

M_CONV_012_U_ENG

dated 15/03/21

CLEANISLAND 100 AU/NZ Multiple Mode Inverter – Energy Storage

DB 200 Interface Protection Distribution Board

INSTALLATION MANUAL

Elpower S.r.I. Via A. Beggiato, 23 36025 Noventa Vicentina (VI) email: info@elpower.it Tel. +39 0444 787882 Fax. +39 0444 787758

http://www.elpower.it

IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS

This manual contains important instructions for DB 200 and CLEANISLAND 100 AU/NZ that shall be followed during installation and maintenance of the converter.

Keep this document in a place that will keep it safe and easily accessible during installation or maintenance. This manual must be read in conjunction with the user manual for further information about the connection of the whole system and the functionalities.

CAUTION: To reduce the risk of fire, connect only to a circuit provided with 630A maximum branch-circuit overcurrent protection.

For the grid side connection following the minimum wire size according to the following table:

Rated voltage	CLEANISLAND 100 AU/NZ
400V or	use 90°C wire
415V with transformer tap	2/0 AWG (74 mm2) copper

Rated voltage	DB 200	
400V or	use 90°C wire, either	
415V with transformer tap	400 AWG (203 mm2) copper or	
	600 AWG (304 mm2) aluminum	

WARNING

These instructions must be carefully read before proceeding with the installation, start up and use of the converter. The installation must be performed by qualified personnel only. Safety instructions have to be strictly observed to avoid serious injuries, loss of life, damage to the converter and the connected equipment.

The words "converter", "inverter", "PCS" (Power Conditioning System), "multiple mode inverter" refer to the CLEANISLAND 100 AU/NZ cabinet and its power converter bridges. The words "distribution board", "interface distribution board", "interface protection distribution board" refer to the DB 200 cabinet.

M_CONV_012_U_ENG

Table of contents

1 SAF		ISTRUCTIONS	5
1.1	Ge	neral installation warnings	7
1.2	Lia	bility limits	9
2 GEN	IERAL	PRODUCT OVERVIEW	10
2.1	Re	gulatory nameplate	11
2.2	Ele	ectrical cabinet overview – DB 200	12
2.3	Ele	ectrical cabinet overview – CLEANISLAND 100 AU/NZ	16
2	2.3.1	Converter bridge	22
2.4	Те	chnical data	23
2.5	Inp	out ports short circuit withstand strength	25
2.6	Co	mpatible batteries types	25
2.7	Su	pported power quality response modes	26
2	2.7.1	Volt response modes	26
	2.7.1.	1 Volt–watt response mode	26
	2.7.1.	2 Volt-var Response Mode	28
	2.7.1.	5	
	2.7.2	Fixed power factor or reactive power mode	
2	2.7.3	Characteristic power factor curve for $\cos \phi$ (P) (Power response)	
2	2.7.4	Power rate limit	
	2.7.4.		
	2.7.4.		
2.8		arrays requirements - Earth Fault Detection and Alarm	
3 INS		TION	
3.1	Sto	prage and transport	33
3.2	Ch	ecks at cabinet delivery	33
3.3	Ins	tallation	34
3.4	Wi	rings	35
3	.4.1	Preliminary operations	35
3	.4.2	Grounding	35
3	.4.3	Type of electrical supply system	36
3	.4.4	Compatibility with RCD	37
3	.4.5	Automatic restart	37
3	.4.6	Country grid code set information	37
3	.4.7	CLEANISLAND 100 AU/NZ terminal blocks	38
	3.4.7.	1 [X.6] AC GRID Input/Output	38
	3.4.7.		
	3.4.7.		
	3.4.7.	4 [X.1C] terminal block	43

M_CONV_012_U_ENG dated 15/03/21

3.4.7.1	DRM0 terminal block	45
3.4.7.2	Gateway - communication connectors	46
3.4.7.3	Remote kit connection	
3.4.8	DB 200 terminal blocks	48
3.4.8.1	[X.6] terminal block: Input/Output Grid	
3.4.8.2	[X.7] terminal block: Output power supply to LOAD	50
3.4.8.3	[X.1A] terminal block	51
3.4.8.4	[X.1C] terminal block	53
3.4.8.1	[X.2] terminal block	55
3.4.8.2	DRM0 terminal block	57
3.4.8.3	Gateway - communication connectors	58
3.4.8.4	Remote kit connection	59
3.5 Con	nmissioning	59
3.5.1	Preliminary checks	59
3.5.2	Start-up	60
3.5.3	Shut-down	61
3.5.4	Bypass	61
4 MAINTENA	NCE	62
4.1 Air 1	filter periodical replacement	67
4.1.1	CLEANISLAND 100 AU/NZ Front air inlet filter replacement	67
4.1.2	DB 200 Front air inlet filters replacement	68
4.2 DB	200 Auxiliary battery periodical replacement	
	P board RTC battery replacement	
-1.5 DOI		

1 SAFETY INSTRUCTIONS

• The following safety symbols are used in the manual:

Symbol	Word and Meaning
	WARNING: indicates a hazardous situation which, if not avoided, will result in death or serious injury.
	DANGEROUS VOLTAGE : the highlighted information regards parts of the converter that may operate or may be still at high voltages, also for a time after stopping operations. COMPLY with codes and regulations related to high voltages
Ŵ	NOTICE : the information highlighted is important to avoid hazardous situations for the operator or the converter. DO NOT proceed without fully understanding
	HOT TEMPERATURE : some surfaces may become hot; wear appropriate personal protective equipment (PPE) when working with this product.

• The following symbols are used in the manual or/and in the label markings in the cabinet:

	GROUNDING: identifies a grounding terminal
	DIRECT CURRENT SUPPLY: indicates a DC circuit
\sim	ALTERNATING CURRENT SUPPLY: indicates that a circuit shall be AC
	ON: indicates that a control device in this position is in on
0	OFF: indicates that a control device in this position is in off
Ø	PHASE SYMBOL: this symbol is equivalent to the word "phase"
	CAUTION, HOT SURFACE
	WAITING TIME: wait a prescribed amount of time before engaging in the indicated action
$1\sim$	SINGLE-PHASE
3~	THREE PHASE

1.1 General installation warnings

- PRIOR to installation, inspect the unit to ensure absence of any transport or handling damage, which could affect insulation integrity or safety clearances; the failure to do so could result in safety hazards.
- **USE** care when choosing the installation location and adhere to specified cooling requirements. Care must be taken to provide adequate ventilation if installed indoors.
- UNAUTHORIZED removal of necessary protection features, improper use, incorrect installation or operation may lead to serious safety and shock hazards and/or equipment damage.
- **READ** all chapters of this manual before installing or commissioning the converter.
- **GROUND** the metallic cabinet.
- **DO NOT TOUCH** the electrical parts of the converter while the power is on and wait at least 5 minutes after the power is switched off before touching any electrical components
- **CAUTION** wait at least 5 minutes after the power is switched off before open any internal panels (to remove internal panels are required proper tools)
- DO NOT CARRY OUT any operations on the converter when the power is on.
- DO NOT INSTALL in environments at risk of explosion and fire.
- **DO NOT CONNECT** the converter to batteries with voltages other than rated to prevent damage and malfunction.
- **DO NOT PERFORM** insulation tests between the power terminals or between the control terminals.
- **TIGHTEN** the screws of the terminal blocks properly.
- COMPLY with environmental installation conditions.
- **DO NOT TOUCH** the circuit boards unless absolutely necessary, since they contain components sensitive to static electricity. In that case, use precautions to prevent damage caused by electrostatic discharge.
- **DO NOT TOUCH** internal parts soon after or while the inverter is working, it could be dangerous due to risks of electric shock and of burnings for high temperatures.
- DO NOT OPERATE the inverter over the maximum ambient temperature of 50°C
- **CAUTION** the unit should be installed so that it is not expected to be in contact with not authorized personnel
- **CAUTION** the system grounding is responsibility of the installer.
- In case of alarm, see the chapter of this manual about diagnostics and follow the instructions

WARNING

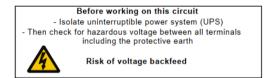
before working on the cabinet, installer/operator must work under safety conditions: the battery must be disconnected.

Be aware that even when the converter is not powered by the grid, the battery is a power source.

Therefore, for servicing operations, OPEN the circuit breaker between the battery and the converter.

CAUTION ! High leakage current, earth connection essential before connecting supply

High leakage current, earth connection essential before connecting supply. The leakage current exceeds 3.5mA and is less than 1000mA (measured leakage current 7.1mA).



Wait 5 minutes after the removal of the power from the PCS, for the capacitors to discharge before working on the cabinet.

A label is required for the purpose of warning the electrical service person, which shall be a skilled person, against backfeed situations not caused by the converter. A backfeed situation can arise when a particular load fault is present while the converter operates in stored energy mode. It is required the placement of a warning label by the installer, that shall be a skilled person, on all primary power isolators installed remote from the converter area and on external access points, if any, between such isolators and the converter.

The warning label shall carry the wording showed in the figure below, or equivalent:

CAUTION:

- The system is equipped with auxiliary batteries:
- Do not dispose of batteries in a fire. The batteries may explode.
- Do not open or mutilate batteries. Released electrolyte is harmful to the skin and eyes. It may be toxic.
- A battery can present a risk of electric shock and burns by high short-circuit current.
- Failed batteries can reach temperatures that exceed the burn thresholds for touchable surfaces

1.2 Liability limits

- The present manual is part of the product and gives important information relating to safe use and maintenance.
- The product should be used only for the purpose it has been designed and sold. Any other use is considered inappropriate and potentially dangerous; therefore, in this case, ELPOWER cannot be considered responsible for causing any damage.
- ELPOWER will be held responsible for the product in its original configuration.
- Any hardware and/or software change must be performed by ELPOWER technicians or authorized by ELPOWER Technical Department.
- ELPOWER is not responsible for any consequence arising from the use of non-original parts.
- ELPOWER reserves the right to update both this manual and the product without prior notice.
- ELPOWER is responsible for the contents mentioned in the original Italian version of this manual.
- All rights reserved. Reproduction prohibited. ELPOWER protects all rights on drawings and catalogues according to law.

2 GENERAL PRODUCT OVERVIEW

CLEANISLAND series is a line of converters designed for energy storage sources. It is designed to ensure:

- High performance
- Silent operation
- Reliability
- Durability
- Use in harsh environments

To achieve the higher efficiency a single AC/DC power converter bridge has been implemented, this is possible with a limited battery voltage range.

Alternatively to achieve a wide operating battery voltage range, a totally digital converter system has been implemented with 2 inverters: 1 inverter to manage the grid side AC/DC, and 1 inverter as DC/DC converter to start operation from zero volts on energy storage source (charging battery from 0V).

The most significant choices, concerning reliability and durability, are the elimination of electrolytic capacitors from both power and control sides in favour of film capacitors, and the use of industrial extended temperature grade components for the electronic boards.

Careful consideration has been given to the choice of materials and manufacturing solutions: e.g. tinned cables for the auxiliary circuits, tropicalized electronic boards.

The converter comes with a remote control kit (embedded PC + modem/router) that provide real operating information and alarms. There are not external monitoring portals or apps.

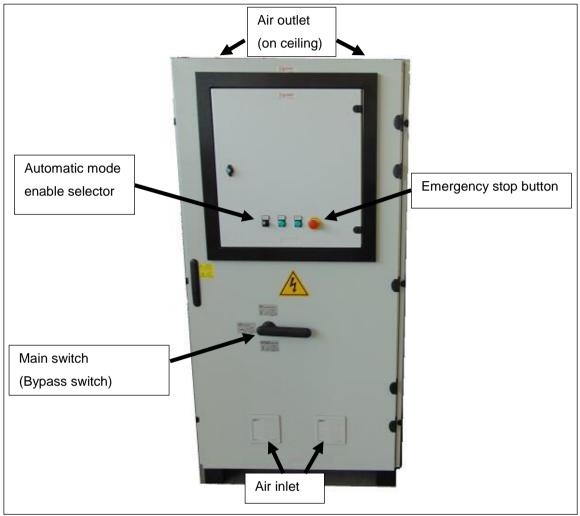
The cooling fans are controlled by a temperature sensor in order to minimize self-consumption and maximize life expectancy; their function is continuously monitored to prevent damage due to failures.

CLEANISLAND converters combine a high degree of standardization with the possibility of implementing elements of customization necessary to meet the needs of the different types of energy storage sources that exist on the market.

dated 15/03/21

2.1 Regulatory nameplate

Technical data in this manual does not supersede the data on the labels affixed to the electrical cabinet. The product nameplate is affixed to the inverter chassis and provides the following information:

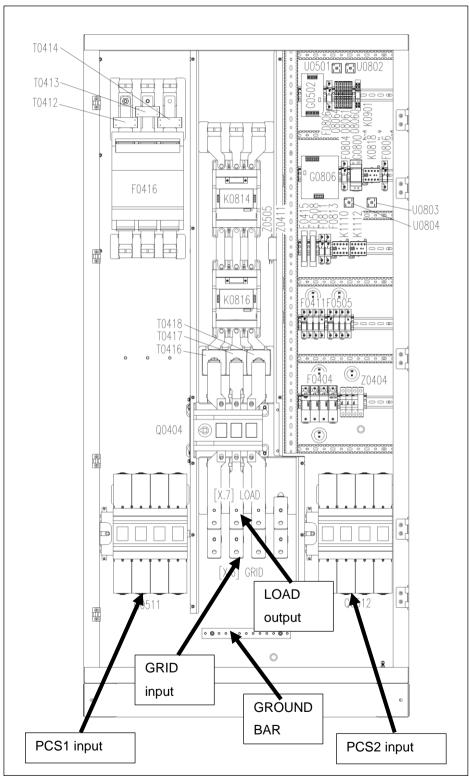

- 1) Product origin
- 2) Certification (where applicable)
- 3) Model type and number
- 4) AC output ratings
- 5) DC input ratings

dated 15/03/21

2.2 Electrical cabinet overview – DB 200

The DB 200 is available in indoor version. In the following picture is shown the front door and are pointed the air inlet and outlet.

Picture 1

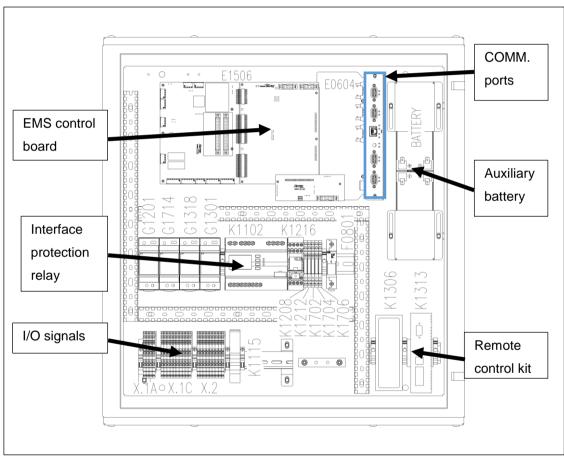

Inside the cabinet there are this components:

- The front compartment (Picture 2) can be reached by opening the main door and contains:
 - Electromechanical components
 - o Electronic boards
 - o AC GRID terminal blocks
 - $\circ \quad \text{AC LOAD terminal blocks}$
 - o AC PCS1 terminal blocks
 - o AC PCS2 terminal blocks

dated 15/03/21

The following picture shows the internal layout of the front compartment:

Picture 2



M_CONV_012_U_ENG

dated 15/03/21

- The EMS (Energy Management System) compartment (Picture 3) can be reached by opening the EMS door and contains:
 - Electromechanical components
 - Electronic boards
 - Communication gateway
 - o Remote control kit
 - o I/O terminal blocks

The following picture shows the internal layout of the EMS compartment:

Picture 3

Referring to the DB 200 schematic, there is a list of electromechanical devices, to be checked and operated on for the first start up. For each fuse holder check the fuse rating. They will be referred with the device label written in the first column.

Device	Description	Remarks
Label		
F0404	Surge arrester fuses	50A aM 14x51 with
		signalling
Q0404	Main switch (Bypass switch)	-
F0416	AC main fuse	400A gG NH2
F0411	AC power supply auxiliary circuitry protection fuses	6A aM 10x38
F0505	AC power supply auxiliary circuitry protection fuses	2A aM 10x38
Q0511	Switch fuse disconnector PCS1	250A gG NH1
Q0512	Switch fuse disconnector PCS2	250A gG NH1
F0801	Auxiliary battery protection fuse	10A gG 10x38
F0804	Battery charger protection fuse	2A gG 10x38
F0805	Emergency stop circuitry protection fuse	4A gG 10x38
F0806	24VDC distribution protection fuse	4A gG 10x38
F0811	24VDC distribution protection fuse	6A aM 10x38
F0813	24VDC distribution protection fuse	6A aM 10x38

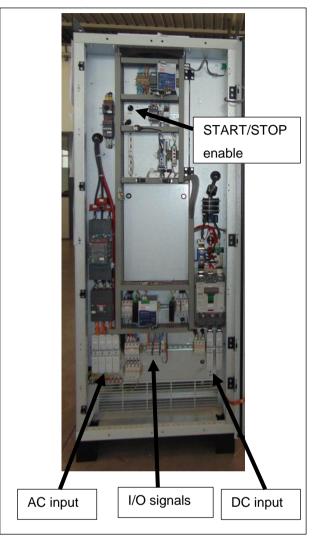
Table 1

Rev. 0.5

2.3 Electrical cabinet overview – CLEANISLAND 100 AU/NZ

The CLEANISLAND 100 AU/NZ is available in indoor version. In the following picture is shown the front door and are pointed the air inlet and outlet.

Picture 4


Inside the cabinet there are this components:

- The front compartment (Picture 5) can be reached by opening the door and contains:
 - o Electromechanical components
 - o Electronic boards
 - o AC terminal blocks
 - o DC terminal blocks
 - o I/O signal terminal blocks

Rev. 0.5 dated 15/03/21

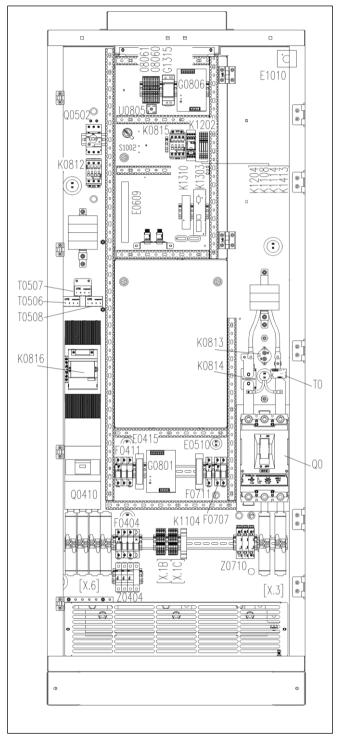
The following picture shows the internal layout of the front compartment:

Picture 5

dated 15/03/21

The following picture shows the access to the converter bridge and the components on the rear compartment:

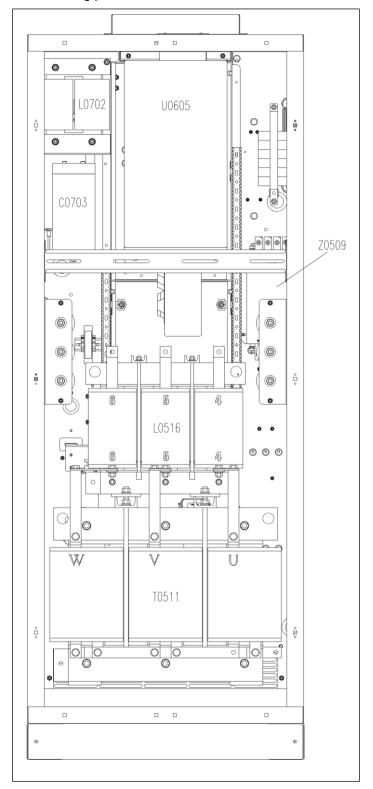
Converter bridge



Picture 6

Rev. 0.5

The following picture shows the front enclosure and the internal layout of the cabinet:



Picture 7

Rev. 0.5

The following picture shows the rear enclosure and the internal layout of the cabinet:

Picture 8

20/71

Referring to the CLEANISLAND 100 AU/NZ schematic, there is a list of electromechanical devices, to be checked and operated on for the first start up. They will be referred with the device label written in the first column.

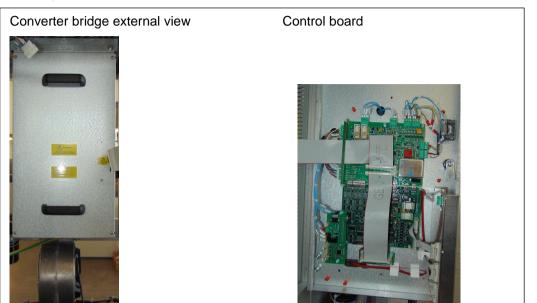

Device	Description	Remarks
Label		
F0404	Surge arrester fuses	32A aM 10x38
Q0410	Input/output grid switch disconnector	-
F0411	AC power supply auxiliary circuitry protection fuses	2A aM 10x38
Q0502	AC pre-charge circuit breaker	-
F0707	Battery DC input measurement protection fuses	10A gPV 10x38
F0711	DC pre-charge circuit protection fuses	10A gPV 10x38
Q0714	DC input circuit breaker	-

Table 2

2.3.1 Converter bridge

The converter bridge is shown in Picture 9.

Picture 9

The converter cover can be removed to get access to the IGBT driver board and IGBT power modules (before opening the converter cover the flat cable must be disconnected).

2.4 Technical data

DB 200			
AC side electrical data			
Grid port			
Rated voltage	400Vac ±10% (or 415Vac ±10%)		
		(range according to AS/NZS 4777)	
Rated frequency	50Hz	+5% -5% (range according to AS/NZS 4777)	
Rated current		321A	
Rated output power		200kW	
Rated apparent power		222.4kVA	
Load port			
Rated voltage		400Vac ±10% (or 415Vac ±10%)	
		(range according to AS/NZS 4777)	
Rated current		321A	
Rated output power	222.4kVA		
PCS1 port	Refer to CLEANISLAND 100 AU/NZ AC side data		
PCS2 port	Refer to CLEANISLAND 100 AU/NZ AC side data		
General data			
Overvoltage class		111	
Protective class		1	
Operating temperature		-20 ÷ +45 °C	
Storage temperature		-25 ÷ +70 °C	
Relative humidity		0 ÷ 95% max (no condensing)	
Degree of cabinet mechanical protection		IP20	
Overall dimensions		H 2000 x W 1020 x D 820(80) ±10mm	
Weight		500 kg	

Table 3

CLEANISLAND 100 AU/NZ			
AC side electrical data			
AC port		Grid following mode	
Rated voltage	400Vac +10% -10% (415Vac with transformer tap)		
		(range according to AS/NZS 4777)	
Rated frequency	50Hz	+5% -5% (range according to AS/NZS 4777)	
Power factor		0.8 ÷ 1 (lagging/leading)	
Rated current		160.5A	
Max overcurrent protection		250A	
Rated output power		100kW	
Rated apparent power		111.2kVA	
Harmonic distortion of current		<3% @ rated power	
AC port		Stand-alone mode	
Rated voltage	400	Vac +5% -5% (415Vac with transformer tap)	
Rated frequency		50Hz +1% -1%	
Power factor		0.8 ÷ 1 (lagging/leading)	
Rated current		144A	
Max overcurrent protection		250A	
Rated output power		100kVA	
Harmonic distortion of voltage	<3% @ resistive load		
Max load unbalance		15%	
DC port electrical data			
Rated voltage		540 ÷ 756Vdc	
Min voltage		540Vdc	
Max voltage		800 Vdc	
Rated current		165A	
General data			
Overvoltage class		Ш	
Protective class		1	
Efficiency at 100% Pn AC side, ch included)	arging (auxiliary	<mark>-%</mark>	
Efficiency at 100% Pn AC side, discharging (auxiliary included)		<mark>-%</mark>	
Cooling		Fans starting with a temperature threshold	
Operating temperature		-20 ÷ +45 °C	
Storage temperature		-25 ÷ +70 °C	
Relative humidity		0 ÷ 95% max (no condensing)	
Degree of cabinet mechanical protection		IP20	
Overall dimensions		H 2060 x W 820 x D 820(+20) ±10mm	
Weight		800kg	

Table 4

2.5 Input ports short circuit withstand strength

DB 200			
Input port	Maximum short circuit current	Minimum short circuit current	
Grid	10kA	3kA	
Load	10kA	-kA	
PCS1	10kA	3kA	
PCS2	10kA	3kA	
	Tabla F	1	

Table 5

CLEANISLAND 100 AU/NZ				
Input port	Maximum short circuit current	Minimum short circuit current		
Grid	10kA	3kA		
Battery	15kA	3kA		

Table 6

2.6 Compatible batteries types

The CLEANISLAND 100 AU/NZ is compatible with this types of batteries:

- Lithium
- Lead Acid
- Flow

The CLEANISLAND 100 AU/NZ does not include a connection terminal for a remote battery temperature sensor. If installing CLEANISLAND 100 AU/NZ with lead acid batteries please check with Elpower S.r.l. for advice regarding charge settings.

The CLEANISLAND 100 AU/NZ doesn't include the battery energy storage system, refer to the battery installation manual for safety instructions and relevant information.

2.7 Supported power quality response modes

2.7.1 Volt response modes

This mode responds to voltage changes at the inverter terminals and helps to increase the number of systems that can be connected at a point on the grid without affecting the voltage within an electrical installation. Each of the voltage response modes may be programmed for different response values from the other modes, thus allowing for different response curves in different modes to suit local distributor requirements.

Reference	Australian default value	NZ default value	Range
	(∨)	(V)	(V)
V ₁	207	207	Not applicable
V ₂	220	220	216 to 230
V ₃	250	244	235 to 255
V4	265	255	244 to 265

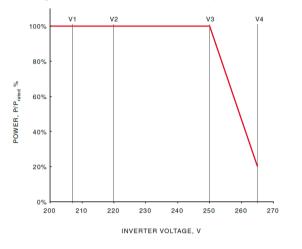
2.7.1.1 Volt–watt response mode

In this mode, the output power of the inverter is varied in response to terminal voltage. This method is enabled by default. The table below shows the maximum set point values for reference voltages.

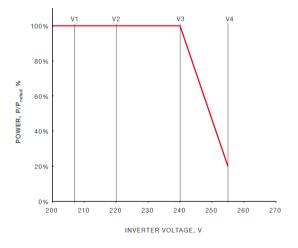
Reference	Maximum value (P/P _{rated}), %
V ₁	100%
V ₂	100%
V ₃	100%
V ₄	20%

The table below shows the default parameters:

Parameters	Range	Unit	Description	Default Value
ENABLE_VOLT_WATT_OVR	0 = disabled 1 = enabled	bit	Enable/disable Volt-Watt mode when output power is positive	Enabled
V1_GRID_CODE_VX10	2000 - 2700	Vx10	Grid voltage at which the output power is limited to 100 %	2070
V2_GRID_CODE_VX10	2000 - 2700	Vx10	Grid voltage at which the output power is limited to 100 %	2200
V3_GRID_CODE_VX10	2000 - 2700	Vx10	Grid voltage at which the output power is limited to 100 %	2500
V4_GRID_CODE_VX10	2000 - 2700	Vx10	Grid voltage at which the output power is limited to 20 %	2650
P1_GRID_CODE_Px100	0 - 100	%	Percent of output power when V grid = V1_GRID_CODE_VX10	100
P2_GRID_CODE_Px100	0 - 100	%	Percent of output power when V grid = V2_GRID_CODE_VX10	100



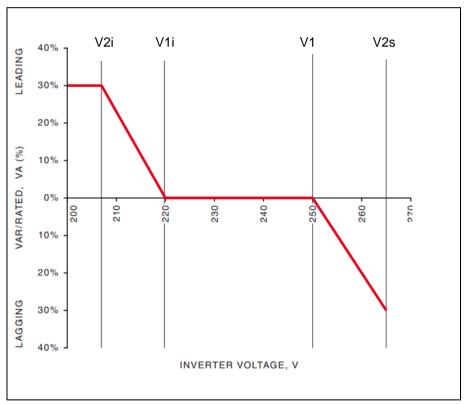
M_CONV_012_U_ENG


dated 15/03/21

P3_GRID_CODE_Px100	0 - 100	%	Percent of output power when V grid = V3_GRID_CODE_VX10	100
P4_GRID_CODE_Px100	0 - 100	%	Percent of output power when V grid = V4_GRID_CODE_VX10	20

The figure below shows the curve (default Australia):

The figure below shows an example curve for New Zealand:



2.7.1.2 Volt-var Response Mode

In this mode, the reactive power output of the inverter is varied in response to the voltage at its grid interactive port. This mode is disabled by default. The table below shows the default values for reference voltages.

Reference	Default values for var level (var % rated VA)	Minimum range
V ₁	30% leading	0 to 60% leading
V ₂	0%	0%
V ₃	0%	0%
V4	30% lagging	0 to 60% lagging

The figure below shows the default curve:

The table below shows the default parameters:

Parameters	Range	Unit	Description	Default Value
ENABLE_VOLT_VAR	0 = disabled	bit	Enable/disable volt Var	Disabled
	1 = enabled		mode	
V2i_QfV_tab	2000 - 2700	Vx10	Voltage corresponding to	2070
			maximum reactive power	
			output (LEAD)	
V1i_QfV_tab	2000 - 2700	Vx10	Threshold under whitch	2200
			inverter starts to inject	
			reactive power (LEAD)	
V1s_QfV_tab	2000 - 2700	Vx10	Threshold over whitch	2500
			inverter starts to inject	
			reactive power (LAG)	
V2s_QfV_tab	2000 - 2700	Vx10	Voltage corresponding to	2650
			maximum reactive power	
			output (LAG)	
QMAX_VOLT_VAR	0 - 6672	kVAR x	Maximum reactive power	3336
		100	leading and lagging	

2.7.1.3 Voltage balance modes

This mode is not available.

2.7.2 Fixed power factor or reactive power mode

The fixed power factor mode and the reactive power mode may be required in some situations by the electrical distributor to meet local grid requirements. Fixed reactive power mode is not available. Fixed power factor mode is disabled by default.

The fixed power factor mode is for control of the displacement power factor over the range of inverter power output. The range of settings is 0.8 leading to 0.8 lagging.

Parameters	Range	Description	Default value
ENABLE_FIXED_POWER_	0 = disabled	Enable/disable volt Fixed	0
FACTOR_MODE	1 = enabled	power factor mode	
COS_PHI_SET_TAB	80<=value<= 99	Leading power factor from	
		0.8 to 0.99 - Over excited	
	-99<=value<= -80	Lagging power factor from	100
		0.8 to 0.99 - Under excited	
	100	Unit power factor	

2.7.3 Characteristic power factor curve for $\cos \varphi$ (P) (Power response)

The characteristic power factor curve for $\cos \varphi$ (P) (Power response) mode varies the displacement power factor of the output of the inverter in response to changes in the output power of the inverter. The inverter provides $\cos \varphi$ (P) mode defined within displacement power factor range of 0.9 leading to 0.9 lagging. This mode is disable by default.

Parameters	Range	Description	Default
			value
ENABLE_COS_PHI_P	1 = enabled	Enable/disable $\cos \phi$ (P) mode	0
	0 = disabled		
P_LOCK_IN	0 - 100	% of nominal power	50
COS_PHI_MIN_COSPHI_P	-90, 90	Leading power factor from 0.8 to 0.99	90
		- Over excited	
		Lagging power factor from 0.8 to 0.99	
		- Under excited	

2.7.4 **Power rate limit**

The power rate limit for an inverter is a power quality response mode which states that inverter shall have the capability to rate limit changes in power generation through grid interactive mode. The power rate limit does not apply when the inverter disconnection device is required to operate. The power rate limit causes the inverter power output to either ramp up or ramp down smoothly as it transitions from one power output level to another power output level. These changes in power output level are constrained by several factors such as energy storage and operating state of the inverter. Ramp rates are adjustable between 5% and 100% of rated power per minute and may be different for ramp up to that for ramp down.

2.7.4.1 Soft ramp up after connect or reconnect

This mode limit the power gradient after connect or reconnect.

Parameters	Description	Unit	Default value
TMP_POW_RST	Time to restore 100% of	S	300
	nominal power. Soft		
	ramp up		

2.7.4.2 Gradient power rate limit

The inverter has an adjustable power rate limit (W_{GRA}) which limits the change in power output to the set power rate limit.

Parameters	Range	Unit	Description	Default value
P_KWx100_S	1 to 10000	kWx100/s (e.g.	Output power	28
		1000 = 10kW/s)	gradient in	(i.e. 16.67
			kWx100/s	kW/min)

The inverter will use the lower power rate limit between soft ramp up and gradient power rate limit response.

2.8 PV arrays requirements - Earth Fault Detection and Alarm

The CLEANISLAND 100 AU/NZ doesn't have a PV port and it cannot work with PV arrays. The requirements related to earth fault detection and notification, in AS 4777.2:2015 Clause 5.3. IEC 62109-2 Clause 13, and AS 5033:2014 Clause 3.4.3, are not applicable, so the CLEANISLAND 100 AU/NZ doesn't have an earth fault detection and alarm.

3 INSTALLATION

3.1 Storage and transport

Since the electronic boards are tropicalized, there are no particular rules to follow for storage, with the exception of the respect of the values for temperature and humidity as in Table 3.

Temperature for storage and transport	-25°C ÷ + 70°C
Environmental humidity during storage	From 5% to 95%, from $1g/m^3$ to 29 g/m^3 , without
	condensation or ice formation (class 1K3 according to
	EN 50178)
Environmental humidity during transport	Max 95%, up to 60 g/m ³ , a little condensation can be
	developed when the machine is not working (class
	2K3 according to EN 50178)
Overvoltage category	111

Table 7

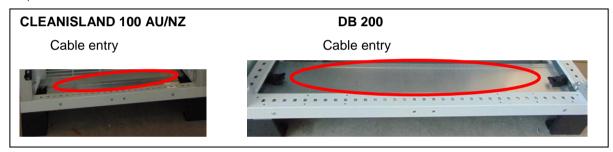
3.2 Checks at cabinet delivery

Usually, the cabinet is sent bent on a pallet and protected with air pack. Usually top lift accessories are mounted or sent, so that loading and unloading is possible both with fork lift and top lift (Picture 10):

Inside the cabinet, there are the closing panels for the cable entries and the retaining screws. Outside there are proper keys to open the door cabinet, and internal removable panels.

Once the cabinet has arrived on the installation location, open the wrapping of the cabinet and check the above-mentioned components.

Inspect the unit for any transportation or handling damage (since these could cause loss of insulation or reducing safety clearances).


3.3 Installation

WARNING: these instructions must be carefully read before proceeding with the installation, start up and use of the converter. The installation must be performed by qualified personnel only.

To install:

- Place the cabinet by using the top lift (Picture 10), or a forklift by using the room available at the base (by opening the base)
- Mount the cable glands on the closing panels of the cable entry plate according to the cables types (Picture 11)

If the closing panel is not placed to close properly the cable entry, the converter is suitable for mounting on concrete or other non-combustible surfaces only.

The installation site must be compatible with the conditions listed in Table 4

Temperature of working site	-20°C ÷ +45 °C
Installation site	Pollution degree 2 or better (EN 50178)
Altitude	Up to 2000 meters above sea level
	For higher altitudes, derating the output current of 2%
	per 100 meters beyond 2000 m (max 4000 m)
Humidity of working site	From 5% to 85% from 1 g/m ³ to 25 g/m ³ (class 3K3
	according to EN 50178)
Overvoltage category	111
	Table 8

The cabinet must not be placed with the top not less than 50 cm from the ceiling, and with the front not less than 1mt from walls or other equipment; furthermore, since the cabinet dissipates heat in the surrounding environment, it is necessary to bear this in mind when sizing the cooling system for that room.

3.4 Wirings

After placing the panel, it is necessary to check the tightness of all the power, signal and auxiliary connections in order to prevent malfunctions and/or damage resulting from terminals that have come loose due to vibration during transport.

3.4.1 **Preliminary operations**

Before starting the connections, make sure that:

the mains circuit breaker, placed to protect the connection line between the point of delivery of energy and the cabinet, is open

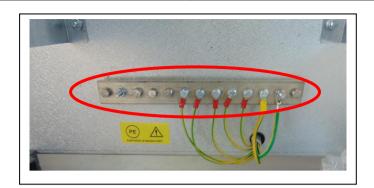
Furthermore, check:

• that the mains input matches the inverter input configuration and that the rated voltage is compatible with the one indicated on the identification plate affixed on the cabinet.

After all the steps described above, the converter can be connected to the grid and the DC energy source. Pass the cables through the cable duct and relevant panel. Lastly, close the base with the relevant panels.

3.4.2 Grounding

CLEANISLAND 100 AU/NZ and DB 200 cabinets are equipped with a ground terminal (CLEANISLAND 100AU/NZ-> Picture 12, DB 200->Picture 13): it constitutes the collector for all connections to system's ground.



Picture 12

M_CONV_012_U_ENG

dated 15/03/21

Therefore, before powering the cabinet, make sure the ground is correctly connected; use a minimum size of 1 AWG (or 42.4 mm²) copper wire for CLEANISLAND 100 AU/NZ and use a minimum size of 4/0 AWG (or 107 mm²) copper wire for DB 200. It is the user's responsibility to ensure that the ground system complies with current standards.

High leakage current, earth connection essential before connecting supply!

A 10mm hexagonal socket with the proper torque tool is required to tighten the 10mm hexagonal bolt (M6 hole): the tightening torque is 5 to 6Nm (44 to 53 lb.in).

Do not connect any AC phase wire to ground. Input and output circuits are isolated from the enclosure, which is connected to the system ground.

3.4.3 Type of electrical supply system

AS/NZS4777.2:2015 Clause 6.4.1 "Multiple mode inverters shall be arranged to ensure that the continuity of the neutral conductor to the load from the electrical installation is not interrupted when the inverter disconnects from the grid and supplies a load via the stand-alone port."

AS4777.2 states the requirement of continuity of grid neutral-earth connection (MEN connection) must be maintained at all times. In case of multiple mode inverter it is critical for the installer to ensure that the load neutral to MEN connection is maintained during all operating modes of the inverter, including stand-alone mode.

The DB 200 has a pass-through neutral connection, this avoid the switching of the neutral conductor in any operational mode on both DB 200 and CLEANISLAND 100 AU/NZ.

The type of electrical supply systems permitted for multiple mode configuration are TN-S (no switch on neutral conductor) and TN-C. IT system is not permitted.

TT is permitted with modification of values and/or safety levels which shall be quantified, because in any case the neutral to MEN connection must be maintained to the inverter during all operating modes. In case the inverter is set in grid mode only (stand-alone mode is not possible) TT is permitted.

3.4.4 Compatibility with RCD

The DB200 and CLEANISLAND 100 AU/NZ don't have any built-in RCMU (residual current monitoring unit). The inverter is equipped with built-in isolation power transformer so it is compatible with external RCD type A.

External RCDs rating is depending on the number of installed CLEANISLAND 100 AU/NZ:

- 1) In case of one unit use 1A rating
- 2) In case of two units use 2A rating

These RCDs rating refer to the inverter branch.

The external RCDs to the loads (on the output of the DB 200), must be rated according local standards and load types.

AS4777.2 states the requirement of continuity of grid neutral-earth connection (MEN connection) must be maintained at all times. In case of multiple mode inverter it is critical for the installer to ensure that the load neutral to MEN connection is maintained during all operating modes of the inverter, including stand-alone mode.

3.4.5 Automatic restart

The system can be configured to operate automatic restart after the removal of power. To stop all operations follow the instructions in section "4 MAINTENANCE". Open all isolators from the sources and to the loads.

3.4.6 Country grid code set information

The CLEANISLAND 100 AU/NZ and the DB 200 are set specifically for AS/NZS4777 country grid code, there aren't other possible set. Inside the DB 200 is present an interface protection relay (ABB CM-UFD.M33M) already set with the proper setting for AS/NZS4777.

...

dated 15/03/21

3.4.7 CLEANISLAND 100 AU/NZ terminal blocks

3.4.7.1 [X.6] AC GRID Input/Output

Picture 14

400V (415V) 3 phase + neutral grid to PCS, it is connected to the cabinet through the terminal blocks [X.6], where there is the label "AC GRID INPUT/OUTPUT" (see Picture 14).

Number	Category	Description
terminal		
01	Grid	Phase (L1)
02	Grid	Phase (L2)
03	Grid	Phase (L3)
04	Grid	Neutral (N)

Table 9

Following the minimum wire size according to Table 10:

Rated voltage	CLEANISLAND 100 AU/NZ
400V or	use 90°C wire
415V with transformer tap	2/0 AWG (74 mm2) copper

Table 10

After attaching the wire to the M8 lug terminal, this should be tightened to the [X.6] terminal. It is required a 13mm hexagonal socket with the proper torque tool to tighten the M8 nut/bolt with a torque between 6 to 12 Nm (52 to 104 lb.in) see Picture 15.

Requirements for wiring:

- 4 x M8 lug terminals (size accordingly to the chosen wire)
- Hydraulic crimping clamp for lug terminals

Picture 15

After the connections are ready it is mandatory mount all phase barriers (protections) of the terminal blocks [X.6].

Rev. 0.5

3.4.7.2 [X.3] terminal block: DC battery input

The terminal block [X.3] has the terminals for the connection to the battery. In Table 11 the standard position of the terminals is shown, to be verified on the schematic.

Number	Category	Description
terminal		
01	Battery	Positive pole
02	Battery	Negative pole

Table 11

Picture 16

The battery has to be connected in the terminal block [X.3]. The rated cross-section of the cables for connections are 3/0 AWG (85 mm2) copper for 90°C wire.

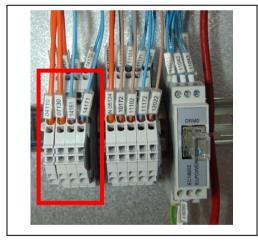
After attaching the wire to the M8 lug terminal, this should be tightened to the [X.3] terminal. It is required a 13mm hexagonal socket with the proper torque tool to tighten the M8 nut/bolt with a torque between 6 to 12 Nm (52 to 104 lb.in) see Picture 15.

Requirements for wiring:

- 2 x M8 lug terminals (size accordingly to the chosen wire)
- Hydraulic crimping clamp for lug terminals

After the connections are ready it is mandatory mount all phase barriers (protections) of the terminal blocks [X.3].

3.4.7.3 [X.1B] terminal block


Terminal block [X.1B], is located at the front-bottom part of the front side compartment (Picture 17).

In [X.1B] there are input/output signals. The terminal block is a spring clamp double deck type with these rating:

Character	ristics		
Wire size			
	NFC	C DIN	UL/CSA
Ri		1 * mm ²	26-12 AWG
Flexi	,	,5 mm²	26-12 AWG
	, ,	,5 mm²	
Flexi	ble		
Voltage			
Rated		0 V	300 V
Impulse withstan		kV	
Pollution degree		3	
Current			
Rated	20	A	20 A
Wire size			
Rated / Gauge	2,5 mi	m² / A2	12 AWG
Wire stripping length	Recommended screwdriver	Weight	Protection
9,5 mm	3,5 mm	15 g	IP 20
.37 "	.14"	.53 oz	NEMA 1

The maximum cable cross-section for each terminal is 2.5 mm² (12 AWG max).

Alternatively in case of screw clamp terminal, the clamping screw is M2.5 and tightening torque is 0.4 to 0.8 Nm (3.5 to 7.0 in-lbs) for copper wire or 0.4 Nm (3.5 in-lbs) for aluminium wire.

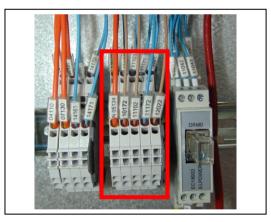
Picture 17

In Table 12 it is possible to see the position of the terminals, which anyway has to be checked in the electrical schematic. Where necessary it is required an external 24VDC power supply to feed the external circuitry and converter inputs and outputs.

Terminal number	Category	Description	Note
01	Input	"AC CB EMERGENCY OFF"	+24VDC from output of DB 200
02	Input		0VDC from output of DB 200
03	Input	"BATTERY CB EMERGENCY OFF"	+24VDC from output of DB 200
04	Input		0VDC from output of DB 200
05	Output	"AC SUPPLY CONTACTOR STATUS"	K0816 AC side contactor status: NO dry
06	Output		contact (K0816 open)
07	Output	"DC SUPPLY CONTACTOR STATUS"	K0814 DC side contactor status: NO dry
08	Output		contact (K0814 open)

Table 12

3.4.7.4 **[X.1C] terminal block**


Terminal block [X.1C], is located at the front-bottom part of the front side compartment (Picture 18).

In [X.1C] there are input/output signals. The terminal block is a spring clamp double deck type with these rating:

Character	istics			1
Wire size				
	IE NFC	DIN	UL/CSA	
Riç	gid 0,12-4	* mm ²	26-12 AWG	
Flexit	ole 0,12-2	,5 mm²	26-12 AWG	
Rig	gid 0,5-2,	5 mm ²		
Flexi	ole			
Voltage				1
Rated	50	0 V	300 V	1
Impulse withstand	d 6	kV		
Pollution degree	:	3]
Current				1
Rated	20	A	20 A	1
Wire size]
Rated / Gauge	2,5 m	m² / A2	12 AWG	*entrelec [®] spring connection terminal blocks comply
Wire stripping I length	Recommended screwdriver	Weight	Protection	IEC 947-1 standard for 2.5 mm ² rated wire size. Neve
9,5 mm	3,5 mm	15 g	IP 20	less, our spring terminal blocks can be connected to 4
.37 "	.14"	.53 oz	NEMA 1	rigid wires.

The maximum cable cross-section for each terminal is 2.5 mm² (12 AWG max).

Alternatively in case of screw clamp terminal, the clamping screw is M2.5 and tightening torque is 0.4 to 0.8 Nm (3.5 to 7.0 in-lbs) for copper wire or 0.4 Nm (3.5 in-lbs) for aluminium wire.

Picture 18

In Table 13 it is possible to see the standard position of the terminals, which anyway has to be checked in the electrical schematic. Where necessary it is required an external 24VDC power supply to feed the external circuitry and converter inputs and outputs.

Terminal	Category	Description	Note
number			
01	Input	"L3-N VOLTAGE SYNC. FROM INT.	L3 voltage from DB 200
02	Input	DB."	N voltage from DB 200
03	Input		+24VDC from DB 200 contactors
		"INTERFACE DB CONTACTORS	K0814 and K0816 status
04	Input	STATUS"	+0VDC from DB 200 contactors
			K0814 and K0816 status
05	Input		+24VDC from DB 200 interface
		"INTERFACE PROTECTION	protection status
06	Input	STATUS"	+0VDC from DB 200 interface
			protection status
07	Output		NO dry contact: connect to DB 200
08	Output	REMOTE TRIP COMMAND	input. When this contact closes the
			DB 200 opens grid contactors
09	Input		+24VDC from DB 200 enable
		ENABLE FROM PLC OR EMS	command
10	Input		+0VDC from DB 200 enable
			command
		T 11 18	

Table 13

3.4.7.1 DRM0 terminal block

Terminal block DRM0, is located at the front-bottom part of the EMS compartment (Picture 19). It is a RJ45 connector. The terminal block is supplied with a RJ45 male connector that simulate enable command on the pin 5 and 6. To connect a cable for the remote DRM0 command remove the RJ45 male connector.

Picture 19

3.4.7.2 Gateway - communication connectors

The communication gateway is located on the internal door of the front compartment, see Picture 20. There are five communication ports:

- CAN-1: female DB9 connector (not terminated)
- CAN-2: female DB9 connector (not terminated)
- TCP/IP: female RJ45 connector
- RS485-1: female DB9 connector (not terminated)
- RS485-2: female DB9 connector (not terminated)

To connect the RS485 and CANBUS cable it is necessary a DB9 male connector: if necessary terminate with a resistor inside the DB9 male connector according to the system configuration. To connect the TCP/IP cable it is necessary a LAN cable with RJ45 connector.

Picture 20

3.4.7.3 Remote kit connection

The CLEANISLAND 100 AU/NZ is equipped with a remote control kit to connect with a LAN cable to the modem inside the DB 200. It is located on the internal panel of the front compartment (see Picture 21). The remote control kit is composed of:

- Embedded PC: ITG-100-AL-E1/S
- LAN switch: EDS-205

Please refer to the CLEANISLAND supervisor software manual to have further information about the functionality and setup.

Picture 21

3.4.8 DB 200 terminal blocks

3.4.8.1 [X.6] terminal block: Input/Output Grid

Picture 22

400V (415V) 3 phase + neutral grid to the distribution board, it is connected to the cabinet through the terminal blocks [X.6], where there is the label "INPUT/OUTPUT GRID" (see Picture 22).

Number	Category	Description
terminal		
01	Grid	Phase (L1)
02	Grid	Phase (L2)
03	Grid	Phase (L3)
04	Grid	Neutral (N)

Table 14

Following the minimum wire size according to Table 15:

Rated voltage	DB 200
400V or	use 90°C wire, either
415V with transformer tap	400 AWG (203 mm2) copper or
	600 AWG (304 mm2) aluminum
Table 15	

Table 15

The terminal block hole size is 15mm diameter, the minimum suggested bolts size is M10. After attaching the wire to the lug terminal, this should be tightened to the [X.6] terminal.

In case of M10 lug terminal it is required a 17mm hexagonal socket with the proper torque tool to tighten the M10 nut/bolt with a torque between 10 to 20 Nm (87 to 174 lb.in) or according to the chosen bolt and lug terminal.

Requirements for wiring:

- 4 x M10 to M14 lug terminals (size accordingly to the chosen wire)
- Hydraulic crimping clamp for lug terminals

After the connections are ready it is mandatory mount the protection of the terminal blocks [X.6].

3.4.8.2 [X.7] terminal block: Output power supply to LOAD

Picture 23

400V (415V) 3 phase + neutral grid to PCS, it is connected to the cabinet through the terminal blocks [X.7], where there is the label "OUTPUT POWER SUPPLY TO LOAD" (see Picture 23).

Number	Category	Description
terminal		
01	Load	Phase (L1)
02	Load	Phase (L2)
03	Load	Phase (L3)
04	Load	Neutral (N)

Table 16

Following the minimum wire size according to Table 10:

The terminal block hole size is 15mm diameter, the minimum suggested bolts size is M10. After attaching the wire to the lug terminal, this should be tightened to the [X.7] terminal.

In case of M10 lug terminal it is required a 17mm hexagonal socket with the proper torque tool to tighten the M10 nut/bolt with a torque between 10 to 20 Nm (87 to 174 lb.in) or according to the chosen bolt and lug terminal.

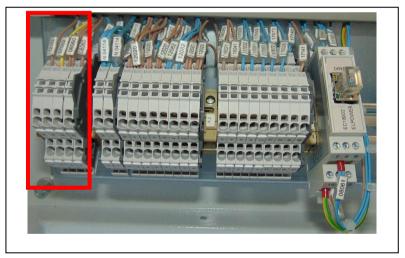
Requirements for wiring:

- 4 x M10 to M14 lug terminals (size accordingly to the chosen wire)
- Hydraulic crimping clamp for lug terminals

After the connections are ready it is mandatory mount the protection of the terminal blocks [X.7].

Rev. 0.5

3.4.8.3 [X.1A] terminal block


Terminal block [X.1A], is located at the front-bottom part of the EMS compartment (Picture 24).

In [X.1A] there are input/output signals. The terminal block is a spring clamp double deck type with these rating:

haracter	istics			1
Wire size				
	IE NFC	DIN	UL/CSA	
Rig	jid 0,12-4	* mm ²	26-12 AWG	
Flexit	ole 0,12-2	,5 mm²	26-12 AWG	
Riç	jid 0,5-2,	5 mm ²		
Flexi	ole			1
Voltage				1
Rated	50	0 V	300 V	
Impulse withstand	6	kV		
Pollution degree		3		
Current				
Rated	20	A	20 A	
Wire size				
Rated / Gauge	2,5 m	m² / A2	12 AWG	*entrelec [®] spring connection terminal blocks comp
Wire stripping I length	Recommended screwdriver	Weight	Protection	IEC 947-1 standard for 2.5 mm ² rated wire size. Nev less, our spring terminal blocks can be connected to
9,5 mm	3,5 mm	15 g	IP 20	
.37 "	.14"	.53 oz	NEMA 1	rigid wires.

The maximum cable cross-section for each terminal is 2.5 mm² (12 AWG max).

Alternatively in case of screw clamp terminal, the clamping screw is M2.5 and tightening torque is 0.4 to 0.8 Nm (3.5 to 7.0 in-lbs) for copper wire or 0.4 Nm (3.5 in-lbs) for aluminium wire.

Picture 24

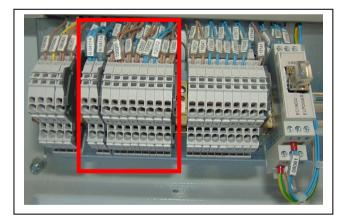
In Table 17 it is possible to see the standard position of terminals, which anyway has to be checked in the electrical schematic. Where necessary it is required an external 24VDC power supply to feed the external circuitry and converter inputs and outputs.

Terminal number	Category	Description	Note
01	Input	"AUTOMATIC MODE ENABLE FROM PLC"	+24VDC from PLC (*)
02	Input		0VDC from PLC (*)
03	Output	"EMERGENCY STOP TO PLC""	NC dry contact. When the Emergency button is
04	Output		pushed this contact opens
05	Output	"EMERGENCY STOP TO PCS1"	+24VDC to PCS1 to open AC CB and BATTERY CB in case of emergency
06	Output		+24VDC to PCS1 to open AC CB and BATTERY CB in case of emergency
07	Output	"EMERGENCY STOP TO PCS2"	+24VDC to PCS2 to open AC CB and BATTERY CB in case of emergency
08	Output		+24VDC to PCS2 to open AC CB and BATTERY CB in case of emergency

Table 17

(*) this input could be not used and it is possible bypass the relay status. The relay is equipped with a little lever, in case the lever is rotated anti clockwise the status of the relay is equivalent to supply the coil.

3.4.8.4 [X.1C] terminal block


Terminal block [X.1C], is located at the front-bottom part of the EMS compartment (Picture 25).

In [X.1C] there are input/output signals, each signal has a double terminal because it is possible wire 1 or 2 PCS. The terminal block is a spring clamp double deck type with these rating:

Character	ristics			1
Wire size				
	IE NFC	C DIN	UL/CSA	-
Rig	gid 0,12-4	* mm ²	26-12 AWG	
Flexi	ble 0,12-2	,5 mm²	26-12 AWG	1
Rig	gid 0,5-2,	5 mm ²		
Flexi	ble			
Voltage				
Rated	50	0 V	300 V	
Impulse withstand	d 6	kV		
Pollution degree		3		
Current				
Rated	20	A	20 A	1
Wire size				
Rated / Gauge	2,5 m	m² / A2	12 AWG	*entrelec [®] spring connection terminal blocks con
Wire stripping	Recommended screwdriver	Weight	Protection	IEC 947-1 standard for 2.5 mm ² rated wire size. N
9,5 mm	3,5 mm	15 g	IP 20	 less, our spring terminal blocks can be connected t
.37 "	.14"	.53 oz		rigid wires.

The maximum cable cross-section for each terminal is 2.5 mm² (12 AWG max).

Alternatively in case of screw clamp terminal, the clamping screw is M2.5 and tightening torque is 0.4 to 0.8 Nm (3.5 to 7.0 in-lbs) for copper wire or 0.4 Nm (3.5 in-lbs) for aluminium wire.

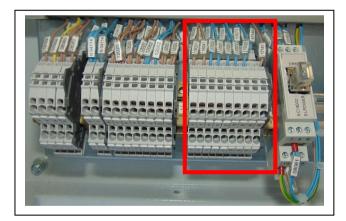
Picture 25

In Table 18 it is possible to see the standard position of terminals, which anyway has to be checked in the electrical schematic. Where necessary it is required an external 24VDC power supply to feed the external circuitry and converter inputs and outputs.

Terminal number	Category	Description	Note
01	Output	"L3 VOLTAGE SYNC TO PCS"	L3 synchronism voltage from DB 200 to CLEANISLAND 100 AU/NZ
02	Output	"N VOLTAGE SYNC TO PCS"	N synchronism voltage from DB 200 to CLEANISLAND 100 AU/NZ
03	Output	"INTERFACE DB CONTACTORS STATUS (+)"	+24VDC to PCS
04	Output	"INTERFACE DB CONTACTORS STATUS (-)"	0VDC to PCS
05	Output	"INTERFACE PROTECTION RELAY STATUS (+)"	+24VDC to PCS
06	Output	"INTERFACE PROTECTION RELAY STATUS (-)"	0VDC to PCS
07	Input		Dry contact from PCS. If any PCS close
08	Input	"REMOTE TRIP"	this contact the DB 200 opens the grid contactors
09	Output	"ENABLE COMMAND TO PCS (+)"	+24VDC to PCS
10	Output	"ENABLE COMMAND TO PCS (-)"	0VDC to PCS

Table 18

3.4.8.1 **[X.2] terminal block**


Terminal block [X.2], is located at the front-bottom part of the EMS compartment (Picture 25).

In [X.2] there are input/output signals. The terminal block is a spring clamp double deck type with these rating:

Character	ristics		
Wire size			
	IE NFC	C DIN	UL/CSA
Ri	gid 0,12-4	1 * mm ²	26-12 AWG
Flexi	ble 0,12-2	,5 mm²	26-12 AWG
Ri	gid 0,5-2,	5 mm ²	
Flexi	ble		
Voltage			
Rated	50	0 V 0	300 V
Impulse withstand	d 6	kV	
Pollution degree	:	3	
Current			
Rated	20	A	20 A
Wire size			
Rated / Gauge	2,5 mi	m² / A2	12 AWG
Wire stripping length	Recommended screwdriver	Weight	Protection
9,5 mm	3,5 mm	15 g	IP 20
.37 "	.14"	.53 oz	NEMA 1

The maximum cable cross-section for each terminal is 2.5 mm² (12 AWG max).

Alternatively in case of screw clamp terminal, the clamping screw is M2.5 and tightening torque is 0.4 to 0.8 Nm (3.5 to 7.0 in-lbs) for copper wire or 0.4 Nm (3.5 in-lbs) for aluminium wire.

Picture 26

In Table 18 it is possible to see the standard position of terminals, which anyway has to be checked in the electrical schematic. Where necessary it is required an external 24VDC power supply to feed the external circuitry and converter inputs and outputs.

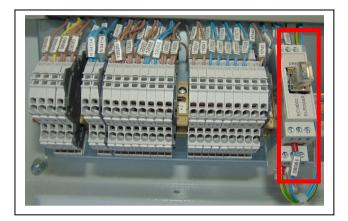

Terminal	Category	Description	Note
number			
01	Input	"EMS INPUT 1"	+24VDC from other site device
02	Input		0VDC from other site device
03	Input	"EMS INPUT 2"	+24VDC from other site device
04	Input		0VDC from other site device
05	Output		NO dry contact
06	Output	"EMS OUTPUT 1"	COM of the contact
07	Output		NC dry contact
08	Output		NO dry contact
09	Output	"EMS OUTPUT 2"	COM of the contact
10	Output		NC dry contact
11	Output		NO dry contact
12	Output	"EMS OUTPUT 3"	COM of the contact
13	Output		NC dry contact
14	Output	"EMS OUTPUT 4"	NO dry contact
15	Output		NO dry contact
16	Spare	-	
17	Output	"24VDC POWER SUPPLY TO EXT. LOGIC"	+24VDC to external logic
18	Output		0VDC to external logic

Table 19

3.4.8.2 **DRM0 terminal block**

Terminal block DRM0, is located at the front-bottom part of the EMS compartment (Picture 27). It is a RJ45 connector. The terminal block is supplied with a RJ45 male connector that simulate enable command on the pin 5 and 6. To connect a cable for the remote DRM0 command remove the RJ45 male connector.

Picture 27

3.4.8.3 Gateway - communication connectors

The communication gateway is located in the right of the EMS compartment, see Picture 28. There are five communication ports:

- CAN-1: female DB9 connector (not terminated)
- CAN-2: female DB9 connector (not terminated)
- TCP/IP: female RJ45 connector
- RS485-1: female DB9 connector (not terminated)
- RS485-2: female DB9 connector (not terminated)

To connect the RS485 and CANBUS cable it is necessary a DB9 male connector: if necessary terminate with a resistor inside the DB9 male connector according to the system configuration. To connect the TCP/IP cable it is necessary a LAN cable with RJ45 connector.

Picture 28

3.4.8.4 Remote kit connection

The DB 200 is equipped with a remote control kit to interact with the EMS (Energy Management System) it is located in the right of the EMS compartment (see Picture 29).

The remote control kit is composed of:

- Embedded PC: ITG-100-AL-E1/S
- 4G Modem/router: IR615S-L3

Please refer to the modem router documentation for further information about the communication setup. Please refer to the EMS supervisor software manual to have further information about the EMS functionality and setup.

Picture 29

3.5 Commissioning

The commissioning must be performed by qualified personnel only. Safety instructions have to be strictly observed to avoid serious injuries, loss of life, damage to

the converter and the connected equipment.

3.5.1 **Preliminary checks**

- 1. Check that the DB200 and CLEANISLAND 100 AU/NZ are installed correctly and securely
- 2. Check that the DB200 and CLEANISLAND 100 AU/NZ AC and DC main switches are open
- 3. Check that the upstream DC switches and upstream/downstream AC switches are OFF
- 4. Check that all grounding connection are done correctly and securely
- 5. Check that all AC output power cables are connected correctly and securely, without open circuits or short circuits

- 6. Check that all DC input power cables are connected correctly and securely, without open circuits or short circuits
- 7. Check that all connections between DB 200 and CLEANISLAND 100 AU/NZ are correctly and securely, without open circuits or short circuits
- 8. Check that the communications cable are connected correctly and securely
- 9. Check that all used cable glands at the bottom of the enclosure are sealed, and that the thread-lock sealing nut is tightened
- 10. Check that the terminal shrouds are reinstalled, and all protection panel are mounted
- 11. Check that inside the compartments is clean and tidy, without foreign matter
- 12. Check that the cabinets doors are closed

3.5.2 Start-up

The commissioning must be performed by qualified personnel only. Safety instructions have to be strictly observed to avoid serious injuries, loss of life, damage to the converter and the connected equipment. Before switch on the AC power supply and DC power supply, use a multimeter to check that the AC voltage and DC voltage are within the specified range.

Refer to section "2.2 Electrical cabinet overview – DB 200" and "2.3 Electrical cabinet overview – CLEANISLAND 100 AU/NZ" to see the devices positions.

Referring to the DB 200 schematic, the following steps list the devices to operate during the start-up (in case of name mismatch refer to the schematic):

- 1. Close F0404 surge arrester fuse holder
- 2. Check F0416 AC main fuse holder is closed
- 3. Close F0411 and F0505 AC power supply auxiliary circuitry protection fuse holders
- 4. Close F0801 auxiliary battery protection fuse holder
- 5. Close F0804 battery charger protection fuse holder
- 6. Close F0805 emergency stop circuitry protection fuse holder
- 7. Close F0806, F0811 and F0813 24VDC distribution protection fuse holders
- 8. Close Q0511 and Q0512 switch fuse disconnector PCS1 and PCS2 when installed

Referring to the CLEANISLAND 100 AU/NZ schematic, the following steps list the devices to operate during the start-up (in case of name mismatch refer to the schematic):

- 9. Close F0404 surge arrester fuse holder
- 10. Close F0411 AC power supply auxiliary circuitry protection fuse holder

- 11. Close Q0502 AC pre-charge circuit breaker
- 12. Close F0707 Battery DC input measurement protection fuse holder
- 13. Close F0711 DC pre-charge circuit protection fuse holder
- 14. Check that the Emergency push button on DB 200 it is released, if needed rotate anticlockwise the button to release
- 15. Close Q0714 DC input circuit breaker
- 16. Close Q0410 switch disconnector
- 17. Rotate to position 1 the START/STOP enable selector

Then the system is ready to be power supplied:

- 18. Switch on upstream DC switches and upstream/downstream AC switches
- 19. Switch on Q0404 to position II "ON"
- 20. Select EMS operating mode with the "AUTOMATIC MODE ENABLE" selector on DB 200
- 21. The system will operate according to EMS set and external PLC commands

3.5.3 Shut-down

- 1. CLEANISLAND 100 AU/NZ must be stopped. START/STOP selector must be turned to STOP wait for the converter stop
- 2. Then follow the battery producer instruction to ensure safe stop (no voltage on DC input)
- 3. Then the CLEANISLAND 100 AU/NZ main AC circuit breaker and battery circuit breaker must be opened
- 4. To ensure this condition push the emergency stop button on the DB 200
- 5. Operate the DB 200 main AC switch handle to select the position 0 "OFF"
- 6. In case of maintenance open all isolators from the sources and to the loads
- 7. Before touching any electrical parts, wait 5 minutes for the filter capacitors to discharge

3.5.4 Bypass

- 1. Shut down the system (refer to section 3.5.3 Shut-down)
- 2. Open upstream AC switch (grid side)
- 3. Operate the DB 200 main AC switch handle to select the position I "BYPASS"
- 4. Close upstream AC switch (grid side) to power supply the loads in bypass mode

4 MAINTENANCE

To perform any maintenance operations it is mandatory to switch the system off. The CLEANISLAND 100 AU/NZ must be stopped. START/STOP selector must be turned to STOP wait for the converter stop, then follow the battery producer instruction to ensure safe stop (no voltage on DC input). Then the main circuit breaker and battery circuit breaker must be opened. To ensure this condition push the emergency stop button on the DB 200 and operate the main switch handle to select the position 0 "OFF" (refer to section "2.2 Electrical cabinet overview – DB 200" and "2.3 Electrical cabinet overview – CLEANISLAND 100 AU/NZ"). Open all isolators from the sources and to the loads. Before touching any electrical parts, wait 5 minutes for the filter capacitors to discharge.

CAUTION:

The system is equipped with auxiliary batteries:

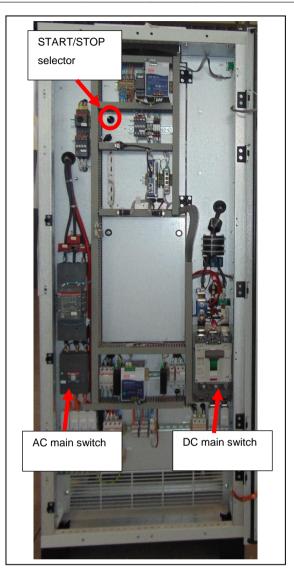
- Do not dispose of batteries in a fire. The batteries may explode.
- Do not open or mutilate batteries. Released electrolyte is harmful to the skin and eyes. It may be toxic.
- A battery can present a risk of electric shock and burns by high short-circuit current.
- Failed batteries can reach temperatures that exceed the burn thresholds for touchable surfaces

Dismantling and disposal operations may only be done by a qualified electrician. These instructions are to be considered indicative: in every country there are different regulations with regard to the disposal of electronic or hazardous waste such as batteries. It is necessary to strictly adhere to the standards in force in the country where the equipment is used.

Do not throw any component of the equipment in the ordinary rubbish.

Batteries must be disposed of in a site intended for the recovery of toxic waste. Disposal in the traditional rubbish is not allowed.

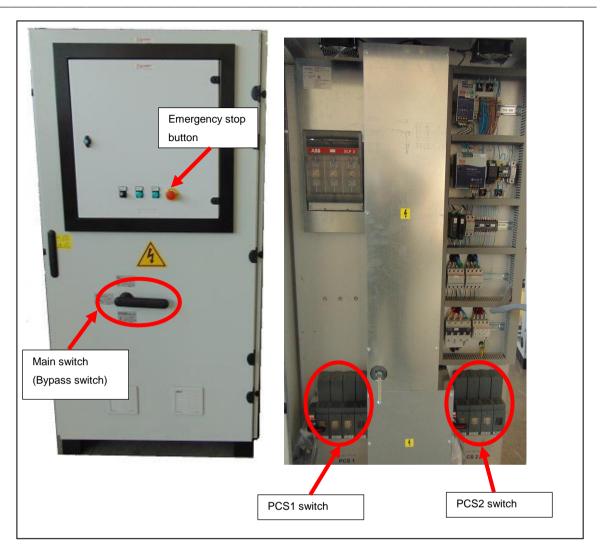
Apply to the competent agencies in your countries for the proper procedure.


Pb

M_CONV_012_U_ENG

dated 15/03/21

Rev. 0.5


Picture 30

M_CONV_012_U_ENG

dated 15/03/21

Rev. 0.5

Picture 31

The following safety rules must be observed generally when working on the inverter system:

- Watches, rings and other metal objects must be removed
- Use personal safety equipment (PPE)
- · Use only insulated tools
- The inverter must not be dismantled

Although the system is generally maintenance free, there are consumable parts to replace.

The list of components subject to periodical replacement is:

CLEANISLAND 100 AU/NZ				
Device Label	Description	Туре	Check interval/replacement	
	Front air inlet filter	Viledon P15/150S	1 years check and cleaning,	
-		Dimensions L 525 x H 775 mm	replacement depending on	
			environment pollution	
-	DSP board RTC battery	CR2032	5 years	

DB 200				
Device Label	Description	Туре	Check interval/replacement	
-	Front air inlet filter	Viledon P15/150S Dimensions L 120 x H 120 mm	1 years check and cleaning, replacement depending on environment pollution	
-	Auxiliary battery	12V 7.2Ah H 94 x L 151 x W 65 mm faston 6.3mm	2 years	
-	DSP board RTC battery	CR2032	5 years	

The list of components subject to periodical check/replacement is:

CLEANISLAND 100 AU/NZ				
Device Label	Description	Туре	Check interval/replacement	
M0908	Converter Fan	G1G146-BA07-52	Expected life L10 70000h @ 40°C	
M0911	Converter internal fan	3414-NH	Expected life L10 70000h @ 40°C	
M0916	Cabinet Fan	W3G300-BV24-01	Expected life L10 40000h @ 40°C	

DB 200			
Device Label	Description	Туре	Check interval/replacement
M0902	Cabinet Fan	4715KL-05W-B40	Expected life L10 100000h @ 25°C
M0904	Cabinet Fan	4715KL-05W-B40	Expected life L10 100000h @ 25°C

Fan expected life is referred to full speed and rated temperature. Depending on operating condition the fan speed may be less than rated and/or the operating time is not continuous (fan controlled by temperature thresholds).

The list of components subject to check/replacement in case of protection trip is:

CLEANISLAND 100 AU/NZ				
Device Label	Description	Туре	Check interval/replacement	
F0404	Surge arrester fuses	32A aM 10x38	-	
F0411	AC power supply auxiliary circuitry protection fuses	2A aM 10x38	-	
F0707	Battery DC input measurement protection fuses	10A gPV 10x38	-	
F0711	DC pre-charge circuit protection fuses	10A gPV 10x38	-	

DB 200				
Device Label	Description	Туре	Check interval/replacement	
F0404	Surge arrester fuses	50A aM 14x51	-	
		with signalling		
F0411	AC power supply auxiliary circuitry protection	6A aM 10x38	-	
	fuses			
F0505	AC power supply auxiliary circuitry protection	2A aM 10x38	-	
	fuses			
Q0511	Switch fuse disconnector PCS1	250A gG NH1	-	
Q0512	Switch fuse disconnector PCS2	250A gG NH1	-	
F0811	Auxiliary battery fuse	10A gG 10x38	-	
F0811	Auxiliary battery protection fuse	10A gG 10x38	-	
F0804	Battery charger protection fuse	2A gG 10x38	-	
F0805	Emergency stop circuitry protection fuse	4A gG 10x38	-	
F0806	24VDC distribution protection fuse	4A gG 10x38	-	
F0811	24VDC distribution protection fuse	6A aM 10x38	-	
F0813	24VDC distribution protection fuse	6A aM 10x38	-	

In case of fuse protection trip it is mandatory a visual inspection and analysis to find out possible damages before restart the operation.

For further information about devices replacement please contact Elpower service.

Rev. 0.5

4.1 Air filter periodical replacement

There is a front air inlet filter for CLEANISLAND 100 AU/NZ and 2 front air filters for DB 200. The filter type is Viledon P15/150S.

4.1.1 CLEANISLAND 100 AU/NZ Front air inlet filter replacement

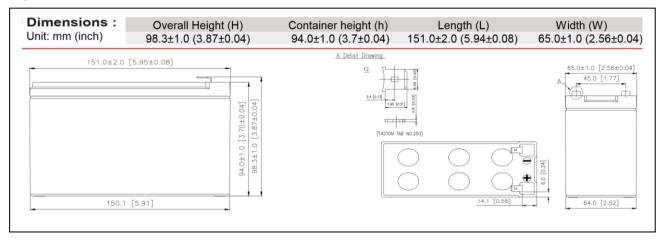
The front air inlet filter dimension is L 525 x H 775 mm, to check and clean the filter it is possible open the front ventilation grid (see Picture 32) by unscrewing 4 screws. To replace the filter take off the old and insert the new filter. After the positioning of the ventilation grid screw the 4 screws to 2 to 3 Nm (17 to 26 lb.in).

Picture 32

4.1.2 **DB 200 Front air inlet filters replacement**

The front air inlet filters dimension is L 120 x H 120 mm, to check and clean the filter it is possible open the front ventilation grid (see) by pulling the intake grille. To replace the filter take off the old and insert the new filter. After insert the intake grille in the original position.

Picture 33



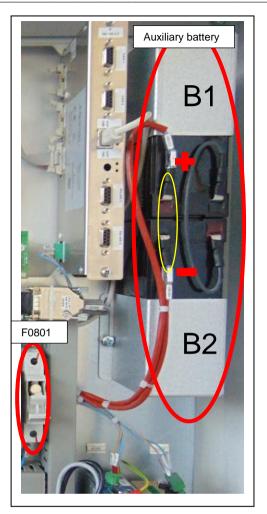
Rev. 0.5

dated 15/03/21

4.2 DB 200 Auxiliary battery periodical replacement

The battery rating is 12V 7.2Ah the dimension is H 94 x L 151 x W 65 mm faston 6.3mm (see Picture 34 for dimension). The auxiliary battery is composed of 2 batteries in series to have 24V total voltage (see Picture 35).

Picture 34

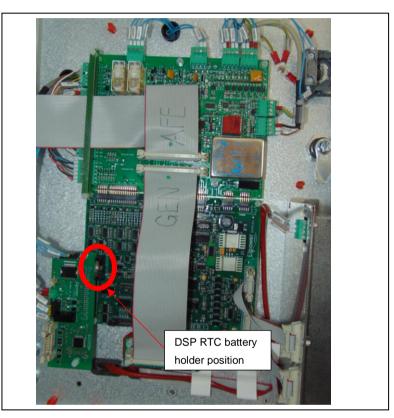

To replace the PCS auxiliary battery (see Picture 35):

- open the fuse holder F0801
- disconnect the battery wire named 08060 (negative pole)
- disconnect the battery wire named 08033 (positive pole)
- disconnect the black wire in the middle of the battery pack
- unscrew the 2 screws of the top battery holder
- take off the battery 1 (B1 in Picture 35)
- unscrew few turns the 2 screws of the bottom battery holder
- take off the battery 2 (B2 in Picture 35)
- replace the battery 2 with the new
- screw the 2 screws of the bottom battery holder
- check the voltage of the new battery is about 12V
- replace the battery 1 with the new
- place the top battery holder and screw the 2 screws
- connect the black wire in the middle of the battery pack
- connect the battery wire named 08033 (positive pole)
- connect the battery wire named 08060 (negative pole)
- check the total battery voltage is about 24V (between 08033 and 08060)
- close the fuse holder F0801

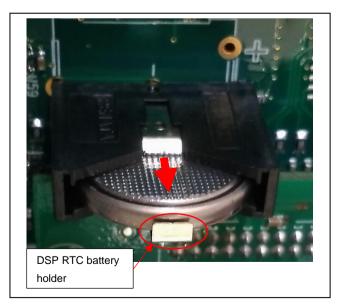
M_CONV_012_U_ENG

dated 15/03/21

Picture 35



Rev. 0.5


dated 15/03/21

4.3 DSP board RTC battery replacement

The DSP board RTC battery is a type CR2032. To replace the battery it is necessary gain access to the DSP board (see Picture 36). Push gently the little battery holder and extract the old battery (see Picture 37). Insert the new battery: take care about the right polarity. After the battery is replaced, close the panels/doors.

Picture 36

Picture 37