadas. A frequência destas verificações deve ser determinada pela instalação específica.

Embora o sistema monitore continuamente eventuais falhas, é importante fazer a monitoração da instalação externa, infraestrutura e fiação, para garantir o funcionamento adequado do sistema.

8. Garantias

Todos nossos produtos, tem garantia original de (12) meses, para qualquer defeito de fábrica.

Durante este período o cliente fica isento de qualquer custo para defeitos de fabricação do produto.

Esta garantia não inclui:

a) Fusíveis, baterias descartáveis ou substituição de rotina de peças por causa de desgaste e deterioração normais do produto pelo uso;

b) Qualquer produto ou componente que, na opinião da CONTECH, tenha sido mal utilizado, alterado, explorado, manipulado, mantido ou utilizado de forma inadequada, negligenciado ou de outra forma danificado por acidente ou em condições anormais de operação, manipulação ou uso, ou caso tenha se deteriorado por causa do envelhecimento de qualquer componente feito de borracha ou com qualquer outro elastômero; ou

c) Qualquer dano ou defeito atribuído ao conserto do produto por qualquer pessoa que não seja um distribuidor autorizado ou a instalação de peças não aprovadas no produto.

As obrigações estabelecidas nesta garantia são condicionais com relação a:

a) Armazenamento, instalação, calibração, utilização, manutenção e conformidade adequados com as instruções do manual do produto e qualquer outra recomendação aplicável da CONTECH;

b) O comprador notificar imediatamente a CONTECH sobre qualquer defeito e, se necessário, disponibilizar imediatamente o produto para a correção. Nenhuma mercadoria deve ser devolvida à CONTECH até o recebimento, pelo comprador, das instruções de envio da CONTECH. O número de autorização de devolução precisa ser obtido com a CONTECH antes do envio; e

c) Toda a garantia de devolução a ser enviada diretamente à CONTECH;

d) O direito da CONTECH de solicitar que o comprador providencie a prova de compra, como a nota fiscal original, fatura ou canhoto da embalagem, para estabelecer que o produto está dentro do período de garantia.

9. Assistência técnica

Reparo em campo

O CTH-Vector não se destina a ser reparado em campo. Se surgir algum problema, consulte a seção Solução de Problemas deste manual (Seção 6.0). Envie o dispositivo à Contech para reparo ou substituição.

Durante o período coberto pela garantia, o cliente fica isento de qualquer custo para defeitos do produto.

Todo equipamento que apresentar defeito deverá ser encaminhado a CONTECH, para análise e em caso de ser constado mau uso (má utilização do produto), implicara na cobrança do reparo e ou da sua troca por novo equipamento.

Em caso de ser solicitado o envio de um técnico a empresa, todos os custos com deslocamento, será por conta do cliente.

Durante o período de garantia não será cobrado hora técnica, porém caso constatado que o defeito não é do equipamento as horas técnicas serão cobrados.

A Contech recomenta que matenha sempre pessas sobressalentes em estoque, permitindo a rápida substituição de campo e minimizar o tempo de inatividade.

10. Peças de reposição

Acessórios

Imã de calibração (bastão magnético), P/N 611-0005

Detectores

CTH-TGAES Caminho Aberto	-	Vários Gases	-	100-0023-хх
CTH-SGOES Gas Detector	-	Vário Gases	-	100-0001-хх
CTH-PGU Gas Detector	-	Metano	-	100-0015-C1
CTH-PGU Gas Detector	-	Propano	-	100-0015-C3
CTH-PGU Gas Detector	-	Monóxido de Carbono	-	100-0015-CO
CTH-PGU Gas Detector	-	Dióxido de Carbono	-	100-0015-CO2
CTH-PGU Gas Detector	-	Hidrogênio	-	100-0015-H2
CTH-PGU Gas Detector	-	Sulfeto de Hidrogênio	-	100-0015-H2S
CTH-PGU Gas Detector	-	Amônia	-	100-0015-NH3
CTH-PGU Gas Detector	-	Oxigênio	-	100-0015-02
CTH-PGU Gas Detector	-	Dióxido de Enxofre	-	100-0015-SO
CTH-PGU Gas Detector	-	Isobutileno	-	100-0015-01
CTH-PGU Gas Detector	-	Dióxido de Nitrogênio	-	100-0015-02

Apêndice 1A – Conexão com CTH-UPES

Apêndice 1B – CTH-Vector com Sensor CTH-PGU

Tabela com a distância de cabo entre CTH-Vector e Sensor remoto CTH-PGU

Apêndice 2 – Operações com comunicador HART

Enquanto o software CTH-ESP Commander é o principal método de configuração do CTH- Vector FCU, muitas das configurações também podem ser definidas usando um Comunicador HART.

As páginas a seguir mostram a árvore de menus para o CTH-Vector quando se usa um Comunicador HART. Os menus que contêm um "*" são mostrados com mais detalhes na seção de calibração do dispositivo. Observe que o conteúdo dos menus será alterado com base em se um ou dois sensores estão configurados. Apenas os dados do sensor configurados serão mostrados.

Figura A2-1: Online Menu

VECTOR	0000	000	a l	1.0	-
Device S	etup		-		1.1.1
t 4hones	and the second				
2 Calibrati	90				
The state of the s	141				
i fannin an	100 million 100				
E Detailed	setup				
4 Detailed 5 Review	selup				
4 Detailed 5 Roome	setup				
4 Detailed 5 Roome	setup				

Figura A2-2: Device Setup Menu

+	0		- lb	X
VECTOR:	99999	0.040		1000
Process v	ariables		0.000	100
1 Stor 1 To	a provincie a		11.5	10 a
2 Sher, 1 58	ч.		173	05
3 SHIFT OF	A Provide		0	144
4 Sinci 1 De	play comp		0.38 90	64 III
5 Sner 1 Ca	00.0000		0.35.90	KN 811
6 Ster 5 Ter	mar.	3	30.0 de	9C811
7 PV Loop (oursens.		1.62 (NA
8 Snor 2 Ty	90		- 8	34
HELP	SAVE	HOME	1	

Figura A2-3: Process Variables Menu

+	HW		lh X
VECTOR	00000	0:042	- Million
Analog o	utput		
100756	10 m		10000
2 Shier 1 D	toplay conc	- 6	27 Vor%
3 SHIFT U	sop ourself		1.82 mA
4 SHF 1 U	Eb/		2.0 90/%
15 Ster 1 L	RV .		5-0 YoP4
6 SHIFT IF	09		-13.6%
7 Loop put	wird mode		Enabled
6 Device 5	be 4	0.0	1010000
HELP	SAVE	HOME	

Figura A2-5: Analog Output Menu

ECTOR	mone	14114141	1.1.1.1
tevision	85		
Distant	lini		7
2 Fid dev t	γik		
1 Soltware	184		3
Planteon	IL FRAM		

Figura A2-7: Sensor Trim Points Menu

+	0	to care i	lh X
VECTO	1.00000	0.00	
Calibrat	lon		_
2 Sentery	50400		
1 Devilor	2462		
	SAVE	HOME	1
	Texas.	- NAME	

Figura A2-4: Calibration Menu

+	0		lk X
VECTOR	00000	0.040	
Device in	formation		
1 Model	NOTION/SP		STORING
2 Decid		1.	65535
3 Distributo	4	63	SP Salety
A City (Inc)	600HE		335
IT Write pro	00×0		None
6 Num mic	preates		5
7 Num reg	p crearie		
8 Max des	vars		11 🖂
HELP	SAVE	HOME	1

Figura A2-6: Sensor Trim Menu

Menu de Ajuste do Sensor:

Selecione o item 1 no menu para especificar o sensor a ser configurado. Consulte a seção de calibração neste manual para obter mais informações dos itens 6 e 7 do menu, "Ajuste do Zero do Sensor" e "Ajuste do Sensor <n>". O item 8 do menu, "Redefinir Ajustes do Sensor", pode ser usado para reinicializar o sensor selecionado às configurações padrão de fábrica.

ECTOR	00000	000	
etailed	setup		_
Output o	andition		
States of the	internet and a little		
Denvoe s	automation .		
Denotes a	all states and		
Denotes	a contraction		
Device s	E.C.		

Figura A2-8: Basic Setup Menu

Figura A2-9: Device Information Menu

← <u>H</u> W	lh X
VECTOR: CHERREN	12-02-02
Sensor trim points	and a second second
I Serie Select	Senar 1940
2 Siter 1 Type	SCOUSA
3 SHF 1 5/N	17505
4 Snor 1 Gal Finia	CH4 3
5 Ster 1 Tem support	Lover and Upper
6 Sher 1 Teler unit	SOUL SOUL
7 Snar 1 Min lower trim	5.5 V0/%
8 Ster 1 Max kowr tr	3.5 V0/14 💌
HELP	EXT.

Figura A2-10: Revision Number Menu

Figura A2-18: Relays Menu

Relays Menu:

Este menu pode ser usado para especificar a configuração dos relés de saída. Selecione o item 1 no menu para especificar o relé a ser configurado.

Note que, para cumprir os requisitos da Factory Mutual, um relé pode ser fixado no modo travado. Os relés podem ser configurados para estar em um dos quatro modos:

Operar	Condição do relé
Fechado	O relé fica fechado até a ocorrência de falha ou nível de alarme onde o relé abre
Aberto	O relé fica aberto até a ocorrência de falha ou nível de alarme onde o relé fecha.
Desabilitado	Relé desabilitado (aberto)

No item 6 do menu, Desbloquei do Rele, po ser usdo para desbloquear o relé previamente ajustados devido a condição de alarme do processo.

O 3h | × -VECTOR DEGESSION Review Din Distributor 4 Cig ithing coord 538 Wite prot None 6 Num reic pres Num resp pream Max.dec.vars HELP EXT.

Figura A2-19: Review Menu

Review Menu:

Esta tela fornece um resumo das principais configurações do dispositivo.

Apêndice 3 – Mapa de Registro Modbus

CTH-Vector FCU

Atribuições de registos Modbus

Para versões de firmware 3.0, 3.01, 3.02, 3.03, 3.04, 3.05

Nome	End.	R/W	Formato	Descrição
Address	1	R/W	U16	Address
BaudRate	2	R/W	U16	Host Port Baud Rate/1200
	3-10			Reserved
Serial Number	11	R/(W)	U16	Serial number of Vector – Note 1
Firmware Version	12	R	2-U8	MSB: Major version LSB: Minor version
Device Type	13	R	2-U8	0x0a01
	14-30			Reserved
NbrSensors	31	R/W	U16	Number of sensors configured
Reset Comm Stats	32	W	N/A	Reset sensor communications statistics
	33-118			Reserved
				B4-15: Not used
DeviceStatus2	119	R	U16	Bits removed at V3.05 B10: 0 normal, 1 Snsr 1 Find sensor B9: 0 normal, 1 Snsr 0 Find sensor B8: 0 normal, 1 Snsr 1 No Configuration B7: 0 normal, 1 Snsr 0 No Configuration B6: 0 normal, 1 Snsr 1 Overrange B5: 0 normal, 1 Snsr 1 Overrange B4: 0 normal, 1 Snsr 1 Underrange B3: 0 normal, 1 Snsr 0 Underrange B3: 0 Std time, 1 DST (V3.05) B2: 0 normal, 1 Time Invalid B1: 0 normal, 1 Checksum Error B0: 0 normal, 1 Lo Supply Voltage
	120-123			Reserved
Date	124	R/W	U16	B9-B15 Year – Base 2000 B5-B8 Month – 1-12 B0-B4 Day of month – 1-31
Time	125	R/W	U16	Seconds after midnight (1 count = 2 seconds)
DeviceStatus	126	R	U16	Device status: B15: 0 normal, 1 AO2 in cal mode (V3.05) B14: 0 normal, 1 AO2 current in fixed mode B13: 0 normal, 1 AO2 current over limit B12: 0 normal, 1 AO2 current under limit B11: 0 normal, 1 AO1 in cal mode (V3.05) B10: 0 normal, 1 AO1 current in fixed mode B9: 0 normal, 1 AO1 current over limit B8: 0 normal, 1 AO1 current under limit B7: Alm 3 Rly, 0 Open, 1 Closed B6: Alm 2 Rly, 0 Open, 1 Closed B5: Alm 1 Rly, 0 Open, 1 Closed B4: Fault Rly, 0 Open, 1 Closed B3: 0 normal, 1 Alarm 3 active B2: 0 normal, 1 Alarm 1 active B0: 0 normal, 1 Fault
TL	127	R	S16	SSS903M temperature (deg C * 10)
VSupply	128	R	S16	SSS903 Supply Voltage (Volts * 10)

Nome	End.	R/W	Formato	Descrição
	129-140			Reserved
Snsr0DisplayConcH	141	R	F-MSW	Sensor O display concentration - MSW
Snsr0DisplayConcL	142	R	F-LSW	Sensor O display concentration - LSW
Snsr0DisplayUnits	143	R	U16	Sensor O display concentration engineering units (enum)
Snsr0Msg Cnt	144	R	U16	Sensor O Total message count
SnsrOCRC Errs	145	R	U16	Sensor 0 CRC error count
Snsr0Timeouts	146	R	U16	Sensor 0 Comm timeout count
SnsrOWrong Addr	147	R	U16	Sensor 0 Wrong address count
Snsr0Exceptn	148	R	U16	Sensor 0 Exception message count
SnsrOStatus	149	R	U16	Added at version 3.05 Sensor O Status: B9: O normal, 1 Snsr O Find sensor B8: O normal, 1 Snsr O Limit 3 Active B7: O normal, 1 Snsr O Limit 2 Active B6: O normal, 1 Snsr O Limit 1 Active B5: O normal, 1 Snsr O Cal Mode B4: O normal, 1 Snsr O Cal Mode B3: O normal, 1 Snsr O Overrange B3: O normal, 1 Snsr O Underrange B2: O normal, 1 Snsr O No Configuration B1: O normal, 1 Snsr O Comm Fail B0: O normal, 1 Snsr O Fault
	150			Reserved
Snsr1DisplayConcH	151	R	F-MSW	Sensor 1 display concentration - MSW
Snsr1DisplayConcL	152	R	F-LSW	Sensor 1 display concentration - LSW
Snsr1DisplayUnits	153	R	U16	Sensor 1 display concentration engineering units (enum)
Snsr1Msg Cnt	154	R	U16	Sensor 1 Total message count
Snsr1CRC Errs	155	R	U16	Sensor 1 CRC error count
Snsr1Timeouts	156	R	U16	Sensor 1 Comm timeout count
Snsr1Wrong Addr	157	R	U16	Sensor 1 Wrong address count
Snsr1Exceptn	158	R	U16	Sensor 1 Exception message count
Snsr1Status	159	R	U16	Added at version 3.05 Sensor 1 Status: B9: 0 normal, 1 Snsr 1 Find sensor B8: 0 normal, 1 Snsr 1 Limit 3 Active B7: 0 normal, 1 Snsr 1 Limit 2 Active B6: 0 normal, 1 Snsr 1 Limit 1 Active B5: 0 normal, 1 Snsr 1 Cal Mode B4: 0 normal, 1 Snsr 1 Cal Mode B3: 0 normal, 1 Snsr 1 Overrange B3: 0 normal, 1 Snsr 1 Underrange B2: 0 normal, 1 Snsr 1 No Configuration B1: 0 normal, 1 Snsr 1 Comm Fail B0: 0 normal, 1 Snsr 1 Fault
	160			Reserved
	161-228			Reserved
SnsrOAddress	229	R/W	U8	Sensor 0 Modbus address (1-247)
SnsrOBaudRate	230	R	U8	Sensor 0 Baud Rate/1200
Snsr0DevType	231	R	U16	Sensor O Device Type: O = None 1 = Unknown 2 = PGU 3 = SGOES 4 = SGOES-M 5 = TGAES
Snsr0SerialNbr	232	R	U16	Sensor O Serial number

Nome	End.	R/W	Formato	Descrição
SnsrOVersion	233	R	U16	Sensor O Firmware version: H- Major, L – Minor
Snsr0Chksum	234	R	U16	Sensor 0 Firmware checksum
Snsr0Gas	235	R	U16	Sensor 0 Gas identifier
	236-244			Reserved
Snsr1Address	245	R/W	U8	Sensor 1 Modbus address (1-247)
Snsr1BaudRate	246	R	U8	Sensor 1 Baud Rate/1200
Snsr1DevType	247	R	U16	Sensor 1 Device Type: 0 = None 1 = Unknown 2 = PGU 3 = SGOES 4 = SGOES-M 5 = TGAES
Snsr1SerialNbr	248	R	U16	Sensor 1 Serial number
Snsr1Version	249	R	U16	Sensor 1 Firmware version: H- Major, L – Minor
Snsr1Chksum	250	R	U16	Sensor 1 Firmware checksum
Snsr1Gas	251	R	U16	Sensor 1 Gas identifier
	252			Reserved

Enumerações de Engenharia (unidades)		
Valor	Descrição	
0	Not valid	
1	Volume Percent	
2	Percent LEL	
3	ppm	
4	Mg/M3	
5	Percentage Exposure Limit	
6	LEL-Meters	

Códigos de gás para CTH-SGOES		
Value	Description	
523	Methane	
524	Propane	
525	Hexane	
526	Butane	
527	Isobutane	
528	Pentane	
529	Cyclopentane	
530	Ethanol	
531	Not used	
532	Methanol	
533	Propylene (NEW)	
534	Benzene (NEW)	
535	Ethane (NEW)	
536	Acetone (NEW)	

Códigos de gás para CTH-SGOES		
Value	Description	
537	Toluene (NEW)	
538	MTBE (NEW)	
539	Ethylene (NEW)	
540	Oil (NEW)	
541	Natural Gas (NEW)	
542	Gasoline (NEW)	
543	Kerosene (NEW)	
544	White Spirit (NEW)	
545	Diesel Oil (NEW)	
546	Petroleum (NEW)	
547	p-Xylene (NEW)	
548	o-Xylene (NEW)	
549	Heptane (NEW)	
550	IsoPropanol (NEW)	
551	Ethyl Benzene (NEW)	
552	Cyclohexane	

Códigos de gás para CTH-PGU		
Valor	Descrição	
0	None	
1	Methane	
2	Propane	
3	Hexane	
4	Butane (Not used)	
5	lsobutane (Not used)	
6	Pentane (Not used)	
7	Cyclopentane (Not used)	
8	Ethanol (Not used)	
9	C02-2	
10	C02-5	
11	Methanol	
12	Isobutylene 20	
13	Isobutylene 200	
14	Ethylene	
15	Benzene	
16	H2	
17	02	
18	CO	
19	H2S 45	
20	H2S 85	
21	NO2	
22	S02	
23	Ammonia 70	

Códigos de gás para CTH-F	e CU
Valor	Descrição
24	Ammonia 500
25	Cl2
26	HCL
27	HF
28	H2S 10
29	Ethane (Not used)
30	Acetone (Not used)
31	Toluene(Not used)
32	MTBE (Not used)
33	Acetylene
34	IsoButylene 2000
35	Methyl Mercaptan
36	Ethyl Mercaptan
37	Propylene (NEW)
38	Oil (NEW)
39	Natural Gas
40	Gasoline
41	Kerosene
42	White spirit
43	Diesel Oil
44	Petrochemical
45	Formaldehyde
46	Vinyl acetate
47	Heptane
48	Orthoxylene
49	Paraxylene
50	Isopropanol
51	Cyclohexane
52	Ethylbenzene
53	Petroleum

Códigos de gás para CTH-TGAES	
Valor	Descrição
1001	Methane
1002	Propane
1003	Hexane
1004	Butane
1005	Isobutane
1006	Pentane
1007	Cyclopentane
1008	Ethanol
1009	C02
1010	Methanol

Apêndice 4 – Sensor de Gás Modelo CTH-PGU

Os sensores universais PGU opera com a faixa de temperaturas de -40 a 75°C e umidade relativa de até 100% (não condensado), grau de proteção IP 66, tensão nominal 24 Vcc (+18 / 32Vcc) e, podem ser eletroquímico (PGU-E), infravermelha (PGU-IR), fotoionizada (PGU-P) e catalítica (PGU-C).

CTH-PGU-E Eletroquímico: Gases detectado, faixa de detecção, precisão e tempos de resposta do sensor:

O sensor eletroquímico é calibrado par um gás específico.

*Tempo de resposta: intervalo de tempo, com o equipamento na condição aquecido, entre o tempo no qual uma variação instantânea entre o ar limpo e um gás-padrão, ou vice-versa, é produzida na entrada do equipamento e o instante em que ele responde, atingindo uma porcentagem específica (x) do sinal estabilizado no gás-padrão de ensaio. **Alguns sensores têm faixas variados, um destes determinado pelo usuário durante o início da calibração.

Gás	Fórmula	Faixa de detecção**	Precisão	Tempo de resposta*	
Hidrogênio	(H ₂)	0 a 4 % vol (100% LIE)	+2% occala total	T50 < 40 segundos	
		0 - 1% vol (0 - 100) T90 < 60 segundos ppm		0 - 1% vol (0 - 100) T90 < 60 segundos	
Monóxido de carbono	(CO)	(0 - 100) ppm		T20 < 10 segundos (0 - 500) ppm T90 < 25 segundos	
		(0 - 500) ppm	±2% escala total		
		(0 - 1000) ppm			
Amônia	(NH ₃)	(0 - 1000) ppm	±2% escala total	T90 < 90 segundos	
Fluoreto de hidrogênio	(HF)	(0 - 10) ppm	±2% escala total	T50 < 30 segundos T90 < 90 segundos	
Metanol	(CH ₃ OH)	(0 - 100) ppm	± 2% escala total	T90 < 90 segundos	
Oxigênio	(O ₂)	(0 - 30) % vol	±2% escala total	T90 < 11 segundos	
	(H ₂ S)	(0 - 20) ppm		T20 < 10 segundos T50 < 12 segundos T90 < 25 segundos	
Sulfeto de hidrogênio		(0 - 50) ppm	±2% escala total		
mologenio		(0 - 100) ppm			
Cloro	(CI2)	(0 - 20) ppm	±2% escala total	T90 < 25 segundos	
Formaldeído	(CH ₂ O)	(0 - 10) ppm	± 2% escala total	T50 < 20 segundos	
Dióxido de nitrogênio	(NO ₂)	(0 - 20) ppm	±2% escala total	T50 < 12 segundos T90 < 25 segundos	
Dióxido de	(SO ₂)	(0 - 20) ppm		T50 < 12 segundos T90 < 25 segundos	
enxofre		(0 - 100) ppm	±2% escala total		
Cloreto de hidrogênio	(HCI)	(0 - 30) ppm	±2% escala total	T50 < 30 segundos T90 < 90 segundos	
Acetato de vinila	(C ₄ H ₆ O ₂)	(0 - 100) ppm	± 2% escala total	T90 < 90 segundos	

O sensor CTH-PGU-P contém eletrodo em contato com um eletrólito. O gás-alvo é difundido no sensor por meio de uma membrana e entra em contato com os eletrodos, onde é oxidado. A reação eletroquímica resulta em uma corrente elétrica que passa para o micro controlador e, de lá, para o receptor CTH-Vector. A magnitude da corrente é controlada pela quantidade de gás-alvo que é oxidado pelo eletrodo. A saída da corrente do sensor também tem linearidade proporcional à concentração de gás. Uma saída linear permite uma medição mais precisa das concentrações baixas e uma calibração muito mais simples.

CTH-PGU-P Fotoionização: Gases detectado, faixa de detecção, precisão e tempos de resposta do sensor:

O sensor por fotoionização é calibrado par um gás específico.

*Tempo de resposta: intervalo de tempo, com o equipamento na condição aquecido, entre o tempo no qual uma variação instantânea entre o ar limpo e um gás-padrão, ou vice-versa, é produzida na entrada do equipamento e o instante em que ele responde, atingindo uma porcentagem específica (x) do sinal estabilizado no gás-padrão de ensaio.

**Alguns sensores têm faixas variados, um destes determinado pelo usuário durante o início da calibração.

Observação: Todos os gases com potencial de ionização de < 10,6 eV.

Gás	Fórmula	Faixa de detecção**	Precisão	Tempo de resposta*
Benzeno		(0 - 100) ppm		
	C_6H_6	(0 - 1000) ppm		
		(0-10000) ppm	- - ± 2% escala total	
Etileno	C_2H_4	(0 - 20) ppm		T50 < 9 segundos
		(0 - 2000) ppm		T90 < 25 segundos
Isobutileno	C ₄ H ₈	(0 - 20) ppm		
		(0 - 200) ppm		
		(0 - 2000) ppm		
Metil Mercaptano	CH₃SH	(0 - 100) ppm Outras faixas mediante	± 2% escala total	T90 < 25 segundos

O CTH-PGU-P realiza a detecção seletiva das moléculas de hidrocarboneto utilizando uma luz de infravermelho e detectores de fotoionização (PID). O ar que contém moléculas do gás combustível selecionado passa por uma câmara de coleta que têm uma fonte e um detector IV. As moléculas que contém gás combustível absorvem os fótons IV e se tornam ionizadas. As moléculas ionizadas criam uma corrente elétrica que é medida pelo detector. A corrente elétrica aumenta conforme a quantidade de moléculas de gás na câmara aumenta. A corrente é medida e processada pelo sensor CTH-PGU-P, gerando os sinais que são passados ao receptor CTH-Vector pelo RS-485. Cada detector é um fator programado para o gás solicitado pelo cliente no momento da compra.

CTH-PGU-IR Infravermelho: Gases detectado, faixa de detecção, precisão e tempos de resposta do sensor:

O sensor de absorção infravermelho é calibrado par um gás específico.

*Tempo de resposta: intervalo de tempo, com o equipamento na condição aquecido, entre o tempo no qual uma variação instantânea entre o ar limpo e um gás-padrão, ou vice-versa, é produzida na entrada do equipamento e o instante em que ele responde, atingindo uma porcentagem específica (x) do sinal estabilizado no gás-padrão de ensaio.

**Alguns sensores têm faixas variados, um destes determinado pelo usuário durante o início da calibração.

Gás	Fórmula	Faixa de detecção**	Precisão	Tempo de resposta*
Metano	CH ₄			
Propano	C ₃ H ₈			
Etileno	C ₂ H ₈			
Hexano	C_6H_{14}			
Butano	C ₄ H ₁₀		± 3% a 50% LIE ± 5% de 51% até ± 100% LIE	20 < 5 segundos T90 < 25 segundos
Isobutano	l-C ₄ P ₁₀	0 -100) % LIE		
Etanol	C₂H₅OH			
Ciclopentano	C_5H_{10}			
Propileno	$C_{3}H_{6}$			
Metanol	CH3OH			
Vapor de gasolina				
Vapor de diesel				
Vapor de combustível				
Dióxido de carbono	C02	(0 a 2) % Vol CO2 (0 a 5) % vol (1 – 3000) ppm	± 2% escala total	T90 < 25 segundos

O funcionamento do CTH-PGU-IR tem como base a interrupção do sinal seletivo por moléculas de hidrocarboneto quando uma fonte de luz de infravermelho é projetada em um detector óptico. A medição para um gás específico é determinada pela passagem da energia do IV através do filtro colocado entre a fonte e a câmara onde o gás é coletado. Se não houver gás, o detector receberá toda a energia irradiada pela fonte de IV e gera uma corrente elétrica. Quando as moléculas de gás entram na câmara de coleta, cada molécula do gás bloqueia a energia do IV, reduzindo a saída do detector, que é processada pelo sensor CTH-PGU-IR. Cada detector é entregue com um pré-ajuste para um gás específico; no exemplo exibido, o gás é o metano (CH4), que é ionizado em dois pontos no espectro de luz, um para cada elemento atômico, e são medidos como números de onda (cm-1).

CTH-PGU-C Catalítico: Gas detectado, faixa de detecção, precisão e tempos de resposta do sensor:

Utilização do sensor catalítico (pelistor) especificamente para a detecção de hidrogênio

*Tempo de resposta: intervalo de tempo, com o equipamento na condição aquecido, entre o tempo no qual uma variação instantânea entre o ar limpo e um gás-padrão, ou vice-versa, é produzida na entrada do equipamento e o instante em que ele responde, atingindo uma porcentagem específica (x) do sinal estabilizado no gás-padrão de ensaio.

** Todos os dados fazem referência ao sensor catalítico conforme testado com gás H2 de uma fonte aprovada. Os dados do sensor exibidos têm como base um ambiente de teste ideal sem a interferência de outros gases

Gás	Fórmula	Faixa de detecção**	Precisão	Tempo de resposta*
Hidrogênio	H2	0-100 % LIE	< ± 10% de valor medido	□90 < 10 segundos

O sensor de anel catalítico CTH-PGU-C, oxida o gás alvo na superfície de um filamento de alumina aquecido. O calor resultante da combustão gera uma alteração na resistividade do elemento que é diretamente proporcional à concentração de gás. Um metal precioso catalisador é embutido na superfície do filamento de alumina para abaixar a temperatura de oxidação. Dois fios de ligação são embutidos no filamento de alumina e conectados eletricamente em um circuito de ponte de Wheatstone. O calor é gerado ao passar corrente através dos condutores.

Módulo Detector CTH-PGU

Nota: As etiquetas na carcaça devem coincidir com o Detector de gás

Cobertura removível com filtro

Módulo detector substituível em campo

Apêndice 5 – Desenho de Proteção Contra Explosão

Apêndice 6 – CTH-Vector com Jumper de ligação externa

