
XML and JSON
Recipes for SQL
Server

A Problem-Solution Approach
—
Ready-to-run solutions
for busy developers
—
Alex Grinberg

XML and JSON
Recipes for SQL

Server

A Problem-Solution Approach

Alex Grinberg

XML and JSON Recipes for SQL Server

Alex Grinberg
Richboro, Pennsylvania, USA

ISBN-13 (pbk): 978-1-4842-3116-6 ISBN-13 (electronic): 978-1-4842-3117-3
https://doi.org/10.1007/978-1-4842-3117-3

Library of Congress Control Number: 2017962636

Copyright © 2018 by Alex Grinberg

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Michael Coles
Coordinating Editor: Jill Balzano
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484231166. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3117-3
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/
9781484231166
www.apress.com/
9781484231166
http://www.apress.com/source-code
http://www.apress.com/source-code

This book is dedicated to my parents and Chante Silva.

You have left a light forever in our hearts and will not be forgotten.

v

Contents

About the Author .. xix

About the Technical Reviewer .. xxi

Acknowledgments .. xxiii

 ■Part I: XML in SQL Server ... 1

 ■Chapter 1: Introducing XML .. 3

Stepping into XML ... 3

Sample Database.. 4

Understanding XML .. 4

Entitizing XML Characters .. 6

Exploring the XML Data Type .. 7

1-1. Creating an Untyped XML Column ... 8

Problem .. 8

Solution... 8

How It Works ... 10

1-2. Creating an XML Schema in Visual Studio 11

Problem .. 11

Solution... 11

How It Works ... 13

1-3. Creating an XML Schema from SSMS ... 14

Problem .. 14

Solution... 15

How It Works ... 16

■ CONTENTS

vi

1-4. Binding XML to a Schema Collection ... 18

Problem .. 18

Solution... 18

How It Works ... 19

1-5. Creating a Typed XML Column ... 20

Problem .. 20

Solution... 21

How It Works ... 21

Summary ... 22

 ■Chapter 2: Building XML ... 23

Fixing the “Unable to show XML” Error ... 24

2-1. Converting Relational Data to a Simple XML Format 26

Problem .. 26

Solution... 26

How It Works ... 26

2-2. Generating XML Data with Table Names as Element Names 28

Problem .. 28

Solution... 28

How It Works ... 30

2-3. Generating Element-Centric XML ... 30

Problem .. 30

Solution... 31

How It Works ... 31

2-4. Adding a Root Element ... 32

Problem .. 32

Solution... 32

How It Works ... 33

■ CONTENTS

vii

2-5. Including Elements with NULL Values in Your XML Data 33

Problem .. 33

Solution... 33

How It Works ... 34

2-6. Including Binary Data in Your XML ... 34

Problem .. 34

Solution... 34

How It Works ... 35

2-7. Generating Nested Hierarchical XML Data 36

Problem .. 36

Solution... 36

How It Works ... 38

2-8. Building Custom XML ... 38

Problem .. 38

Solution... 38

How It Works ... 40

2-9. Simplifying Custom XML Generation ... 45

Problem .. 45

Solution... 45

How It Works ... 46

2-10. Adding Special Nodes to Your XML .. 48

Problem .. 48

Solution... 48

How It Works ... 49

Summary ... 51

■ CONTENTS

viii

 ■Chapter 3: Manipulating XML Files ... 53

3-1. Storing XML Result in a File from SQL ... 53

Problem .. 53

Solution... 53

How It Works ... 55

3-2. Creating XML from an SSIS Package ... 59

Problem .. 59

Solution... 59

How It Works ... 72

3-3. Loading XML from a Stored Procedure .. 72

Problem .. 72

Solution... 72

How It Works ... 75

3-4. Loading XML from SSIS Package ... 78

Problem .. 78

Solution... 78

How It Works ... 90

3-5. Implementing a CLR Solution ... 92

Problem .. 92

Solution... 92

How It Works ... 96

Summary ... 99

 ■Chapter 4: Shredding XML .. 101

4-1. Shredding XML with Internal ENTITY Declarations 101

Problem .. 101

Solution... 101

How It Works ... 102

■ CONTENTS

ix

4-2. Migrating OPENXML into XQuery ... 108

Problem .. 108

Solution... 108

How It Works ... 109

4-3. Shredding XML from a Column .. 113

Problem .. 113

Solution... 113

How It Works ... 114

4-4. Dealing with Legacy XML Storage ... 116

Problem .. 116

Solution... 117

How It Works ... 118

4-5. Navigating Typed XML Columns ... 120

Problem .. 120

Solution... 120

How It Works ... 122

4-6. Retrieving a Subset of Your XML Data ... 123

Problem .. 123

Solution... 123

How It Works ... 124

4-7. Finding All XML Columns in a Table ... 127

Problem .. 127

Solution... 127

How It Works ... 129

4-8. Using Multiple CROSS APPLY Operators 132

Problem .. 132

Solution... 132

How It Works ... 133

Summary ... 134

■ CONTENTS

x

 ■Chapter 5: Modifying XML .. 135

5-1. Inserting a Child Element into Your XML 135

Problem .. 135

Solution... 135

How It Works ... 136

5-2. Inserting a Child Element into an Existing XML Instance

with Namespace ... 137

Problem .. 137

Solution... 137

How It Works ... 138

5-3. Inserting XML Attributes .. 140

Problem .. 140

Solution... 140

How It Works ... 141

5-4. Inserting XML Attribute Conditionally ... 143

Problem .. 143

Solution... 143

How It Works ... 144

5-5. Inserting a Child Element with Position Specification 144

Problem .. 144

Solution... 144

How It Works ... 146

5-6. Inserting Multiple Elements ... 146

Problem .. 146

Solution... 146

How It Works ... 147

■ CONTENTS

xi

5-7. Updating an XML Element Value .. 148

Problem .. 148

Solution... 148

How It Works ... 149

5-8. Updating XML Attribute Value .. 150

Problem .. 150

Solution... 150

How It Works ... 151

5-9. Deleting an XML Attribute .. 151

Problem .. 151

Solution... 151

How It Works ... 152

5-10. Deleting an XML Element ... 153

Problem .. 153

Solution... 153

How It Works ... 154

Summary ... 156

 ■Chapter 6: Filtering XML ... 157

6-1. Implementing the exist() Method .. 157

Problem .. 157

Solution... 157

How It Works ... 158

6-2. Filtering an XML Value with the exist() Method 160

Problem .. 160

Solution... 160

How It Works ... 161

■ CONTENTS

xii

6-3. Finding All Occurrences of an XML Element Anywhere

Within an XML Instance ... 164

Problem .. 164

Solution... 164

How It Works ... 166

6-4. Filtering by Single Value .. 167

Problem .. 167

Solution... 167

How It Works ... 168

6-5. Filtering XML by T-SQL Variable ... 168

Problem .. 168

Solution... 168

How It Works ... 169

6-6. Comparing to a Sequence of Values .. 170

Problem .. 170

Solution... 170

How It Works ... 171

6-7. Matching a Specified String Pattern .. 171

Problem .. 171

Solution... 172

How It Works ... 172

6-8. Filtering a Range of Values .. 174

Problem .. 174

Solution... 174

How It Works ... 175

6-9. Filtering by Multiple Conditions ... 175

Problem .. 175

Solution... 175

How It Works ... 176

■ CONTENTS

xiii

6-10. Setting a Negative Predicate ... 177

Problem .. 177

Solution... 177

How It Works ... 178

6-11. Filtering Empty Values ... 178

Problem .. 178

Solution... 179

How It Works ... 180

Summary ... 182

 ■Chapter 7: Improving XML Performance 185

7-1. Creating a Primary XML Index ... 185

Problem .. 185

Solution... 185

How It Works ... 187

7-2. Creating a Secondary PATH Type Index .. 193

Problem .. 193

Solution... 193

How It Works ... 195

7-3. Creating a Secondary VALUE Type Index 196

Problem .. 196

Solution... 196

How It Works ... 198

7-4. Creating a Secondary PROPERTY Type Index 200

Problem .. 200

Solution... 200

How It Works ... 202

■ CONTENTS

xiv

7-5. Creating a Selective XML Index ... 202

Problem .. 202

Solution... 203

How It Works ... 205

7-6. Optimizing a Selective XML Index .. 210

Problem .. 210

Solution... 210

How It Works ... 211

7-7. Creating a Secondary Selective XML Index 213

Problem .. 213

Solution... 213

How It Works ... 214

7-8. Modifying Selective XML Indexes .. 215

Problem .. 215

Solution... 215

How It Works ... 217

Wrapping up .. 218

 ■Part II: JSON in SQL Server ... 219

 ■Chapter 8: Constructing JSON .. 221

JSON Introduction ... 221

8-1. Building JSON with AUTO Mode ... 225

Problem .. 225

Solution... 225

How It Works ... 226

8-2. Handling NULL When JSON Build ... 230

Problem .. 230

Solution... 230

How It Works ... 231

■ CONTENTS

xv

8-3. Escaping the Brackets for JSON Output 232

Problem .. 232

Solution... 232

How It Works ... 232

8-4. Adding ROOT Key Element to JSON ... 233

Problem .. 233

Solution... 233

How It Works ... 233

8-5. Gaining Control over JSON Output ... 234

Problem .. 234

Solution... 234

How It Works ... 235

8-6. Handling Escape Characters .. 239

Problem .. 239

Solution... 239

How It Works ... 240

8-7. Dealing with CLR Data Types ... 241

Problem .. 241

Solution... 242

How It Works ... 243

Summary ... 244

 ■Chapter 9: Converting JSON to Row Sets 245

9-1. Detecting the Columns with JSON ... 245

Problem .. 245

Solution... 245

How It Works ... 247

■ CONTENTS

xvi

9-2. Returning a Subset of a JSON Document 249

Problem .. 249

Solution... 249

How It Works ... 250

9-3. Returning a Scalar Value from JSON ... 251

Problem .. 251

Solution... 251

How It Works ... 252

9-4. Troubleshooting a Returned NULL .. 254

Problem .. 254

Solution... 254

How It Works ... 254

9-5. Converting JSON into a Table ... 255

Problem .. 255

Solution... 255

How It Works ... 256

9-6. Processing JSON Nested Sub-Objects ... 259

Problem .. 259

Solution... 259

How It Works ... 262

9-7. Indexing JSON.. 263

Problem .. 263

Solution... 263

How It Works ... 264

Summary ... 267

■ CONTENTS

xvii

 ■Chapter 10: Modifying JSON ... 269

10-1. Adding a New Key-Value Pair to JSON 269

Problem .. 269

Solution... 269

How It Works ... 270

10-2. Updating Existing JSON ... 270

Problem .. 270

Solution... 270

How It Works ... 271

10-3. Deleting from JSON ... 271

Problem .. 271

Solution... 271

How It Works ... 271

10-4. Appending a JSON Property ... 273

Problem .. 273

Solution... 273

How It Works ... 274

10-5. Modifying with Multiple Actions ... 274

Problem .. 274

Solution... 274

How It Works ... 275

10-6. Renaming a JSON Key ... 275

Problem .. 275

Solution... 275

How It Works ... 276

■ CONTENTS

xviii

10-7. Modifying a JSON Object ... 277

Problem .. 277

Solution... 277

How It Works ... 277

10-8. Comparing XML vs. JSON .. 279

Problem .. 279

Solution... 279

How It Works ... 283

Wrapping Up .. 285

Index .. 287

xix

About the Author

Alex Grinberg has more than 20 years of IT
experience. His primary focus is on the latest
Microsoft technologies, including .NET (VB and C#),
SSRS, and SSIS. He provides tuning, optimization,
analysis, and development services toward creating
new applications; converting legacy applications
into newer technologies such as SQL Server,
VB.NET, and C#; and toward onsite training. Alex is
a senior DBA architect at Cox Automotive Inc. He
provides consulting services for the New York City,
Philadelphia, and Delaware areas.

xxi

About the Technical
Reviewer

Michael Coles is a database architect and developer
working out of New Jersey. He has authored several
books and published dozens of articles on SQL
Server development topics. Michael holds multiple
Microsoft certifications and has been recognized as a
Microsoft MVP for his work with SQL Server and for his
contributions to the SQL community.

xxiii

Acknowledgments

For a number of years I had been dreaming about writing a book to share my knowledge.
Finally, this dream came true. However, to write a book is not a single-person effort. There
are many people who helped me to deliver this book to the reader. I would like to thank
the Apress team – Jonathan Gennick, Jill Balzano, and Laura Berendson who motivated
me and provided valuable advice to move forward with the book.

My big appreciation and respect to technical reviewer Michael Coles, who provided
me with plenty of recommendations to make this book better and more comprehensively
cover the recipes, especially for the XML part. Also, I would like to thank Alessandro Alpi,
who consulted with me for the JSON part.

I got tremendous help from Cox Automotive colleagues, especially Cary Dickerson,
who provided me with the powerful server to test the recipes that allows me to
demonstrate and compare the recipe’s performance as they run in the production
environment. Thanks to Michael Neuburger and Mathew Silva for their support during
the book-writing period. My sincerest apologies if I missed anyone, but there were a lot of
you!

I also would like to thank my friends Said Salomon and Vince Napoli for encouraging
and supporting me.

Of course, my deepest special thanks to my family - wife Ludmila and daughters
Anna and Katherine, who suffered minimal attention from me during the book-writing
process, but still supported me throughout the project and patiently waited for the book
to be completed.

Thanks very much to all of you! It was a pleasure to work with you!
Alex Grinberg

PART I

XML in SQL Server

3© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_1

CHAPTER 1

Introducing XML

Welcome and thank you for reading XML and JSON Recipes for SQL Server. In the
modern world of information technology, keeping data stored and manipulated reliably
and efficiently is one of the first priorities. In the last decade, SQL Server has evolved
into a sophisticated Enterprise RDBMS tool, and it is still growing by providing more
functionalities to store and manipulate data reliably. eXtensible Markup Language (XML)
is one of the technologies that SQL Server implements not only for data manipulation
but also for many internal usages, such as Execution Plans, Extended Events, DDL trigger
Eventdata() function, and behind construction for SQL Server Business Intelligence Tools
(SSIS, SSRS, SSAS). In Part 1 of this book, I will cover and provide the recipes on how to
work with the SQL Server XML data type; discuss and demonstrate real type scenarios
to load, build, and shred the XML; and present how daily tasks can be simplified by
implementing XML technologies. In this book, I will primarily be focusing on technology
rather than theory.

Stepping into XML
To work with XML, we need to understand this technology, especially for SQL Server.
XML is similar to HTML (Hypertext Markup Language). XML and HTML contain markup
elements to describe the contents of the file or page for HTML. The big difference
between them is that HTML contains predefined elements (tags), while XML’s elements
and attributes are not predefined and based on described data within the files.

Several more important differences between HTML and XML:

• XML is key sensitive while HTML is not.

• XML opened element must be closed. HTML can have an opened
element without a closed element. For example, <DATA>Display
Text will compile for HTML and will return an error for XML.

 ■ Caution SQL Server, by default, is not case sensitive. However, XML is case sensitive,

and all XQuery Path Language (XPath) functions and node tests are case sensitive (all

lowercase). They will return an error when entered with any case other than lowercase.

https://doi.org/10.1007/978-1-4842-3117-3_1

CHAPTER 1 ■ INTRODUCING XML

4

Sample Database
All code samples for Part I in this book utilize the SQL Server AdventureWorks sample
database, unless otherwise specified and referenced separately in the text. The
AdventureWorks database URL is https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks2014. I would highly recommend downloading
and installing the AdventureWorks sample database to run the samples presented.

Understanding XML
Before working with XML, we need to explain the difference between the two types of
node-centric XML formats supported by SQL Server:

 1. Element-centric

 2. Attribute-centric

Both elements and attributes can contain data. However, SQL Server has specialized
functionality and features for each format generating or shredding (shredding is a process
to convert XML into rows-columns format) attribute-centric or element-centric data.
In the element-centric format, values are contained within the opening and closing
tags of an element, for example, <elementName>. The attribute-centric format relies on
attributes of an element in the element’s opening tag. They are assigned a value by the
equal sign, and the values are wrapped in double quotes, for example, <elementName
attribute=“value”>. For instance, the sample SQL query in Listing 1-1 returns two rows,
with the result shown in Figure 1-1.

Listing 1-1. Simple SQL query

SELECT TOP (2) Category.Name AS CategoryName,
 Subcategory.Name AS SubcategoryName,
 Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product Product
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.Product

SubcategoryID
 LEFT JOIN Production.ProductCategory Category
 ON Subcategory.ProductCategoryID = Category.Product

CategoryID
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName;

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014

CHAPTER 1 ■ INTRODUCING XML

5

This is an example of what the relational data from Figure 1-1 might look like in an
element-centric XML format. Notice that all values are presented as XML elements in this
format demonstrated in Listing 1-2.

Listing 1-2. Showing element-centric XML

<Category>
 <Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/
ProductSchema">
 <CategoryName>Accessories</CategoryName>
 <Subcategory>
 <SubcategoryName>Bike Racks</SubcategoryName>
 <Product>
 <Name>Hitch Rack - 4-Bike</Name>
 <Number>RA-H123</Number>
 <Price>120.0000</Price>
 </Product>
 </Subcategory>
 <Subcategory>
 <SubcategoryName>Bike Stands</SubcategoryName>
 <Product>
 <Name>All-Purpose Bike Stand</Name>
 <Number>ST-1401</Number>
 <Price>159.0000</Price>
 </Product>
 </Subcategory>
 </Category>
</Category>

Converted relational data from Figure 1-1 might look like an attribute-centric XML
format demonstrated in Listing 1-3.

Listing 1-3. Showing attribute-centric XML

<Category CategoryName="Accessories">
 <Subcategory SubcategoryName="Bike Racks">
 <Product Name="Hitch Rack - 4-Bike" Number="RA-H123" Price="120.0000" />
 </Subcategory>
 <Subcategory SubcategoryName="Bike Stands">
 <Product Name="All-Purpose Bike Stand" Number="ST-1401" Price="159.0000" />
 </Subcategory>
</Category>

Figure 1-1. Result data set from sample SQL query

CHAPTER 1 ■ INTRODUCING XML

6

Comparing the element-centric XML data in Listing 1-2 to the attribute-centric XML
data in Listing 1-3, several differences can be clearly defined:

• Element-centric XML is bigger (in number of characters)
than attribute-centric XML.

• Element-centric XML supports element hierarchy.

• Element-centric XML can represent SQL NULLs with the
xsi:nil attribute (xsi:nil will covered in Chapter 2,
Recipe 2-5 “Handling Elements with NULL Values”).

We will provide a deeper analysis and show additional differences, use cases, and
demonstrations in Chapter 2, “Building XML.”

Entitizing XML Characters
XML elements are defined by left- and right-angled brackets (less-than and greater-than signs,
“<” and “>”). XML attribute values are wrapped in double quotation marks. Data containing
these special characters that are not part of the XML markup can cause issues during XML
parsing. To resolve these potential conflicts, XML defines a set of special character sequences,
known as predefined entities, which all XML parsers must honor. The character sequences,
which include the double quotation mark, ampersand, apostrophe, less-than sign, and

greater-than sign, and their associated XML entities are listed in Table 1-1.

The process when predefined entities are replaced with entity references is
known as entitizing. To demonstrate entitizing, I took the XML in Listing 1-4 then typed
(copy/paste) into a Notepad.

Listing 1-4. Sample XML with predefined entities

<char>
 <ToXML Entity="Entity ampersand &; in XML data." />
 <ToXML Entity="Entity less-than sign <; in XML data." />
 <ToXML Entity="Entity greater-than sign >; in XML data." />
 <ToXML Entity="Entity apostrophe '; in XML data." />
 <ToXML Entity="Entity quotation mark "; in XML data." />
</char>

Table 1-1. Listing Predefined Entities in XML

Character Entity Reference Description

" " double quotation mark

& & ampersand

' ' apostrophe (apostrophe-quote)

< < less-than sign

> > greater-than sign

http://dx.doi.org/10.1007/978-1-4842-3117-3_2
http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 1 ■ INTRODUCING XML

7

I then saved the file with an .xml extension. For instance, I call the file XML_Entity.
xml. When the file is created, I simply double-click on the file or open it in Internet
Explorer. As a result, the entity references will display as normal characters, as shown in
Figure 1-2.

Exploring the XML Data Type
XML support within the Microsoft SQL Server database was first introduced in SQL Server
2000. XML can consist of very long strings of data; therefore, it is very rare to encounter
XML data that will not fit in a VARCHAR(8000) or NVARCHAR(4000) Unicode column. Since
much XML data won’t fit into these data types, SQL Server 2000 suggested that DBAs and
Developers utilize TEXT, and in some cases IMAGE, data types. Many found dealing with
these data types to be a nightmare, as they were difficult to work with. Also, when dealing
with XML on 2000 you had to utilize the COM-based stored procedures.

With the release of SQL Server 2005, the XML data type was provided, which made it
significantly easier to work with XML data, and the XML data can be stored in its native
format. The result of the XML data type returns a clickable hyperlink format when the
output is set to Result To Grid in SSMS. To review XML content, you can just click on the
hyperlink and SSMS will display the XML result in a separate XML document tab. The
XML document tab does not allow you to connect to SQL Server instances or execute any
SQL statements.

The XML data type is a convenient and well-designed data type that allows you to
store data and documents in the XML format. In some cases, other large SQL Server
data types can be used to store XML data, such as NVARCHAR(MAX), VARCHAR(MAX), or
VARBINARY(MAX). The old data types IMAGE, NTEXT, and TEXT can do the job as well but are
not as user friendly to work with.

For example, when XML data is stored as a document, and you do not need to query
this data in its entirety, you can use the NVARCHAR(MAX), VARCHAR(MAX), VARBINARY(MAX).
The best argument for using a LOB data type to store XML is when you need to store
the exact representation of the XML, since the XML data type will store the content
you provide, but it might alter insignificant whitespace and the order of attributes is
not guaranteed. Take a look at msdb.dbo.sysssispackages table where the packagedata
column stores server-side SSIS packages. SQL Server utilizes the IMAGE data type (I would
not recommend following Microsoft in this case) to store the SSIS package code. For
those who have never looked at SSIS code, it is XML data. Therefore, when I need to query
SSIS (I had several reasonable requests for such a task), I converted the packagedata
column to VARBINARY(MAX) and then cast it to and XML data type instance, as shown in
Listing 1-5.

Figure 1-2. Sample with XML entities expanded

CHAPTER 1 ■ INTRODUCING XML

8

Listing 1-5. Converting IMAGE data type into XML data type

SELECT CAST(CAST(packagedata as VARBINARY(MAX)) AS XML) AS SSISPackage
FROM msdb.dbo.sysssispackages;

 ■ Caution Legacy Large Object Binary data types IMAGE, NTEXT, and TEXT should not be

considered for any column implementation. Books Online do not reference these data types

because they are deprecated. However, some system tables still have it; even Microsoft

announced that IMAGE, NTEXT, and TEXT data types would be deprecated in the year 2008.

The XML data type has the following limitations:

• The storage is limited to 2.1 GB.

• It cannot be used as a table Primary Key.

• It cannot be sorted by the ORDER BY clause.

• It cannot be compared in the WHERE clause.

• It cannot be used in the GROUP BY clause.

• It cannot be a parameter to any scalar built-in functions except
ISNULL, COALESCE, DATALENGTH, CAST, TRY_CAST,
CONVERT, CHOOSE, and IIF functions.

• The columns with XML data type cannot be part of a linked server
query.

• XML columns can only be indexed via an XML index; for
clustered and nonclustered table indexes, XML columns can be
included with the INCLUDE clause.

The XML data type has two forms:

• Untyped XML (the default), is an XML data type instance that does
not have an associated XML schema.

• Typed XML is an XML data type instance with an XML schema
bound to it.

1-1. Creating an Untyped XML Column
Problem
You want to define an untyped XML column in a table.

Solution
Define the designated column as XML data type upon creation. The example in Listing 1-6
demonstrates syntax on how to create a simple untyped XML column.

CHAPTER 1 ■ INTRODUCING XML

9

Listing 1-6. Syntax for creating an untyped XML column

CREATE TABLE dbo.UntypedXML
(
 UntypedXML_ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
 UntypedXMLData XML
);

The example in Listing 1-7 demonstrates how insert a new row into to the table we
created in Listing 1-6.

Listing 1-7. Inserting a new row with XML data

INSERT INTO dbo.UntypedXML
(
 UntypedXMLData
)
SELECT N'<Category>
 <Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/
ProductSchema">

 <CategoryName>Accessories</CategoryName>
 <Subcategory>
 <SubcategoryName>Bike Racks</SubcategoryName>
 <Product>
 <Name>Hitch Rack - 4-Bike</Name>
 <Number>RA-H123</Number>
 <Price>120.0000</Price>
 </Product>
 </Subcategory>
 <Subcategory>
 <SubcategoryName>Bike Stands</SubcategoryName>
 <Product>
 <Name>All-Purpose Bike Stand</Name>
 <Number>ST-1401</Number>
 <Price>159.0000</Price>
 </Product>
 </Subcategory>
 </Category>
</Category>';

The example in Listing 1-8 demonstrates how to declare an XML data type variable
and then insert it into the table we previously created.

Listing 1-8. Inserting new row via XML variable

DECLARE @xml XML = N'<char>
 <ToXML Entity="Entity ampersand &; in XML data." />
 <ToXML Entity="Entity less-than sign <; in XML data." />
 <ToXML Entity="Entity greater-than sign >; in XML data." />

CHAPTER 1 ■ INTRODUCING XML

10

 <ToXML Entity="Entity apostrophe '; in XML data." />
 <ToXML Entity="Entity quotation mark "; in XML data." />
</char>';

INSERT INTO dbo.UntypedXML
(
 UntypedXMLData
)
SELECT @xml;

 ■ Note When we declare a variable as XML data type then assign XML to the variable,

SQL Server implicitly converts character data to XML data type. That applies to VARCHAR,

NVARCHAR, and VARBINARY data types.

The example in Listing 1-9 demonstrates how to create a stored procedure with an
XML data type parameter, which inserts into the table when it is called.

Listing 1-9. Stored procedure to insert XML data into a table

CREATE PROCEDURE dbo.usp_Insert_UntypedXML
 @UntypedXML XML
AS
INSERT INTO dbo.UntypedXML
(
 UntypedXMLData
)
SELECT @UntypedXML;
GO

How It Works
When an XML schema is not bound to the column, variable, or stored procedure
parameter, the object created is untyped XML. However, untyped XML instances still
require the XML data it contains to follow the XML format per the W3C standard. When
a column is created as an untyped XML instance, the parser will verify incoming data
to ensure that the XML data is “well-formed,” or a fragment (with no root element) that
otherwise follows the rules for well-formedness. For example, all opened elements
are closed, the opened and closed elements are matched to each other, and no invalid
characters are found. Untyped XML objects are useful when the following applies:

• No XML schema exists for the data.

• The XML documents and data consist of different elements and
attributes, but still need to be stored in the same XML enabled
column. Listings 1-7 and 1-8 demonstrate this case.

CHAPTER 1 ■ INTRODUCING XML

11

• An application verifies and then sends well-formed XML or XML
fragments to a table.

After a table with an untyped XML column is created, you can expand the table and
then expand columns under Object Explorer. The column list appears, showing the XML
data type distinguished with a dot inside parentheses, indicating that this is an untyped
XML column as shown in Figure 1-3.

1-2. Creating an XML Schema in Visual Studio
Problem
You want to obtain or generate an XML schema to constrain the data in a typed XML
column.

Solution
To generate an XML schema using Microsoft Visual Studio, you need to use a version
from 2008 or newer. SQL Server Data Tools will work as well since it uses the Microsoft
Visual Studio Shell. You will then need an XML file. If you have the XML data, for
instance, created as a result from the FOR XML clause (more on this in Chapter 2), then
save the XML data as a file with extension .xml.

To load the XML file:

 1. Start MS Visual Studio.

 2. Go to the File menu.

 3. Select the Open option.

 4. Click File (shortcut CTRL + O). The dialog Open File will
appear.

 5. Navigate to the XML file storage location.

 6. Click the Open button, as shown in Figure 1-4.

Figure 1-3. Untyped XML column in Table Designer

http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 1 ■ INTRODUCING XML

12

Once the file is loaded, Visual Studio will recognize the XML file format and change
the Menu options to add the XML Menu Options. To generate an XML schema, complete
the following steps:

 1. Select the XML menu.

 2. Click on Create Schema option, shown in Figure 1-5.

The XML schema will be created in a separate tab. You can copy the XML schema
contents, or save the .xsd file (shortcut CTRL + S) for future use, as shown in Figure 1-6.

Figure 1-4. Opening an XML file in Visual Studio

Figure 1-5. Creating the XML Schema

CHAPTER 1 ■ INTRODUCING XML

13

How It Works
The era of creating your XML schemas manually is over, from my point of view. There are
many ways to generate an XML schema automatically. In this recipe, I demonstrated two
methods to automatically create an XML schema. Both methods are based on Microsoft
products:

• MS Visual Studio (2008 and up)

• MS SQL Server (2005 and up)

For simplicity, I am reusing the XML data from Listing 1-2, as reproduced in
Listing 1-10.

Listing 1-10. Sample XML

<Category>
 <Category xmlns="http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/
ProductSchema">

 <CategoryName>Accessories</CategoryName>
 <Subcategory>
 <SubcategoryName>Bike Racks</SubcategoryName>
 <Product>
 <Name>Hitch Rack - 4-Bike</Name>
 <Number>RA-H123</Number>
 <Price>120.0000</Price>
 </Product>
 </Subcategory>
 <Subcategory>
 <SubcategoryName>Bike Stands</SubcategoryName>
 <Product>
 <Name>All-Purpose Bike Stand</Name>
 <Number>ST-1401</Number>
 <Price>159.0000</Price>
 </Product>
 </Subcategory>
 </Category>
</Category>

Figure 1-6. Saving XML schema as an .xsd file

CHAPTER 1 ■ INTRODUCING XML

14

When you have an XML file and need to create an XML schema from it, the easiest
and most convenient way to accomplish this task is to use Microsoft Visual Studio, as
demonstrated in the solution. An XML schema generated from the sample data XML data
is shown in Listing 1-11.

Listing 1-11. XML schema generated by Visual Studio

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:tns="http://schemas.microsoft.com/sqlserver/2004/07/
Chapter01/ProductSchema" attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="http://schemas.microsoft.
com/sqlserver/2004/07/Chapter01/ProductSchema" xmlns:xs="http://www.
w3.org/2001/XMLSchema">
 <xs:element name="Category">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CategoryName" type="xs:string" />
 <xs:element maxOccurs="unbounded" name="Subcategory">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubcategoryName" type="xs:string" />
 <xs:element name="Product">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Number" type="xs:string" />
 <xs:element name="Price" type="xs:decimal" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

1-3. Creating an XML Schema from SSMS
Problem
You want to generate an XML schema from within SQL Server Management Studio
(SSMS).

CHAPTER 1 ■ INTRODUCING XML

15

Solution
An alternate way to create an XML schema is using the SQL Server FOR XML clause
with the XMLSCHEMA directive. The reason for demonstrating this option is to show an
alternative way to generate an XML schema with FOR XML clause result.

To generate an inline XSD (XML Schema Definition) XML schema in SQL Server
you need to add a FOR XML clause with XMLSCHEMA keyword to your query (the FOR
XML clause will be covered in greater detail in Chapter 2, “Building XML”). Optionally
the schema name can be specified inside XMLSCHEMA keyword parentheses. For
example, to add the ProductSchema schema to your XSD schema, specify the following:
XMLSCHEMA('http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/
ProductSchema'), as shown in Listing 1-12.

Listing 1-12. Creating XML schema query

SELECT TOP (2) Category.Name AS CategoryName,
 Subcategory.Name AS SubcategoryName,
 Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product Product
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.
ProductSubcategoryID
 LEFT JOIN Production.ProductCategory Category
 ON Subcategory.ProductCategoryID = Category.Product

CategoryID
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML AUTO, ELEMENTS, XMLSCHEMA('http://schemas.microsoft.com/
sqlserver/2004/07/Chapter01/ProductSchema'), ROOT('Category');

To extract the XSD schema you need to perform the following steps:

• Run your SQL statement with the XMLSCHEMA keyword.

• Click on the query result to open the XML with schema in XML
Editor, as shown in Figure 1-7.

Figure 1-7. Showing result in XML Editor

http://dx.doi.org/10.1007/978-1-4842-3117-3_2
http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/ProductSchema
http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/ProductSchema

CHAPTER 1 ■ INTRODUCING XML

16

• The XML Editor will show both the XSD part and the XML part.
We will be focusing on the <xsd:schema> element.

• Copy from the opening <xsd:schema> tag to the closing </
xsd:schema> tag.

• Open a new SSMS window paste the copied part, as shown in
Figure 1-8.

How It Works
The FOR XML clause with the XMLSCHEMA keyword provides a mechanism to add your
XML Schema to your XML result. When the namespace needs to be associated with the
XML result then the namespace declaration should be specified after the XMLSCHEMA
keyword in parentheses. For example:

XMLSCHEMA('http://schemas.microsoft.com/sqlserver/2004/07/Chapter01/
ProductSchema'), ROOT('Category')

After copying and pasting the inline XML schema from the XML result generated by
Listing 1-13, the resulting XML schema is demonstrated in Listing 1-14.

Listing 1-13. The XML schema from the FOR XML clause result

<xsd:schema targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/
Chapter01/ProductSchema" xmlns:schema="http://schemas.microsoft.com/
sqlserver/2004/07/Chapter01/ProductSchema" xmlns:xsd="http://www.
w3.org/2001/XMLSchema" xmlns:sqltypes="http://schemas.microsoft.com/
sqlserver/2004/sqltypes" elementFormDefault="qualified">

Figure 1-8. Extracting XSD schema part

CHAPTER 1 ■ INTRODUCING XML

17

 <xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/
sqltypes" schemaLocation="http://schemas.microsoft.com/sqlserver/2004/
sqltypes/sqltypes.xsd" />

 <xsd:element name="Category">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CategoryName" minOccurs="0">
 <xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].

[dbo].[Name]">
 <xsd:restriction base="sqltypes:nvarchar" sqltypes:

localeId="1033" sqltypes:sqlCompareOptions="IgnoreCase
IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">

 <xsd:maxLength value="50" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element ref="schema:Subcategory" minOccurs="0"

maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Subcategory">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SubcategoryName">
 <xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].

[dbo].[Name]">
 <xsd:restriction base="sqltypes:nvarchar"

sqltypes:localeId="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">

 <xsd:maxLength value="50" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element ref="schema:Product" minOccurs="0"

maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Product">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name">
 <xsd:simpleType sqltypes:sqlTypeAlias="[AdventureWorks2012].

[dbo].[Name]">
 <xsd:restriction base="sqltypes:nvarchar"

sqltypes:localeId="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">

CHAPTER 1 ■ INTRODUCING XML

18

 <xsd:maxLength value="50" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Number">
 <xsd:simpleType>
 <xsd:restriction base="sqltypes:nvarchar"

sqltypes:localeId="1033" sqltypes:sqlCompareOptions="IgnoreCa
se IgnoreKanaType IgnoreWidth" sqltypes:sqlSortId="52">

 <xsd:maxLength value="25" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Price" type="sqltypes:money" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

You might have noticed the difference in the XML schema generation and contents
between Visual Studio and SQL Server Management Studio. Creating an XML Schema via
SQL Server tends to create a much larger XML schema. However, both variants deliver
an XML schema that can be used with the XML Schema Collection to validate XML data
against.

1-4. Binding XML to a Schema Collection
Problem
You have an XML schema that you want to bind to a table’s column to create a typed XML
column.

Solution
To make an XML schema eligible to be bound to a table’s column, XML variable, or
XML stored procedure’s parameter, the XML Schema Collection needs to be created, as
shown in Listing 1-14. To demonstrate the process, I am reusing the XML Schema from
Listing 1-11.

Listing 1-14. Creating the XML Schema Collection

CREATE XML SCHEMA COLLECTION dbo.TypedXML_VisualStudio
AS
N'<?xml version="1.0"?>
<xs:schema xmlns:tns="http://schemas.microsoft.com/sqlserver/2004/07/
Chapter01/ProductSchema" attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace="http://schemas.microsoft.

CHAPTER 1 ■ INTRODUCING XML

19

com/sqlserver/2004/07/Chapter01/ProductSchema" xmlns:xs="http://www.
w3.org/2001/XMLSchema">
 <xs:element name="Category">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CategoryName" type="xs:string" />
 <xs:element maxOccurs="unbounded" name="Subcategory">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SubcategoryName" type="xs:string" />
 <xs:element name="Product">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Number" type="xs:string" />
 <xs:element name="Price" type="xs:decimal" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>';
GO

How It Works
The syntax for creating the XML Schema Collection is fairly simple. When the XML
schema is generated, the schema contents need to be added to an SQL Server XML
Schema Collection object. The syntax to create the schema collection (shown in
Listing 1-14) has several components:

• CREATE XML SCHEMA COLLECTION - declarative statement

• dbo – relational schema (if not provided then the SQL
Server default will be assumed)

• XML Schema Collection name – any SQL Server valid
unique name

• AS <schema_contents> - The XML Schema contents that
can be constant, or scalar variable in xml, nvarchar,
varchar, or varbinary data type

CHAPTER 1 ■ INTRODUCING XML

20

To create an XML SCHEMA COLLECTION one of the following server- or
database-level permissions are required:

• CONTROL (server level)

• ALTER ANY DATABASE (server level)

• ALTER (database level)

• CONTROL (database level)

• ALTER ANY SCHEMA and CREATE XML SCHEMA COLLECTION
(database level)

After successful creation, your new XML Schema Collection can be found in the
SSMS Object Explorer under Programmability, Types, XML Schema Collection, as shown
in Figure 1-9.

 ■ Note When the XML Schema Collection is bound to one or more columns, no changes

can be applied to the XML Schema Collection. To modify or drop the XML Schema Collection

you need to unbind it from the column(s) first.

1-5. Creating a Typed XML Column
Problem
You have created an XML Schema Collection, and now you want to bind it to a column to
create a typed XML column.

Figure 1-9. Finding the XML Schema Collection

CHAPTER 1 ■ INTRODUCING XML

21

Solution
When the XML Schema Collection is successfully created, the code to bind your XML
Schema to a newly created table is shown in Listing 1-15.

Listing 1-15. Creating new table with typed XML column

CREATE TABLE dbo.TypedXML_VS
(
 TypedXML_ID INT IDENTITY(1, 1) NOT NULL PRIMARY KEY,
 TypedXMLData XML(TypedXML_VisualStudio)
);
GO

You can bind the XML Schema Collection to an existing XML column with the ALTER
TABLE … ALTER COLUMN statement, as demonstrated in Listing 1-16.

Listing 1-16. Binding XML Schema Collection to the column

ALTER TABLE TypedXML_VS
ALTER COLUMN TypedXMLData XML (TypedXML_VisualStudio);

How It Works
The mechanism to bind an XML Schema Collection to an XML column is straightforward.
The XML Schema Collection name needs to be identified as part of the XML data type, in
parentheses. The syntax is: column_name XML (XML_SCHEMA_COLLECTION_NAME).
For the new table, the XML Schema Collection can be bound to a column in the CREATE
TABLE DDL command (Listing 1-15). When the table contains an untyped XML column,
the ALTER TABLE command will complete the task (Listing 1-16).

When the XML Schema Collection is bound to a column, the XSD itself cannot be
modified or deleted. However, the table with the typed XML column can be dropped.
To disconnect the XSD from the column, you need to execute an ALTER TABLE DDL
command, where the XML data type does not have parentheses, as shown in Listing 1-17.

Listing 1-17. Disconnecting the XSD from the column

ALTER TABLE TypedXML_VS
ALTER COLUMN TypedXMLData XML;

After the XSD is unbound, the XML column becomes untyped.
A couple of questions and answers about a typed XML.
Why do I want to do this and what is the benefit?

• Ability to validate an XML data per the XML schema.

• Take advantage of storage and query optimizations based on type
information.

• Better advantage of type information within a compilation of the
queries.

CHAPTER 1 ■ INTRODUCING XML

22

What happens to XML data I insert into a typed XML column?

• Each insert validates by the XML schema; when validation fails,
then SQL Server raises an error and insert fails.

What happens if I have XML already existing in the table and apply an XML
schema to it?

• If a table with the XML column has existing XML, then bind XML
schema to the table fails when the XML does not conform to the
XML schema.

Summary
SQL Server 2000 first introduced XML functionality in the SQL database. Since that time,
XML technology has evolved into a comprehensive information technology platform.
SQL Server 2005 was delivered with the XML data type. In this chapter, you received an
introduction to XML. I explained the difference between the element and attribute,
which is very important to differentiate for future chapters. I defined and explained XML
schemas and introduced two ways how to generate an XML Schema. From my point
of view, with the availability of modern technology, there is no need to create the XML
Schema manually, since it is a complex and time-consuming process. Save your time, and
if you are dealing with the Microsoft tools MS Visual Studio, SQL Server Data Tools, and
SSMS, either one can generate the XML Schema automatically.

The next chapter of the book demonstrates how to build an XML out of a result set.

23© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 2

Building XML

XML is represented in SQL Server using a complex data type that has special syntax and
well-defined format. It can be used when we need to construct XML-formatted output
or shred existing XML into relational format. In this chapter I will provide recipes for
building XML from a result set based on one or more tables, and for formatting and
presenting the result as XML output.

Introduced in SQL Server 2000, the FOR XML clause has evolved dramatically to
become a comprehensive solution for building XML output. FOR XML has to be the last
clause in a SELECT statement and has to appear after an ORDER BY clause when the
sorting has a place within a query.

The FOR XML clause has the following modes:

• RAW – Returns simple XML from one or more tables, in which each
row is represented with a <row> element. Attribute-centric XML
is generated by default, which means each of the row’s non-null
column values are represented as attributes of the <row> element.
If, however, you specify the ELEMENTS directive, each of the row’s
column values is represented as an element nested within the
<row> element. RAW mode does not support nested element
structure.

• AUTO – Returns simple XML structure from one or more tables.
AUTO mode is similar to RAW mode, except that it supports
nested elements when two or more tables are joined in the
query’s FROM clause.

• EXPLICIT – Allows you to explicitly construct the XML. EXPLICIT
mode acceses the XML in a universal table format behind the
scenes. This is a well-defined rowset format thay is very similar to
shredded XML. Constructing XML using EXPLICIT mode requires
a specific syntax to define the “shape” of the XML result; therefore
this mode can be complex to use. SQL Server 2008 introduced
PATH mode as a simplified alternative to EXPLICIT mode.

• PATH – Provides a simpler way to explicitly construct XML with a
mix of elements and attributes. This is a great alternative to the
EXPLICIT mode.

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 2 ■ BUILDING XML

24

When you specify the FOR XML clause, you can also provide the following directives,
which control formatting options of the FOR XML clause modes:

• ELEMENTS – Returns element-centric XML. The default is attribute-
centric results, and this option applies to RAW, AUTO, and PATH
modes only.

• BINARY BASE64 - Retrieves binary data in Base-64-encoded
format.

• TYPE - Returns the result as an XML data type instance.

• ROOT – Extends the XML result with top-level (root) element,
which is a requirement of “well-formed” XML.

• XSINIL - Returns the element name within the XML result when
the value is NULL. The element is returned with an xsi:nil
attribute set to “true,” like this: <element xsi:nil = "true"/>.

• ABSENT – Opposite of the XSINIL directive. The ABSENT directive
is the default. When used, it specifies that NULLs should be
eliminated from the XML result.

• XMLSCHEMA – Extends the XML result with an inline W3C XML
Schema (XSD).

Fixing the “Unable to show XML” Error
To review XML results of a query in SQL Server Management Studio (SSMS), you can
simply click on the hyperlinked XML result displayed in the Results pane. The XML
result will display in a new SSMS XML editor window. When we are dealing with very
large result sets, however, the XML might exceed the default limit for XML data (2 MB)
and throw a System.OutOfMemoryException with the message “Unable to show XML,” as
shown in Figure 2-1.

Figure 2-1. “Unable to show XML” error message

CHAPTER 2 ■ BUILDING XML

25

The error message recommends increasing the number of characters retrieved from
the server for XML data. As indicated, this option is available from the Options item in
the Tools menu. The default maximum for XML data is 2 MB. To change this setting go
to Tools in the menu bar and select Options… on the menu. Once you are in the Options
dialog, do the following:

 1. Expand Query Results.

 2. Expand SQL Server.

 3. Click Result to Grid.

 4. In the right pane, use the drop-down to change the Maximum
Characters Retrieved for XML data. The available settings are:
1 MB, 2 MB, 5 MB, or Unlimited.

 5. Click OK to save your settings. Figure 2-2 shows the
Options dialog.

If you would like to change the maximum size of your XML results for the current
query only, and do not want to save the SSMS settings permanently, click on the Query
menu and select Query Options…. Navigate to the Grid settings under Results and change
the Maximum Characters Retrieved XML data option as in the previous recipe.

Figure 2-2. Changing XML data settings

CHAPTER 2 ■ BUILDING XML

26

2-1. Converting Relational Data to a Simple
XML Format
Problem
You want to convert a query result set to a simple XML format.

Solution
SQL Server provides the FOR XML clause to format query results as XML data. RAW mode
generates a simple XML format. For example, Listing 2-1 demonstrates RAW mode in a
FOR XML clause.

Listing 2-1. Demonstrating RAW mode within a FOR XML clause

SELECT Category.Name AS CategoryName,
 Subcategory.Name AS SubcategoryName,
 Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product Product
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.Product

SubcategoryID
 LEFT JOIN Production.ProductCategory Category
 ON Subcategory.ProductCategoryID = Category.Product

CategoryID
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML RAW;

How It Works
RAW mode converts each row from a query result set into a simple, structured XML
element. By default, RAW mode returns a <row> element for each data row, and all values
are mapped to attributes with the same column names (or column aliases, if specified)
as the source SQL query. This XML structure is commonly referred to as attribute-centric
XML. Listing 2-2 shows sample RAW mode output.

Listing 2-2. Sample RAW mode output

<row CategoryName="Components" SubcategoryName="Brakes" Name="Front Brakes"
Number="FB-9873" Price="106.5000" />
<row CategoryName="Components" SubcategoryName="Brakes" Name="Rear Brakes"
Number="RB-9231" Price="106.5000" />

CHAPTER 2 ■ BUILDING XML

27

<row CategoryName="Components" SubcategoryName="Pedals" Name="LL Road Pedal"
Number="PD-R347" Price="40.4900" />
<row CategoryName="Components" SubcategoryName="Cranksets" Name="LL
Crankset" Number="CS-4759" Price="175.4900" />

 ■ Caution Attribute-centric XML has a limitation, in that it requires unique attribute

names to be mapped to each element. Therefore, the SQL query must provide a unique

name for each column, in much the same way that you must provide unique column names

when creating an SQL view. Element-centric XML, however, does not have this limitation.

In a production environment, the default <row> element is generally not suitable or
business applicable to send to a client in your XML data. To replace a <row> element with
another element name that is friendlier and more business appropriate in your generated
XML data, RAW mode can accept a user-defined element name (a row tag name). You can
specify this row tag name in parentheses following the FOR XML RAW clause, like this: FOR
XML RAW(‘ElementName’). Listing 2-3 demonstrates how to replace the default element
name with a user-defined name, and Listing 2-4 shows the XML result.

Listing 2-3. Demonstrating the row tag name option of the FOR XML RAW clause

SELECT Category.Name AS CategoryName,
 Subcategory.Name AS SubcategoryName,
 Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product Product
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.Product

SubcategoryID
 LEFT JOIN Production.ProductCategory Category
 ON Subcategory.ProductCategoryID = Category.Product

CategoryID
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML RAW('Product');

Listing 2-4. Result of FOR XML RAW query with row tag name specified

<Product CategoryName="Components" SubcategoryName="Brakes"
Name="Front Brakes" Number="FB-9873" Price="106.5000" />
<Product CategoryName="Components" SubcategoryName="Brakes"
Name="Rear Brakes" Number="RB-9231" Price="106.5000" />
<Product CategoryName="Components" SubcategoryName="Pedals"
Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />
<Product CategoryName="Components" SubcategoryName="Cranksets" Name="LL
Crankset" Number="CS-4759" Price="175.4900" />

CHAPTER 2 ■ BUILDING XML

28

2-2. Generating XML Data with Table Names
as Element Names
Problem
You would like to simply construct XML results from a Single Table with element names
in the XML result that indicate the source table.

Solution
AUTO mode is very similar in functionality to RAW mode when the source query references
a single table. The only difference is that AUTO mode names each element representing a
row with the name of the table as specified in the source query. That is to say, when the
query has a schema and table name, like Production.Product, each row element will be
<Production.Product>. Listing 2-5 demonstrates AUTO mode for a single table.

Listing 2-5. Building XML with FOR XML AUTO for a single table

SELECT Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY Product.Name
FOR XML AUTO;

Listing 2-6 shows the XML result of this query.

Listing 2-6. Results of FOR XML AUTO for a single table

<Production.Product Name="Front Brakes" Number="FB-9873" Price="106.5000" />
<Production.Product Name="Rear Brakes" Number="RB-9231" Price="106.5000" />
<Production.Product Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />
<Production.Product Name="LL Crankset" Number="CS-4759" Price="175.4900" />

 ■ Note The W3C XML standard allows the use of periods (.) in element and attribute

names.

AUTO mode, unlike RAW mode, does not support a row tag name option. Therefore,
you must provide a table alias to change the row tag element name. Listing 2-7
demonstrates how to use an alias to change the element name in AUTO mode.

CHAPTER 2 ■ BUILDING XML

29

Listing 2-7. Changing the element name by aliasing a table with FOR XML AUTO

SELECT Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product AS Product
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY Product.Name
FOR XML AUTO;

Listing 2-8 shows the XML result of the FOR XML AUTO query with the aliased source
table name.

Listing 2-8. Result of single-table FOR XML AUTO query with source table aliased

<Product Name="Front Brakes" Number="FB-9873" Price="106.5000" />
<Product Name="Rear Brakes" Number="RB-9231" Price="106.5000" />
<Product Name="LL Road Pedal" Number="PD-R347" Price="40.4900" />
<Product Name="LL Crankset" Number="CS-4759" Price="175.4900" />

When two or more tables are joined in the source query of a FOR XML AUTO query, the
XML takes a different shape. The XML result is nested multiple levels deep with each level
of nested node named for the tables in the FROM clause in the order in which they are
named. As shown in Listing 2-9, construct the XML based on three tables.

Listing 2-9. Using the FOR XML AUTO clause to construct XML data with multiple
joined tables

SELECT Category.Name AS CategoryName,
 Subcategory.Name AS SubcategoryName,
 Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price,
 SellEndDate
FROM Production.Product Product
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.Product

SubcategoryID
 LEFT JOIN Production.ProductCategory Category
 ON Subcategory.ProductCategoryID = Category.Product

CategoryID
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY CategoryName, SubcategoryName
FOR XML AUTO;

CHAPTER 2 ■ BUILDING XML

30

The XML result of this query is formatted as follows:

 1. <Category> is the top-level element.

 2. <Subcategory> is a child of the <Category> element.

 3. <Product> is the child of the <Subcategory> element.

The hierarchical XML results of the FOR XML AUTO query with multiple joined tables
is shown in Figure 2-3.

How It Works
AUTO mode provides an easy way to build XML. The SQL query engine analyzes your
query structure and builds a hierarchy using the names provided in the query to generate
element and attribute names — this is why this mode is called “AUTO.” As demonstrated
in the Solution section, when FOR XML AUTO is implemented, the SQL Server engine
returns hierarchical XML.

2-3. Generating Element-Centric XML
Problem
Both RAW and AUTO modes return attribute-centric XML by default. However, you want to
generate element-centric XML data when business rule requires it.

Figure 2-3. Hierarchical XML result when FOR XML AUTO mode is applied to multiple
joined tables in a query

CHAPTER 2 ■ BUILDING XML

31

Solution
The FOR XML clause with the ELEMENTS option returns the XML result in element-centric
format. Listing 2-10 shows how to add the ELEMENTS directive to the FOR XML AUTO clause.

Listing 2-10. FOR XML AUTO query with ELEMENTS directive

SELECT Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product AS Product
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY Product.Name
FOR XML AUTO, ELEMENTS;

The results of the FOR XML AUTO query with ELEMENTS directive is shown in
Listing 2-11.

Listing 2-11. Results of FOR XML AUTO query with ELEMENTS directive

<Product>
 <Name>Chain</Name>
 <Number>CH-0234</Number>
 <Price>20.2400</Price>
</Product>
<Product>
 <Name>Classic Vest, L</Name>
 <Number>VE-C304-L</Number>
 <Price>63.5000</Price>
</Product>

How It Works
The ELEMENTS option formats your XML result with columns nested as sub-elements of
each row element. This format is known as element-centric XML. The ELEMENTS option
can be specified with the FOR XML clause’s RAW, AUTO, and PATH modes. FOR XML EXPLICIT
mode does not support the ELEMENTS directive.

The ELEMENTS directive must be separated from the RAW, AUTO, and PATH mode
keyword by a comma. For example: FOR XML AUTO, ELEMENTS.

This simple change allows you to return the XML in an element-centric format
instead of the default attribute-centric format.

CHAPTER 2 ■ BUILDING XML

32

2-4. Adding a Root Element
Problem
You would like to add a root (top-level) element to your generated XML.

Solution
The ROOT option wraps your XML result in a top-level root element of your choosing.
Listing 2-12 demonstrates how to add a ROOT directive to the query.

Listing 2-12. Adding the ROOT directive to a FOR XML AUTO query

SELECT Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price
FROM Production.Product AS Product
WHERE Product.ListPrice > 0
 AND Product.SellEndDate IS NULL
ORDER BY Product.Name
FOR XML AUTO, ELEMENTS, ROOT;

Listing 2-13 shows the result of the FOR XML AUTO query with both the ELEMENTS and
ROOT directives.

Listing 2-13. Snippet of well-formed XML generated with ELEMENTS and ROOT
directives

<root>
 <Product>
 <Name>All-Purpose Bike Stand</Name>
 <Number>ST-1401</Number>
 <Price>159.0000</Price>
 </Product>
 <Product>
 <Name>AWC Logo Cap</Name>
 <Number>CA-1098</Number>
 <Price>8.9900</Price>
 </Product>
 <Product>
 <Name>Bike Wash - Dissolver</Name>
 <Number>CL-9009</Number>
 <Price>7.9500</Price>
 </Product>
 ...
</root>

CHAPTER 2 ■ BUILDING XML

33

How It Works
The ROOT option specifies that your XML result will be wrapped in a single top-level root
element. By default, the ROOT directive generates a top-level element named <root>.
However, the default name <root> can also be replaced with a user-defined value in
parentheses. For example: FOR XML AUTO, ELEMENTS, ROOT('Products'). When the root
element name is specified, the XML result uses the name you specify as the top-level root
element. In the previous example, the root element will be named <Products>.

2-5. Including Elements with NULL Values in
Your XML Data
Problem
By default, the XML that SQL Server generates excludes any columns with NULLs. You
would like to specifically include columns containing NULLs.

Solution
The XSINIL option of the ELEMENTS directive forces the XML result to include elements
in which the source columns contain NULLs. Listing 2-14 demonstrates how to add an
XSINIL option to your query.

Listing 2-14. Adding an XSINIL option to the FOR XML query

SELECT Product.Name,
 Product.ProductNumber AS Number,
 Product.ListPrice AS Price,
 SellEndDate
FROM Production.Product AS Product
WHERE Product.ListPrice > 0
ORDER BY Product.Name
FOR XML AUTO, ELEMENTS XSINIL, ROOT('Products');

Listing 2-15 displays the result of using the XSINIL option.

Listing 2-15. Snippet of results of the XSINIL option query

<Products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <Product>
 <Name>Bike Wash - Dissolver</Name>
 <Number>CL-9009</Number>
 <Price>7.9500</Price>
 <SellEndDate xsi:nil="true" />
 </Product>

CHAPTER 2 ■ BUILDING XML

34

 <Product>
 <Name>Cable Lock</Name>
 <Number>LO-C100</Number>
 <Price>25.0000</Price>
 <SellEndDate>2013-05-29T00:00:00</SellEndDate>
 </Product>
 ...
</Products>

In the sample results, product number CL-9009 has a SellEndDate of NULL in the
database, so it is represented with an xsi:nil attribute set to “true.” Product number
LO-C100, however, has a non-NULL SellEndDate value, so it has no xsi:nil attribute.

How It Works
The ELEMENTS directive supports two options:

 1. XSINIL – this option forces the XML result to generate
elements for NULL values in the source data.

 2. ABSENT – this option leaves any elements that contain NULL
values in the source data out of your XML result. This is the
default option for the ELEMENTS directive, and does not need
to be specified explicitly.

The XSINIL and ABSENT options are considered part of the ELEMENTS directive, and
they can be specified as such, when needed. Therefore, unlike directives, the XSINIL and
ABSENT options are separated from their ELEMENTS directive by a space, not a comma.

2-6. Including Binary Data in Your XML
Problem
You want to include the contents of a binary column in your XML data.

Solution
You may run into a situation in which you are querying a column that contains binary
data, and you want the binary data to be included in your XML result. Consider Listing
2-16, which is a query that attempts to return binary data in XML format.

Listing 2-16. Failing query to retrieve binary data in XML format

SELECT LargePhotoFileName,
 LargePhoto
FROM Production.ProductPhoto
FOR XML AUTO, ELEMENTS;

CHAPTER 2 ■ BUILDING XML

35

When you try to execute this query it raises an error:
FOR XML AUTO requires primary keys to create references for ‘LargePhoto’. Select

primary keys, or use BINARY BASE64 to obtain binary data in encoded form if no primary
keys exist.

This query fails because you did not include a primary key column in your result set.
Changing the query as shown in Listing 2-17 will resolve the issue.

Listing 2-17. Working query to retrieve binary data in XML format

SELECT LargePhotoFileName,
 LargePhoto,
 ProductPhotoID
FROM Production.ProductPhoto
FOR XML AUTO, ELEMENTS;

However, instead of the expected binary data, a reference to the primary key row is
returned, as shown in Listing 2-18.

Listing 2-18. Snippet of results of binary data query with reference to primary key row

<Production.ProductPhoto>
 <LargePhotoFileName>racer02_black_large.gif</LargePhotoFileName>
 <LargePhoto>dbobject/Production.ProductPhoto[@ProductPhotoID='70']/
@LargePhoto</LargePhoto>

 <ProductPhotoID>70</ProductPhotoID>
</Production.ProductPhoto>

To include an actual representation of your binary data in your XML result, simply
apply the BINARY BASE64 directive to your FOR XML clause. This directive forces the XML
result to include binary data in Base64-encoded format. Listing 2-19 demonstrates the
BINARY BASE64 directive of the FOR XML clause.

Listing 2-19. Using the BINARY BASE64 directive of the FOR XML clause

SELECT LargePhotoFileName,
 LargePhoto
FROM Production.ProductPhoto
FOR XML AUTO, ELEMENTS, BINARY BASE64;

How It Works
The BINARY BASE64 directive encodes binary data in Base-64 format. When the query
returns a column of the varbinary data type, the BINARY BASE64 directive of the FOR XML
clause returns your binary data in Base-64-encoded in your XML result.

Each FOR XML mode acts on the binary data in your result set using specific rules:

• AUTO mode returns a reference to a binary column and row when
the primary key is included in your query result.

CHAPTER 2 ■ BUILDING XML

36

• RAW and EXPLICIT modes will raise an error when the query has a
column with binary data.

• Only PATH mode does not raise an error, and returns the XML
result with binary data when the BINARY BASE64 directive is not
specified.

For example, execute the following query:

SELECT LargePhotoFileName, LargePhoto
FROM [Production].[ProductPhoto]
FOR XML PATH;

And this query:

SELECT LargePhotoFileName, LargePhoto
FROM [Production].[ProductPhoto]
FOR XML AUTO, ELEMENTS, BINARY BASE64;

Both queries will return the same result. However, I would strongly recommend
including a BINARY BASE64 directive to all FOR XML modes when the binary data is part of
the result set. This is because you need to retrieve an actual datum, not the reference to
the data, as it could happen when the primary key is listed in the SELECT clause.

2-7. Generating Nested Hierarchical XML Data
Problem
You want to nest the results of an XML-generating subquery into your outer XML-
generating query, to create more complex hierarchical XML data.

Solution
You might want run into a situation that requires generating hierarchical XML that can
be generated via SQL correlated subqueries. As an example, a product category in the
AdventureWorks database can have multiple related subcategories. Assume that you
want to generate an XML result that lists all product categories, each with its product
subcategories nested within it.

Your first pass at a SQL query might look like Listing 2-20.

Listing 2-20. First attempt at creating hierarchical XML with a correlated subquery

SELECT Category.Name AS CategoryName,
 (
 SELECT Subcategory.Name AS SubcategoryName
 FROM Production.ProductSubcategory Subcategory
 WHERE Subcategory.ProductCategoryID = Category.Product

CategoryID

CHAPTER 2 ■ BUILDING XML

37

 FOR XML AUTO
) Subcategory
FROM Production.ProductCategory Category
FOR XML AUTO, ROOT('Categories');

The result of this query results in XML entities like < and > throughout your
XML data, as shown in Figure 2-4, instead of the expected properly nested XML elements.
This is because the XML being generated in the correlated subquery is treated as a string
data type instead of proper XML data.

How can you return the query in XML format? You want proper tags, and not the
XML > and < entities.

To force the result set to be retuned in proper XML format, add the TYPE directive
to your FOR XML clauses. Listing 2-9 demonstrates this option. Listing 2-21 shows the
generated XML.

Listing 2-21. Implementing the TYPE directive

SELECT Category.Name AS CategoryName,
 (
 SELECT Subcategory.Name AS SubcategoryName
 FROM Production.ProductSubcategory Subcategory
 WHERE Subcategory.ProductCategoryID = Category.Product

CategoryID
 FOR XML AUTO, TYPE
) Subcategory
FROM Production.ProductCategory Category
FOR XML AUTO, ELEMENTS, TYPE, ROOT('Categories');

The results of this updated query with the TYPE directive is shown in Listing 2-22.

Listing 2-22. Snippet of nested hierarchical XML generated with nested subquery and
TYPE directive.

<Categories>
 <Category CategoryName="Accessories">
 <Subcategory>
 <Subcategory SubcategoryName="Bike Racks" />
 <Subcategory SubcategoryName="Bike Stands" />
 <Subcategory SubcategoryName="Bottles and Cages" />
 <Subcategory SubcategoryName="Cleaners" />
 <Subcategory SubcategoryName="Fenders" />

Figure 2-4. Results of first attempt at creating hierarchical XML data

CHAPTER 2 ■ BUILDING XML

38

 <Subcategory SubcategoryName="Helmets" />
 <Subcategory SubcategoryName="Hydration Packs" />
 <Subcategory SubcategoryName="Lights" />
 <Subcategory SubcategoryName="Locks" />
 <Subcategory SubcategoryName="Panniers" />
 <Subcategory SubcategoryName="Pumps" />
 <Subcategory SubcategoryName="Tires and Tubes" />
 </Subcategory>
 </Category>
 ...
</Categories>

How It Works
By default, the FOR XML clause returns an nvarchar(max) data type result. The XML
generated by the subquery is retuned as character data, instead of the required XML
format. When SQL Server converts XML data to character format, it properly entitizes
certain special characters, like the “<” and “>” characters (< and >, respectively.)
The TYPE directive forces SQL to return the XML results in proper XML format, without
entitizing the contents. The TYPE directive can be used with all FOR XML modes.

2-8. Building Custom XML
Problem
You want fine-grained control to customize the format of your generated XML.

Solution
In previous recipes we focused on the RAW and AUTO modes that return either element-
centric or attribute-centric XML, and automatically generate names based on the source
table and column names (or aliases). But what if you want more control over your
element-centric or attribute-centric XML results? EXPLICIT mode gives you more control
over your XML result. Listing 2-23 demonstrates a query to generate your XML result with
a custom-defined structure.

Listing 2-23. Using EXPLICIT mode to control the format of your XML result

SELECT 1 AS Tag,
 0 AS Parent,
 Prod.Name AS [Categories!1!Category!ELEMENT],
 NULL AS [Subcategories!2!Subcategory!ELEMENT],
 NULL AS [Product!3!ProductName!ELEMENT],
 NULL AS [Product!3!Color!ELEMENTXSINIL],
 NULL AS [Product!3!Shelf],
 NULL AS [Product!3!Bin],
 NULL AS [Product!3!Quantity]

CHAPTER 2 ■ BUILDING XML

39

FROM Production.ProductCategory Prod

UNION ALL

SELECT 2 AS Tag,
 1 AS Parent,
 Category.Name,
 Subcategory.Name,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL
FROM Production.ProductCategory Category
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Category.ProductCategoryID = Subcategory.ProductCategoryID

UNION ALL

SELECT 3 AS Tag,
 2 AS Parent,
 ProductCategory.Name,
 Subcategory.Name,
 Product.Name,
 Product.Color,
 Inventory.Shelf,
 Inventory.Bin,
 Inventory.Quantity
FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
 INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.ProductCategory.

ProductCategoryID
ORDER BY [Categories!1!Category!ELEMENT],
 [Subcategories!2!Subcategory!ELEMENT],
 [Product!3!ProductName!ELEMENT]
FOR XML EXPLICIT, ROOT('Products');

CHAPTER 2 ■ BUILDING XML

40

How It Works
EXPLICIT mode is one of the most complex FOR XML modes to use. All elements and
attributes need to be provided explicitly, and each child block must be linked to the
parent explicitly as well. When comparing EXPLICIT mode other modes, such as RAW and
AUTO, the queries with the EXPLICIT mode are much lengthier. The benefit of EXPLICIT
mode, however, is that it provides much greater control over the shape of the XML
generated by the query result.

To better understand how EXPLICIT mode works, I’ll walk you through an example.
Let’s start with a base T-SQL query, like the one shown in Listing 2-24, which shows SQL
that we would like to convert to an XML structure.

Listing 2-24. SQL query we would like to convert to XML format

SELECT ProductCategory.Name Category,
 Subcategory.Name Subcategory,
 Product.Name ProductName,
 Product.Color,
 Inventory.Shelf,
 Inventory.Bin,
 Inventory.Quantity
FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
 INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.ProductCategory.

ProductCategoryID

ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name; The SQL in
Listing 2-24 returns the product list based on categories and subcategories. Therefore, we
need to make a decision and ask some questions:

 1. How do we want the XML structured?

 2. How many sibling levels does the XML need to have?

 3. Which columns will be mapped to elements and which
should be attributes?

 4. Do we need to preserve elements with NULL values?

In Figure 2-5 we show the results of the query in Listing 2-24, and begin the process
of drawing a road map for the XML result we want. Figure 2-5 demonstrates a sample of a
road map that will help us build the query using EXPLICIT mode.

CHAPTER 2 ■ BUILDING XML

41

Using this figure as a guide, we will define a logical structure that will model our
target XML structure. This logical structure is shown in Listing 2-25.

Listing 2-25. Proposed logical XML structure

<Products>
 <Categories>
 <Category> ELEMENT </Category>
 <Subcategories>
 <Subcategory> ELEMENT </Subcategory>
 <Product Shelf = Attribute Bin = Attribute Quantity = Attribute>
 <ProductName> ELEMENT </ProductName>
 <Color> ELEMENT XSINIL </Color>
 </Product>
 </Subcategories>
 </Categories>
</Products>

Following the road map in Figure 2-5 and the logical XML structure of Listing 2-25,
the resulting XML structure will be composed of five nested levels, which will contain:

• <Products> is the root element.

• <Categories> is a container data element that holds each
<Category> element and all its related <Subcategory> elements
directly.

• <Category> is a direct child of the <Categories> element and
will contain the category name. The <Subcategories> element
is a sibling of the <Category> element, and also a direct child
of the <Categories> element. This is a container element for
subcategory-specific data related to the sibling <Category>
element.

Figure 2-5. Results of query in Listing 2-23

CHAPTER 2 ■ BUILDING XML

42

• <Subcategory> is a direct child of the <Subcategories> element.
This element holds the name of the current subcategory. The
<Product> element represents an individual product within a
subcategory. This element is a direct child of the <Subcategories>
element and a sibling of the <Subcategory> element. The
<Product> element will have multiple attributes assigned to it,
and it acts as a container for product-specific data elements.

• <ProductName> is a data element that contains a product’s name.
The <Color> element contains a product’s color, when available.
The <Color> element is identified as XSINIL, which means we
want this element to appear in the result even when the source
column is NULL. The <ProductName> and <Color> elements are
siblings, and both are direct children of the <Product> element.

The next step is to build the query. The syntax for EXPLICIT mode has certain rules
and specifications that you will need to follow:

 1. The query can have one or more SELECT statement blocks,
with UNION ALL linking all of them together.

 2. Each SELECT statement block must contain two integer type
columns named Tag and Parent, respectively, as the first two
columns in the query. These columns define the structural
relationship between the parent and child levels. For example,
Listing 2-23 has multiple nested levels and the SELECT clause
establishes the hierarchy, as shown in the code snippet in
Listing 2-26.

Listing 2-26. Code snippet, Tag, and Parent columns define the XML hierarchy

SELECT 1 AS Tag,
 0 AS Parent,
.
.
.
UNION ALL

SELECT 2 AS Tag,
 1 AS Parent,
.
.
.
UNION ALL

SELECT 3 AS Tag,
 2 AS Parent,
.
.
.

CHAPTER 2 ■ BUILDING XML

43

In the first SELECT query, the Parent column starts the
hierarchy, with a value of 0. The Tag column specifies the
hierarchy level. In the second SELECT query the Tag value
becomes the Parent and increments to the next number. This
flip-flop mechanism is applied to each hierarchical level.

 3. The next important rule establishes an XML structure. In
EXPLICIT mode, each column must be defined within the first
SELECT block, and EXPLICIT mode has a special syntax for
this. In Listing 2-23, you can see that all columns after the Tag
and Parent columns have a very specific style of alias, which
must be formatted as: [ElementName!TagNumber!AttributeN
ame!Directive].

An example from our query in Listing 2-23 is [Categories!1!Ca
tegory!ELEMENT]. This particular alias defines the structure
for the <Category> element of our XML, which contains the
category name. Here is the breakdown of this alias:

• Categories –a generic identifier for the element name.

• 1 –the tag number of the element, representing the nested
XML level. A value of 1 implies this is the top element
(excluding the root).

• Category –the value attribute’s name, unless an ELEMENT
directive is specified, in which case it is used as an element
name.

• ELEMENT –this directive specifies element-centric
representation. Attribute-centric is the default, therefore
there is no need to specify an attribute-centric representation.
If the ELEMENTXSINIL is used, the element will be included
even when the source value is NULL.

• Each alias section is separated by an exclamation point(!),
this naming convention is required as part of the rule.
Because each alias contains special characters (“!”), they
must be quoted. Here are some other aliases from
Listing 2-23:

• [Subcategories!2!Subcategory!ELEMENT] – Child
of Categories element (tag 2), represent
Subcategory values, element-centric

• [Product!3!ProductName!ELEMENT] – Child of
Subcategories element (tag 3), represent ProductName
value, element-centric

• [Product!3!Color!ELEMENTXSINIL] – Child of
Subcategories (tag 3), represent Color value,
element-centric with XSINIL directive

CHAPTER 2 ■ BUILDING XML

44

• [Product!3!Shelf] – Child of Subcategories (tag 3),
represent Shelf value, attribute-centric.

• [Product!3!Bin] – Child of Subcategories (tag 3),
represent Bin value, attribute-centric

• [Product!3!Quantity] – Child of Subcategories (tag
3), represent Quantity value, attribute-centric

 4. The ElementName portion of the aliases must be the same
within a given TagNumber, even if the values are retrieved
from different tables. For example, an ElementName of
Product must be used consistently for TagNumber 3, as
shown here:

[Product!3!ProductName!ELEMENT] – table Product, column Name
[Product!3!Color!ELEMENTXSINIL] - table Product, column Color
[Product!3!Shelf] – table Inventory column Shelf
[Product!3!Bin] - table Inventory column Bin
[Product!3!Quantity] - table Inventory column Quantity

 5. The SELECT blocks of your source query must all conform to
SQL’s UNION ALL operator rule. Each SELECT statement must
have the same number of columns. When the column is not
needed, it must be filled with NULL values.

 6. Sorting is an important consideration for EXPLICIT mode. The
ORDER BY clause finalizes the XML hierarchy. Therefore, the
sorting order needs to follow the parent-child sequence. The
column names in an ORDER BY clause must be the same as
aliases in the top SELECT query. For example:

ORDER BY [Categories!1!Category!ELEMENT],
 [Subcategories!2!Subcategory!ELEMENT],
 [Product!3!ProductName!ELEMENT]

It is clear that implementing EXPLICIT mode is significantly more complex
than implementing the other modes we’ve covered so far; however, EXPLICIT mode
provides the user with full control over the XML generation process. Unlike other
modes, this FOR XML mode can be extended with internal directives that allow
the user to control each individual XML element and attribute. Table 2-1 lists the

directives for the EXPLICIT mode.

CHAPTER 2 ■ BUILDING XML

45

2-9. Simplifying Custom XML Generation
Problem
EXPLICIT mode allows fine-grained control of your generated XML format, but is complex
to utilize. You want to generate custom-formatted XML, but you want an alternative that
is easier to use, but achieves results similar to EXPLICIT mode.

Solution
PATH mode can provide XML results that are similar to the results generated by the XML
using EXPLICIT mode. However, the mechanism used to generate the PATH mode XML is
much simpler than the EXPLICIT mode, which is a big positive. One of the limitations of
PATH mode is that it does not have as many directive options as EXPLICIT mode.
Listing 2-27 demonstrates the query from Recipe 2-9, implemented with PATH mode.

Table 2-1. Listing the EXPLICIT mode directives

Directive Definition Syntax Example

ID, IDREF, IDREFS Enables intra-document links
and is similar to the primary key
and foreign key relationships in
relational databases.

[Product!3!ProductList
!IDREFS]

CDATA If the directive is set to CDATA,
the contained data is not entity
encoded, but is put in the CDATA
section. The CDATA attributes
must be nameless.

[Product!3!!CDATA]

HIDE Hides the node. This is useful
when you retrieve values only for
sorting purposes, but you do not
want them in the resulting XML.

[Product!3!Shelf!HIDE]

ELEMENT Generates an element instead of
an attribute.

[Product!3!ProductName
!ELEMENT]

ELEMENTXSINIL Generates an element with an
xsi:nil=“true” attribute for NULLs.
Similar to XSINIL directive.

[Product!3!Color!ELEME
NTXSINIL]

XML Generates an element, just like the
element directive. The difference
is that the xml directive does not
encode entities.

[Product!3!Color!XML]

XMLTEXT If the xmltext directive is specified,
the column content is wrapped in a
single tag that is integrated with the
rest of the document.

[Parent!1!!XMLTEST]

CHAPTER 2 ■ BUILDING XML

46

Listing 2-27. Generating custom XML generation with PATH mode

SELECT ProductCategory.Name AS "Category/CategoryName",
 Subcategory.Name AS "Category/Subcategory/SubcategoryName",
 Inventory.Shelf AS "Category/Subcategory/Product/ProductName/

@Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
 Inventory.Quantity AS "Category/Subcategory/Product/ProductName/@

Quantity"
 Product.Name AS "Category/Subcategory/Product/ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
 INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.ProductCategory.

ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

How It Works
Compare Listing 2-23, illustrating EXPLICIT mode and Listing 2-27 illustrating PATH
mode. It is clear that the PATH mode does not utilize multiple SELECT statements and
UNION ALL to generate nested XML data. Instead the XML hierarchy is defined by XML
Path Language (XPath)-style column aliases, where steps in the path are separated by
forward slashes.

To generate XML using PATH mode, follow these rules:

 1. The position should reflect the expected XML hierarchy,
that is, the child elements listed under parent elements. For
example:

SELECT ProductCategory.Name AS "Category/CategoryName",
 Subcategory.Name AS "Category/Subcategory/
SubcategoryName",

 2. Each child level is established in the XPath alias, by separating
them from the parent element with a slash, and adding the
child element name. For example:

Name AS "Category/CategoryName",
Name AS "Category/Subcategory/SubcategoryName",
Name AS "Category/Subcategory/Product/ProductName",

CHAPTER 2 ■ BUILDING XML

47

 3. When an “@” symbol is present in the alias, it renders the
value as an attribute; otherwise it defines an element. This
snippet shows the “@” in action, defining attributes in the
XML output:

SELECT ...
 Inventory.Shelf AS "Category/Subcategory/

Product/ProductName/@Shelf",
 Inventory.Bin AS "Category/Subcategory/

Product/ProductName/@Bin",
 Inventory.Quantity AS "Category/Subcategory/

Product/ProductName/@Quantity",
 ...

 4. The ORDER BY clause does not have the same effect in PATH
mode as it does in EXPLICIT mode, and therefore it can be
omitted altogether. However, it is good practice to sort the
query according to the XML structure. For example:

ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name

 5. A suggested naming convention is to provide the PATH with
an element name inside the parentheses. By default, the PATH
mode generates a <row> element, but that is not the best XML
design. For example:

FOR XML PATH('Categories')

 6. When the XSINIL directive is implemented in the PATH
mode, then this directive is automatically applied to all
XML elements. However, in the EXPLICIT mode, the
ELEMENTXSINIL directive only affects the element that the
directive specifies.

 7. Specifying the root element is good XML design practice. I
would highly recommend utilizing the ROOT(‘ElementName’)
option in all XML queries.

Wrapping up this recipe, I recommend analyzing your prospect XML then making
a choice of whether to use EXPLICIT or PATH mode. Both modes have advantages and
disadvantages: EXPLICIT mode is more complex to use, but it gives you better control
over the XML output. PATH mode is the opposite in the sense that it is easy to write the
code; however, you have a bit less control over the elements and attributes.

CHAPTER 2 ■ BUILDING XML

48

2-10. Adding Special Nodes to Your XML
Problem
You would like to add special nodes to your generated XML data, such as comments,
processing instructions, or custom text.

Solution
The FOR XML clause PATH mode supports XML Path Language (XPath) node tests.
The XPath syntax supports a subset of node test names that act as functions. These
functions add specific types of nodes to the resulting XML output. Listing 2-28 is a query
demonstrating multiple XPath node tests.

Listing 2-28. Demonstrating XPath node tests

SELECT ProductCategory.Name AS "Category/CategoryName",
 N'Sales started ' + convert(nvarchar(12), Product.SellStartDate,

101) AS "Category/comment()",
 N'The record for product number ' + Product.ProductNumber AS

"processing-instruction(xml:file)",
 (
 SELECT DISTINCT Location.Name "text()", N', cost rate $',
 Location.CostRate "text()"
 FROM Production.ProductInventory Inventory
 INNER JOIN Production.Location Location
 ON Inventory.LocationID = Location.LocationID
 WHERE Product.ProductID = Inventory.ProductID
 FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
 Subcategory.Name AS "Category/Subcategory/SubcategoryName",
 Product.Name AS "Category/Subcategory/Product/ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
 Inventory.Shelf AS "Category/Subcategory/Product/ProductName/

@Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
 Inventory.Quantity AS "Category/Subcategory/Product/ProductName/

@Quantity"
FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.ProductCategory.

ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

CHAPTER 2 ■ BUILDING XML

49

 ■ Caution XPath node test names are case sensitive. Therefore, all node test names

must be entered in lowercase, otherwise SQL will raise an error. For example when the

function text() is typed as Text(), an error similar to the following is thrown: Msg 6850,

Level 16, State 1 … Column name ‘Text()’ contains an invalid XML identifier as required

by FOR XML; …

How It Works
When XPath node tests are used in PATH mode, they add a special node to your XML
result. The node test is always located at the end of an XPath column alias. For example,
in the “Category/comment()” path or the “processing-instruction(xml:file)” path.
Additionally, the node test can be used as the column alias alone, without a hierarchy

path. Table 2-2 lists the supported FOR XML PATH XPath node tests.

Reviewing the code in Listing 2-28, we see the following:

 1. To generate a comment under the <CategoryName> element,
the path is provided in the alias with the comment() node
test. The resulting XML maps the data row into the special
comment tag <!--comment--> in your XML result. From our
sample code:

N'Sales started' + convert(nvarchar(12), Product.
SellStartDate, 101) AS "Category/comment()"

Table 2-2. XPath node tests

Node type Node Returns Node Example

comment() Returns a comment node. element/comment() selects
all the comment nodes that
appear after the context node.

node() Returns a node of any type.
Usfull to add subset XML to
result.

element/node() selects all
the nodes that appear before
the context node.

processing-instruction
(name)

Returns a processing
instruction node.

processing instruction
(PI Name) selects all the
processing instruction nodes
within the context node.

text() Returns a text node. Useful
to combine more than
one column into one XML
element.

element/text() selects the
text nodes that are children of
the context node.

CHAPTER 2 ■ BUILDING XML

50

 2. The processing-instruction(name) node test must have a
target name inside its parentheses. If the target name is not
provided, an error will be thrown. This function creates a
special XML node of the format <?name ?>. For example:

N'The record for product number ' + Product.
ProductNumber AS "processing-instruction(xml:file)"

 3. The text() node test is very helpful when you need to
concatenate multiple columns into a single element. For
example:

SELECT DISTINCT Location.Name "text()", ', cost rate $',
 Location.CostRate "text()"

 4. The node() node test is useful when you need to insert values
in the XML data type. In Listing 2-28, the correlated subquery
performs two actions. Firstly, it concatenates the location
and cost rate columns; secondly, it produces an XML result,
because the product can have more than one associated
location. Figure 2-6 demonstrates all the XPath node test
functions in one XML result.

Figure 2-6. XML result with all XPath node test functions

CHAPTER 2 ■ BUILDING XML

51

Summary
This chapter discusses the four FOR XML modes: RAW, AUTO, EXPLICIT, and PATH. Each
mode is thoroughly explained and suggestions for the best mode to use in particular
situations, with tips on how to implement each mode. I also discussed directives, their
functions, and how each directive interacts with the various XML modes. If you need
to build a custom XML result, this chapter provided direction on how to build a robust
custom XML data.

The FOR XML clause provides the user with great and powerful options for efficiently
building XML results from relational data. The chart in Figure 2-7 illustrates the directives
supported by each of the FOR XML modes.

The next chapter demonstrates how to store the XML result on the storage (disk, SSD
drive, SAN, etc) and how to upload an XML file into a table.

FOR XML

(‘
E

le
m

e
n

tN
a
m

e
’)

B
IN

A
R

Y
 B

A
S

E
6

4

E
LE

M
E
N

T
S

 A
B

S
E
N

T

E
LE

M
E
N

T
S

 X
S

IN
IL

R
O

O
T

T
Y

P
E

X
M

LS
C

H
E

M
A

AUTO

EXPLICIT

PATH

RAW

FOR XML Clause Directives Chart

Figure 2-7. FOR XML directives available by mode

53© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_3

CHAPTER 3

Manipulating XML Files

In Chapter 2, we discussed how to build XML from an SQL query result set. Before we
begin reviewing the options on how to shred XML data, we first need to know how to
store the XML result on the storage (disk, SSD drive, SAN, etc.) and how to upload an
XML file into a table. This chapter will demonstrate the various options to manipulate the
XML files.

3-1. Storing XML Result in a File from SQL
Problem
You want to store the XML result you generate in SQL as an .xml file.

Solution
The BCP (bulk copy program) utility allows the export of data into an XML file. When
the file path is eligible and the SQL Server account has enough privileges to store the file,
then the process can be executed from the stored procedure. Listing 3-1 demonstrates
how the stored procedure creates an XML file using the provided file path in the
@FilePath parameter.

Listing 3-1. Using the stored procedure to write an XML file by destination file path

CREATE PROCEDURE dbo.usp_WriteXMLFile
 @XML XML,
 @FilePath nvarchar(200)
AS
BEGIN
 SET NOCOUNT ON;
 IF (OBJECT_ID('tempdb..##XML') IS NOT NULL)
 DROP TABLE ##XML;

 CREATE TABLE ##XML (XMLHolder XML);

 INSERT INTO ##XML

https://doi.org/10.1007/978-1-4842-3117-3_3
http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 3 ■ MANIPULATING XML FILES

54

 (
 XMLHolder
)
 SELECT @XML;

 -- Prepare log table
 DECLARE @cmd TABLE
 (
 name NVARCHAR(35),
 minimum INT,
 maximum INT,
 config_value INT,
 run_value INT
);

 DECLARE @run_value INT;

 -- Save original configuration set
 EXECUTE master.dbo.sp_configure 'show advanced options', 1;
 RECONFIGURE;

 INSERT INTO @cmd
 (
 name,
 minimum,
 maximum,
 config_value,
 run_value
)
 EXECUTE sp_configure 'xp_cmdshell';

 SELECT @run_value = run_value
 FROM @cmd;

 IF @run_value = 0
 BEGIN
 -- Enable xp_cmdshell
 EXEC sp_configure 'xp_cmdshell', 1;
 RECONFIGURE;
 END;

 DECLARE @SQL nvarchar(300) = '';

 SET @SQL = 'bcp ##XML out "' + @FilePath + '\Categories_'
 + FORMAT(GETDATE(), N'yyyyMMdd_hhmmss')
 + '.xml" -S "' + @@SERVERNAME + '" -T -c';
 -- REPLACE(REPLACE(REPLACE(CONVERT(varchar(20), GETDATE(),

120), '-', ''), ' ', '_'), ':', '')

CHAPTER 3 ■ MANIPULATING XML FILES

55

-- for those who still using SQL Server 2008 R2 or below, use REPLACE
instead of FORMAT. FORMAT function introduced in SQL 2012.
 EXECUTE master..xp_cmdshell @SQL;

 IF @run_value = 0
 BEGIN
 -- Disable xp_cmdshell
 EXECUTE sp_configure 'xp_cmdshell', 0;
 RECONFIGURE;
 END;

 IF (OBJECT_ID('tempdb..##XML') IS NOT NULL)
 DROP TABLE ##XML;

 SET NOCOUNT OFF;
END;
GO

How It Works
The stored procedure usp_WriteXMLFile, shown in Listing 3-1, has several important
components to successfully create an XML file from within SQL Server. Let’s break down
this stored procedure to follow how the XML file-writing process works:

 1. The parameter @FilePath is the XML file destination
path. This parameter makes the stored procedure flexible,
especially when running it in different environments, such as
development, staging, and production.

 2. CREATE a global temporary table (##XML), then DROP it
in the end. Use a column name XMLHolder with the XML
data type to get XML data. It is a rare case to need to create
a global temporary table; however, the BCP command will
raise an error if a session-level temporary table is referenced.
Therefore, we can use either a permanent table or a global
temporary table. There is always a risk in implementing a
global temporary table, if the process part of the concurrent
process. The global temporary table is seen throughout the
entire server and if somebody else happens to use the stored
procedure at the same time, one of the user’s tables could be
overwritten and therefore receive inaccurate results. Please
reference the code samples for Chapter 3 where the stored
procedure usp_WriteXMLFileDynamicTable demonstrates
how to solve this problem.

 3. INSERT the XML data into a global temporary table (##XML).

http://dx.doi.org/10.1007/978-1-4842-3117-3_3

CHAPTER 3 ■ MANIPULATING XML FILES

56

 4. To run the BCP command from a stored procedure or SSMS,
the server instance needs to be configured for “xp_cmdshell”
option at value 1. This means that the instance allows the
xp_cmdshell extended stored procedure to run. There are
cases where due to security reasons, you may be required
to maintain the configuration for the server instance at
value 0 (disabled status). In this case, you would still need to
incorporate code that switches the server instance from value
0 to 1, then back to 0 while creating the XML file. Since the
BCP command is able to create the XML file in milliseconds,
there is virtually no security risk during the milliseconds that
the server is set to value 0 to enable the xp_cmdshell stored
procedure to create the XML file.

• To preserve the original settings, the table variable @cmd
is created.

• The system stored procedure sp_configure uses the
parameter value ‘xp_cmdshell’. This result is inserted into the
table variable @cmd, which reflects the current status of the
‘xp_cmdshell’ option.

• The following statement SELECT @run_value = run_value
FROM @cmd populates the local variable @run_value to
preserve the xp_cmdshell option run_value for further
analysis.

• The conditional statement IF @run_value = 0 detects whether
or not the option value needs to be changed from 0 to 1.

 5. The variable @SQL is created to compose the statement for
the BCP utility.

 6. The final command depends on the instance and database
name and could be the following:

BCP ##XML out "C:\TEMP\Categories_20170310_164701.xml"
-S "APRESS\SQL2016" -T -c

 7. Let’s take a closer look at all of the arguments and switches
that are required by BCP to create the XML file:

• BCP – the bulk copy utility executable name.

• ##XML – name of table with XML data.

• out – indicator that copies the data from the table and sends it
to the destination.

• “C:\TEMP\Categories_20170310_164701.xml” – the file path.

• -S “APRESS\SQL2016” – server name.

CHAPTER 3 ■ MANIPULATING XML FILES

57

• -T – specifies that the BCP command runs under a trusted
connection. To run the BCP with SQL Server credentials then
instead of -T, please use -U login_Name -P password options.

• -c – specifies that the output content is in the character
data type.

Caution The BCP arguments leading with a dash are case sensitive. For example, -T is an

option for a trusted connection; however, -t is the field terminator.

 8. The statement exec master..xp_cmdshell @SQL runs the BCP
command

 9. The statement IF @run_value = 0 conditionally detects
whether the option value needs to be changed from 1
back to 0.

 10. To finalize the process, the ##XML table should be destroyed.

IF (OBJECT_ID('tempdb..##XML') IS NOT NULL)
 DROP TABLE ##XML;

To test the stored procedure, run following code:

DECLARE @x XML

SET @x = (
 SELECT ProductCategory.Name AS "Category/CategoryName",
 (
 SELECT DISTINCT Location.Name "text()", ',

cost rate $',
 Location.CostRate "text()"
 FROM Production.ProductInventory Inventory
 INNER JOIN Production.Location Location
 ON Inventory.LocationID = Location.

LocationID
 WHERE Product.ProductID = Inventory.ProductID
 FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
 Subcategory.Name AS "Category/Subcategory/SubcategoryName",
 Product.Name AS "Category/Subcategory/Product/ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
 Inventory.Shelf AS "Category/Subcategory/Product/

ProductName/@Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/ProductName/

@Bin",

CHAPTER 3 ■ MANIPULATING XML FILES

58

 Inventory.Quantity AS "Category/Subcategory/Product/
ProductName/@Quantity"

 FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.

ProductSubcategoryID
 INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = ProductCategory.

ProductCategoryID
 ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
 FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT

('Products')
)

EXECUTE usp_WriteXMLFile @x, 'C:\TEMP'

When the stored procedure usp_WriteXMLFile execution is completed, the BCP
utility returns the completion status with the runtime in milliseconds. As shown in
Figure 3-1, my runtime to create the XML file was 15 milliseconds. The XML file is created
in the C:\TEMP directory. Figure 3-1 illustrates the BCP utility output.

If you need to hide the completion output status, then add the following code to the
stored procedure before executing the xp_cmdshell extended stored procedure:

DECLARE @stat TABLE
(
 BCPStat VARCHAR(500)
);
INSERT INTO @stat

Figure 3-1. Showing the BCP utility completion status

CHAPTER 3 ■ MANIPULATING XML FILES

59

(
 BCPStat
)

EXECUTE master..xp_cmdshell @SQL;

The @stat table variable absorbs the BCP completion output; therefore the stored
procedure does not return any messages.

 ■ Note Both Recipes “3-1 Storing XML Result in a File from SQL” and “3-3 Loading

XML from a Stored Procedure” implement the xp_cmdshell extended stored procedure. The

xp_cmdshell stored procedure is associated with security risk, which is why it's a disabled

SQL Server by default. Both recipes implement xp_cmdshell, which is self-detected to turn

the logic on and off to minimize the security risk. However, if for any reason you have a

problem utilizing xp_cmdshell in your environment, consider Recipe “3-5 Implementing a

CLR Solution” as an alternative to xp_cmdshell.

3-2. Creating XML from an SSIS Package
Problem
You want to develop an alternative to using the BCP utility to create an XML file from a
result set?

Solution
The BCP utility is a handy legacy command-line utility, but SSIS is Microsoft’s standard
ETL solution.The SSIS package can provide a comprehensive solution for the data
transformation processes. SSIS provides at least three options to perform the task of
creating an XML file:

 1. Script task

 2. Flat File Destination

 3. Export Column transform

Each of those options is relatively easy to complete; however, my preference is Script
Task. I have several arguments to defend my preference:

• Script Task is an easy and fast solution for file manipulation.

• In a few lines of code (either C# or VB.NET), you can provide the
task solution (even if you don’t have any .NET knowledge, simply
copy provided code).

CHAPTER 3 ■ MANIPULATING XML FILES

60

• Easy and productive debugging process.

• With the Script Task, you have full control over the process.

For a complete SSIS solution, we need to create three Control Flow tasks:

 1. An Execute SQL Task called “Get XML Content,” to obtain the
XML result from the database.

 2. Set an expression for the TimeStamp variable to get date and
time for the XML file name.

 3. A Script Task named “Create XML File,” to write the XML file
to the destination.

Figure 3-2 Illustrates a simple SSIS package control flow.

To create the SSIS package, create a New Integration Services Project. Name the
package CreateXMLFile, and save the project. Then from the Tool Box drag and drop the
Execute SQL Task onto the package designer pane. If the Tool Box does not show up for
your new project, press the button in the upper-right corner, as shown in Figure 3-3.

Figure 3-2. Showing SSIS package

Figure 3-3. Showing Tool Box button location

CHAPTER 3 ■ MANIPULATING XML FILES

61

 1. We need to create three package-level variables. To create a
variable, right-mouse click on an empty area of the designer
pane. On the pop-up menu select “Variables” to load the
Variables dialog, as shown in Figure 3-4.

In the Variables dialog:

• Click the “Add Variable” button.

• Type the variable name.

• Choose the appropriate data type (in our case, choose the String
data type).

• Provide the variable default when needed.

• Also, make sure that the variable has SSIS Package Scope.

Figure 3-5 Illustrates the Variables Form entries.

 ■ Tip It’s good practice to utilize variables in place of hard-coded values so you can have

more flexibility when executing a package.

Figure 3-4. Variables option of the pop-up context menu

Figure 3-5. Showing the Variables Form entries

CHAPTER 3 ■ MANIPULATING XML FILES

62

The variables above are created, and below is a description of their purpose:

• FileDestinationPath – to specify the destination folder. This
variable can be modified outside of the package, practically
providing the parameter functionality.

• TimeStamp – to obtain the file name time stamp.

• XMLData_Content – to store the XML result that will be written to
the file.

• Once the variables are created, we can place and configure the
Execute SQL Task “Get XML Content.” From the Tool Box, drag
and drop the Execute SQL Task onto the designer surface. To
configure the Execute SQL Task you can either double-click on
the task or right-click it and select “Edit…” from the context menu.
When the Execute SQL Task Editor shows up, we are ready to
configure the task. The task configuration requires the following:

 a) First, we need to create or select an existing Connection to
SQL Server. On the Execute SQL Task Editor, select General
from the Editor options list located on the left side.

 b) Click Connection.

 c) On the right side select the drop-down arrow.

 d) Click on <New connection> to open the Connection
dialog, or select an existing connection. Figure 3-6
illustrates the steps to select an existing connection, or
call the Configure OLE DB Connection Form.

Figure 3-6. Showing steps to Configure OLE DB Connection Form

CHAPTER 3 ■ MANIPULATING XML FILES

63

Configure the OLE DB Connection Form by clicking the “New…” button. In the
Connection Manager dialog:

 a) Select or enter the source server name from the Server name
drop-down list.

 b) From the “Log on to the server” option, select the type of
authentication.

 c) From the “Connect to a database” option, select the database
name

 d) Optionally, but recommended, click the Test Connection
button to confirm your configuration. Figure 3-7 illustrates the
Connection Manager dialog configuration steps.

Figure 3-7. Showing the Connection Manager Form configuration steps

CHAPTER 3 ■ MANIPULATING XML FILES

64

Once the connection is ready, the next step is to add the SQL query. Under the
Connection property, check the SQLSourceType property. By default, the value is
Direct input, but double-check that Direct input is selected. One of the most important
properties is SQLStatement. We will take the query that was demonstrated in Chapter 2
for this example. To configure the SQLStatement property, simply add the query from the
Listing 3-2 SQL query for SSIS package.

Listing 3-2. Listing Categories query for SSIS package

SELECT ProductCategory.Name AS "Category/CategoryName",
 (
 SELECT DISTINCT Location.Name "text()", ', cost rate $',
 Location.CostRate "text()"
 FROM Production.ProductInventory Inventory
 INNER JOIN Production.Location Location
 ON Inventory.LocationID = Location.LocationID
 WHERE Product.ProductID = Inventory.ProductID
 FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
 Subcategory.Name AS "Category/Subcategory/SubcategoryName",
 Product.Name AS "Category/Subcategory/Product/ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
 Inventory.Shelf AS "Category/Subcategory/Product/ProductName/@

Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/ProductName/@Bin",
 Inventory.Quantity AS "Category/Subcategory/Product/ProductName/@

Quantity"
FROM Production.Product Product
 INNER JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 INNER JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.ProductSubcategoryID
INNER JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.ProductCategory.
ProductCategoryID
ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
FOR XML PATH('Categories'), ELEMENTS XSINIL, ROOT('Products');

Finally, on the General menu, set the ResultSet property to XML. Figure 3-8 shows
the General menu configurations.

http://dx.doi.org/10.1007/978-1-4842-3117-3_2

CHAPTER 3 ■ MANIPULATING XML FILES

65

The query for the “Get XML Content” task does not have any parameters. To set the
proper parameters, click on the Result Set menu. The query that we set in the General
menu returns the XML as a scalar CLOB (Character Large Object) value. Therefore, the
returned result we will bind to one of the variables that were previously created. From
the Variable Name drop-down list, select the XMLData_Content variable. Set the Result
Name property to 0. Since we do not have a name for the result set, setting it to 0 will
choose the first column from the result set. Figure 3-9 illustrates the Result Set menu
configurations.

Figure 3-8. Showing configurations for General menu

CHAPTER 3 ■ MANIPULATING XML FILES

66

There are no Expressions set for the Execute SQL Task “Get XML Content.” Therefore,
press OK to complete the task configuration.

 1. The next step is setting the expression for the TimeStamp
variable. In a real production environment, most XML file
names should have a timestamp. The timestamp has a
variety of format options, and the most appropriate should
be chosen based on client or business needs. For example,
the most often implemented format I’ve seen is yyyyMMdd_
HHmmss. To this value, SSIS packages must have a syntax
that is different from T-SQL, or even .NET applications. For
example, Listing 3-3 demonstrates SSIS syntax to get the date
timestamp.

Listing 3-3. Showing SSIS syntax

(DT_STR, 4, 1252) DATEPART("yyyy", GETDATE()) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("mm", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("dd", GETDATE()),2) + "_" +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("hh", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("mi", GETDATE()),2) +
RIGHT("0" + (DT_STR, 2, 1252) DATEPART("ss", GETDATE()),2)

Figure 3-9. Showing Result Set menu configurations

CHAPTER 3 ■ MANIPULATING XML FILES

67

To set the variable expression:

• Right-mouse click on the package field. Select Variables from the
pop-up menu.

• Click the variable’s button in the Expression section to load the
Expression Builder Form.

• Place the code from Listing 3-3 into the Expression text box.

• Click the “Evaluate Expression” button to verify the expression’s
code.

• Click the OK button to finalize the setting. Figure 3-10 Illustrates
the setup of the expressions to the variable.

Figure 3-10. Showing how to set the expression to the variable

CHAPTER 3 ■ MANIPULATING XML FILES

68

 2. The Script Task “Create XML File,” as stated in its name, writes
the XML file to the destination file path, which is assigned
to the SSIS package via the FileDestinationPath variable that
has a public interface and is visible outside of the package.
The Script Task is a programming module where a developer
can write the functionality implementing C# and VB.NET
languages, which makes the Script Task very popular for SQL
Server developers. However, the Script Task could simplify
and extend SSIS packages functionalities. For the Script Task
“Create XML File,” several lines of code will need to be used to
complete the process. To configure the task:

• From the Tool Box, drag the Script Task to the development
field.

• Change the name to “Create XML File.”

• Link the “Get XML Content” task with the “Create XML File”
task. Click on the “Get XML Content” task, grab a green
arrow, drag over the “Create XML File” task, then release
the mouse. That creates a Precedence Constrain between
two tasks (this package does not need to configure the
Precedence Constrain). See Figure 3-11, illustrating the
Precedence Constrain initialization.

Figure 3-11. Creating Precedence Constrain between the tasks

• To load the Script Task Manager, double-click on the “Create
XML File” task.

CHAPTER 3 ■ MANIPULATING XML FILES

69

• The Script Task Manager, by default, has the ScriptLanguage
set to Microsoft Visual C# 2015 (Microsoft Visual Basic 2015
is another option; however, this example will use C#), and
the EntryPoint property is set to “Main” under the Script Task
Editor (the function name that the script executes first).

• There are no changes for the variables in this task. Therefore,
click on the ReadOnlyVariables property to bind the variables
to the task. On the right side of the property, click the button
to load the package variable list. Place a check mark next to
the variables User::FileDestinationPath, User::TimeStamp,
User::XMLData_Content, then Click OK.

• Click on the Edit Script… button to load the programming
module. Figure 3-12 illustrates the Script Task Manager
properties.

Figure 3-12. Showing Script Task Manager properties

CHAPTER 3 ■ MANIPULATING XML FILES

70

 ■ Tip Before you click the Edit Script… button, highlight and then copy all variables that

were selected. You will need those later in the code module. Also, keep in mind that variable

names are case sensitive when referenced in the code.

When the script editor window loads up, go to the Main() function. By default,
Main() contains the code shown in Listing 3-4.

Listing 3-4. Showing default code for the Main() function

public void Main()
{
 // TODO: Add your code here

 Dts.TaskResult = (int)ScriptResults.Success;
}

First, replace the value “TODO: Add your code here” with the saved variables list.
Keep the “//” as this indicates a comment. Next, declare two string variables and reassign
the values of the package variables (use your saved variables reference). The Main()
function variable strFilePath result will be the XML file path; therefore the package
variable FileDestinationPath is hard-coded as “Categories_” plus package variable
TimeStamp and “.xml” as the file extension indicating the XML file destination path.

The second part of the Main() function actually writes the XML file to storage. We
need to create an instance of the StreamWriter object. The StreamWriter class belongs to
the System.IO namespace, which is not part of the default namespaces for a programming
module, which means that we have two options: add a “using System.IO;” statement
to the code or use the System.IO namespace as a full qualifier for referencing the
StreamWriter class. Hence, we need only one line of code to instantiate the StreamWriter
class. In the following example, we will use the second option in our code for the Main()
function. The code in Listing 3-5 demonstrates C# code to write the file.

Listing 3-5. Coding function to write the XML file

public void Main()
{
 // User::FileDestinationPath,User::TimeStamp,User::XMLData_Content
 string strFilePath = Dts.Variables["User::FileDestina

tionPath"].Value.ToString() + @"\\Categories_" + Dts.
Variables["User::TimeStamp"].Value.ToString() + ".xml";

 string strXML = Dts.Variables["User::XMLData_Content"].Value.To
String();

 System.IO.StreamWriter file = new System.IO.Stream
Writer(strFilePath);

 file.Write(strXML);
 file.Close();

 Dts.TaskResult = (int)ScriptResults.Success;
}

CHAPTER 3 ■ MANIPULATING XML FILES

71

To finalize the Script Task, save and close the script editor window. Click the OK
button for the Script Task. Your SSIS package is now ready to test.

To test the SSIS package, press the Start button. When SSIS completes successfully,
green circles with check marks will show up on each task. Figure 3-13 illustrates a
successful SSIS package completion.

To stop the SSIS package, press the red square button or click on the “Package
execution completed with success” URL at the bottom of the package. Figure 3-14
illustrates options to stop the package.

Now the SSIS package development is completed and the XML file was created in the
specified destination, “C:\TEMP” folder.

Figure 3-14. Showing the package switch to design mode options

Figure 3-13. Testing the SSIS package

CHAPTER 3 ■ MANIPULATING XML FILES

72

How It Works
The SSIS package “Get XML Content” Execute SQL Task submits a query to the SQL
Server. The Connection Manager provides a reference to the SQL Server instance and
the database name, as well as connection credentials, if necessary. The query result
is assigned to the package-level variable XMLData_Content. The expression for the
TimeStamp variable computes the date and time to provide uniqueness and prevent file
collision.

The “Create XML File” Script Task executes C# code to write the XML result out to
the file. The package variables provide the file content and the XML file path.

3-3. Loading XML from a Stored Procedure
Problem
You want to read one or more XML files from a source location utilizing T-SQL.

Solution
SQL Server has the ability to read the XML file content and write the XML into a table. The
mechanics between writing the file to the storage and writing the XML data into a table
from storage (load the XML) is different. When the file is written to storage, we deal with a
single XML output per file. However, when we load files, one or more files could be in the
source location. For this reason, the T-SQL code needs to solve the following issues:

• Obtain the file names with particular criteria; for example, all files
with the extension “.xml”.

• Access each file and read the file content.

• Load (INSERT) the file content into a table.

Listing 3-6 demonstrates the solution for this problem.

Listing 3-6. Demonstrating stored procedure usp_LoadXMLFromFile

CREATE PROCEDURE dbo.usp_LoadXMLFromFile
 @FilePath nvarchar(100)
AS
BEGIN
 SET NOCOUNT ON;
 -- Prepare log table
 DECLARE @cmd TABLE
 (
 name NVARCHAR(35),
 minimum INT,
 maximum INT,
 config_value INT,
 run_value INT

CHAPTER 3 ■ MANIPULATING XML FILES

73

);
 DECLARE @run_value INT;

 -- Save original configuration set
 INSERT @cmd
 (
 name,
 minimum,
 maximum,
 config_value,
 run_value
)
 EXEC sp_configure 'xp_cmdshell';

 SELECT @run_value = run_value
 FROM @cmd;

 IF @run_value = 0
 BEGIN
 -- Enable xp_cmdshell
 EXEC sp_configure 'xp_cmdshell', 1;
 RECONFIGURE;
 END;

 IF NOT EXISTS
 (
 SELECT *
 FROM sys.objects
 WHERE object_id = OBJECT_ID(N'[dbo].[_XML]') AND type in (N'U')
)
 CREATE TABLE dbo._XML
 (
 ID INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
 XMLFileName NVARCHAR(300),
 XML_LOAD XML,
 Created DATETIME
)
 ELSE
 TRUNCATE TABLE dbo._XML;

 DECLARE @DOS NVARCHAR(300) = N'',
 @DirBaseLocation NVARCHAR(500),
 @FileName NVARCHAR(300),
 @SQL NVARCHAR(1000) = N'';

 DECLARE @files TABLE
 (

CHAPTER 3 ■ MANIPULATING XML FILES

74

 tID INT IDENTITY(1,1) NOT NULL PRIMARY KEY,
 XMLFile NVARCHAR(300)
);

 -- Verify that last character is \
 SET @DirBaseLocation = IIF(RIGHT(@FilePath, 1) = '\', @FilePath,

@FilePath + '\');

 SET @DOS = 'dir /B /O:-D ' + @DirBaseLocation;
 INSERT @files
 (
 XMLFile
)
 EXEC master..xp_cmdshell @DOS;

 IF @run_value = 0
 BEGIN
 -- Disable xp_cmdshell
 EXECUTE sp_configure 'xp_cmdshell', 0;
 RECONFIGURE;
 END;

 DECLARE cur CURSOR
 FOR SELECT XMLFile
 FROM @files
 WHERE XMLFile like '%.xml';
 OPEN cur;

 FETCH NEXT
 FROM cur
 INTO @FileName;

 WHILE @@FETCH_STATUS = 0
 BEGIN

 BEGIN TRY
 SET @SQL = 'INSERT INTO _XML SELECT ''' +

@DirBaseLocation + @FileName
 + ''', X, GETDATE() FROM OPENROWSET

(BULK N''' + @DirBaseLocation + @FileName
 + ''', SINGLE_BLOB) as tempXML(X)';

 EXECUTE sp_executesql @SQL;

 FETCH NEXT
 FROM cur
 INTO @FileName;
 END TRY

CHAPTER 3 ■ MANIPULATING XML FILES

75

 BEGIN CATCH
 SELECT @SQL, ERROR_MESSAGE();
 END CATCH
 END;

 CLOSE cur;

 DEALLOCATE cur;
 SET NOCOUNT OFF;
END;
GO

How It Works
The stored procedure usp_LoadXMLFromFile, shown in Listing 3-6, provides a solution
for loading XML data from one or more files. The stored procedure has one input
parameter, @FilePath, of nvarchar(100) data type. The parameter provides the location of
your XML source files.

 1. The mechanism to enable/disable an extended stored
procedure xp_cmdshell is described in Recipe 3-1.
This process is the same for the stored procedure usp_
LoadXMLFromFile.

 2. We need to make sure that the destination table (_XML)
exists. If the table is not in a database, then the table needs
to be created. When the table exists, depending on the
business requirements, the data can be truncated or the table
can retain historical data. The following example shows a
truncated the table:

IF NOT EXISTS (SELECT * FROM sys.objects
 WHERE object_id = OBJECT_ID(N'[dbo].[_XML]') AND

type in (N'U'))
 CREATE TABLE _XML
 (
 ID int IDENTITY(1,1) PRIMARY KEY
 ,XMLFileName nvarchar(300)
 ,XML_LOAD XML, Created datetime
)
ELSE
 TRUNCATE TABLE _XML

 3. Declare several variables for processing needs:

CHAPTER 3 ■ MANIPULATING XML FILES

76

@DOS nvarchar(300) = '' – prepare DOS command.
@DirBaseLocation nvarchar(500) – verify and format
source path.
@FileName nvarchar(300) – to obtain the file name.
@SQL nvarchar(1000) = '' – prepare SQL for INSERT
process.
@files TABLE – to obtain all file name from source
location.

 4. Verify that last character is a backslash (\). We need to make
sure that the stored procedure receives a valid path with \
as the last character. If the last backslash is missing, then we
need to add a backslash to the provided path. For example:

IIF(RIGHT(@FilePath, 1) = '\', @FilePath, @FilePath + '\');

The IIF function was introduced by SQL Server version 2012.
The function has three parameters:

 I. Condition - RIGHT(@FilePath, 1) = '\' to check if the last
character is a \.

 II. True result – when the character is found, then do
nothing.

 III. False result – when not found, then add a \ to the
parameter.

 5. Prepare the Windows Command Shell command to
obtain a list of all files from the source location. The
Windows Command Shell command dir returns all files
and subdirectories for a specified path. However, the dir
command returns other information along with the file name.
“/B” indicates the use of bare format (file name only), and
“/O:-D” – specifies the sort order by date created, descending.

SET @DOS = 'dir /B /O:-D ' + @DirBaseLocation ;

 6. The extended stored procedure xp_cmdshell executes the
Windows Command Shell command and inserts all available
files from the source location.

INSERT @files
EXEC master..xp_cmdshell @DOS;

 7. Next, we need to iterate through each file with the extension
“.xml”. This can be accomplished by declaring a cursor for the
table variable and establishing a loop over the cursor.

CHAPTER 3 ■ MANIPULATING XML FILES

77

DECLARE cur CURSOR
FOR SELECT XMLFile
 FROM @files
 WHERE XMLFile like '%.xml';
OPEN cur;

FETCH NEXT
FROM cur
INTO @FileName;

WHILE @@FETCH_STATUS = 0

 8. Inside the WHILE loop, we need to compose the INSERT
statement for each file that reads the file content and inserts
the XML into the _XML table. For example:

INSERT INTO _XML
SELECT 'C:\TEMP\Categories.xml', X, GETDATE()
FROM OPENROWSET(BULK N'C:\TEMP\Categories.xml',
SINGLE_BLOB) AS tempXML(X);

The key to the SQL code above is the OPENROWSET() function.
The BULK option specifies that we will be reading all of the
contents from the source file in bulk. Then there is a space
after BULK, followed by the file location. The SINGLE_BLOB
option specifies that the file content is returned as a single
column with the data type VARBINARY(MAX), which is a good
fit for XML data. The alias syntax AS tempXML(X) must be in
table(column) format:

• tempXML – table alias

• X – column alias

Other OPENROWSET options SINGLE_CLOB (returns
varchar(max)) and SINGLE_NCLOB (returns nvarchar(max))
are not a good fit for XML import data, because only SINGLE_
BLOB supports all Windows encoding conversions.

 9. The system stored procedure sp_executesql executes the
composed SQL.

EXECUTE sp_executesql @SQL;

 10. The error handler allows the process to run and returns error
details with problematic SQL. Optionally, you can create a
table to log the errors.

Code sample to run the stored procedure:

EXEC dbo.usp_LoadXMLFromFile 'C:\Temp'

CHAPTER 3 ■ MANIPULATING XML FILES

78

However, the disadvantage is that you will lose the error handler logging, and if one
of the files that is being loaded fails, then the file will not be loaded.

3-4. Loading XML from SSIS Package
Problem
You want to load one or more XML files into the database using an SSIS ETL package.

Solution
SSIS provides a comprehensive set of tools to load XML files from a specified directory.

An SSIS package to load multiple XML files is more complex than the SSIS package
that writes an XML file, shown in Recipe 3-2, “Creating XML from an SSIS Package.” The
SSIS package LoadXMLFromFile is created based on the following business rules:

 1. Check whether.xml files exist in the source directory.

 2. If no files are found in the source location, stop package
execution.

 3. If matching files are found, truncate the destination table.

 4. Load XML content from all available files with the .xml
extension.

 5. Move all processed files into an Archive folder.

The LoadXMLFromFile SSIS package is composed of:

 1. A “Check If File Exists” Script Task, which uses C# code to
verify whether any XML files exist in the source location.

 2. The Precedence Constraint (green arrow between “Check
If File Exists” and “Truncate Table”) formula conditionally
verifies the FlagIsFileExist variable and plays the “STOP” or
“GO” role.

 3. An Execute SQL Task “Truncate Table” conditionally executes
T-SQL code to CREATE or TRUNCATE the table.

 4. The “Load XML Content” Foreach Loop Container iterates
through the XML files.

 5. The “Insert XML Data” Execute SQL Task executes a T-SQL
statement that inserts the XML file content into the _XML
table.

 6. The “Archive File” File System Task moves the XML file into
the Archive folder. Figure 3-15 illustrates the SSIS package.

CHAPTER 3 ■ MANIPULATING XML FILES

79

The following SSIS package variables were created to provide package flexibility and
functionality:

 1. ArchiveFile – Supplies the File System Task “Archive File,”
DestinationVariable property. Created with the expression
@[User::ArchiveLocation] + @[User::FileName].

 2. ArchiveLocation – Provides the destination path to the archive
folder.

 3. FileName – Mapped to the Foreach Loop Container “Load
XML Content.” Takes the XML file name from each iteration.

 4. FlagIsFileExist – Is assigned a “true” or “false” value and
controls the Precedence Constraint expression.

 5. SourceFile – Supplies the File System Task “Archive File,”
SourceVariable. Creates the expression
@[User::SourceLocation] + @[User::FileName].

 6. SourceLocation – Provides the source path to source folder.

 7. SQLScript – Composes T-SQL to insert the XML content into
the _XML table using the expression:

Figure 3-15. Showing “LoadXMLFromFile” SSIS package in design mode

CHAPTER 3 ■ MANIPULATING XML FILES

80

"INSERT INTO _XML
SELECT '" + @[User::SourceLocation] + @[User::FileName] + "', X, GETDATE()
FROM OPENROWSET(BULK N'" + @[User::SourceLocation] + @[User::FileName] +
"', SINGLE_BLOB) as tempXML(X)"

Figure 3-16 illustrates the variable list.

Now we will discuss the configuration of tasks. In this recipe, I will not go into much
detail because this topic was thoroughly covered in Recipe 3-2.

 1. Script Task “Check If File Exists.” This time the Script Task
checks whether the source location has files with extension
.xml. No other task can provide this functionality. Two
variables are mapped to the task:

• SourceLocation – ReadOnlyVariable.

• FlagIsFileExist – ReadWriteVariable. The code could modify
the variable value. Figure 3-17 illustrates the variables.

Figure 3-16. Showing the SSIS package variable list

CHAPTER 3 ■ MANIPULATING XML FILES

81

Click on the Edit Script command button. Add the following
code into the Main() function:

Dts.Variables["User::FlagIsFileExist"].Value
= (System.IO.Directory.GetFiles(Dts.Variab
les["User::SourceLocation"].Value.ToString(), "*.xml").
Length != 0);

Save and then Close the code window. Click the OK command
button to complete the settings.

 2. Precedence Constraint (green arrow between “Check If
File Exists” and “Truncate Table”). To load the Precedence
Constraint Editor, double-click on the arrow. On the
Precedence Constraint Editor:

• Select the Evaluation operation: Expression

• For the Expression property type the expression:
@[User::FlagIsFileExist] == true

Click OK to save the settings. Figure 3-18 illustrates the
Precedence Constraint Editor.

Figure 3-17. Demonstrating the Script Task variables mapping

CHAPTER 3 ■ MANIPULATING XML FILES

82

 3. Execute the SQL Task “Truncate Table.” Open the Execute SQL
Task Editor on the General menu:

• For the Connection property, add a new connection. Specify
the destination server and database.

• Add the following code to the SQLStatement property:

IF NOT EXISTS (SELECT * FROM sys.objects
 WHERE object_id = OBJECT_ID(N'[dbo].[_XML]')

AND type in (N'U'))
 CREATE TABLE _XML
 (
 ID int IDENTITY(1,1) PRIMARY KEY
 ,XMLFileName nvarchar(300)
 ,XML_LOAD XML, Created datetime
)
ELSE
 TRUNCATE TABLE _XML

Figure 3-18. Showing Precedence Constraint Editor settings

CHAPTER 3 ■ MANIPULATING XML FILES

83

 4. The “Load XML Content” Foreach Loop Container. Open the
Foreach Loop Editor and click on the Collect menu:

• Select an Expression then load the Expression Property
Editor.

• Select the Directory property and add the expression:
@[User::SourceLocation].

• Click OK to complete the settings. Figure 3-20 illustrates the
Expression Property Editor. The expression value is reflected
in the Folder property.

Figure 3-19. Showing Execute SQL Task settings

Click OK to complete the settings. Figure 3-19 illustrates the
Execute SQL Task Editor.

CHAPTER 3 ■ MANIPULATING XML FILES

84

• In the Files property, type the target file name pattern, which
is a Windows filename pattern. It utilizes Windows filename
wildcards in the pattern. Since we are searching for all XML
files to iterate, use the extension pattern *.xml to filter out all
files other than XML files.

• To Retrieve the file name property, select the Name and
extension. Figure 3-21 illustrates the Collection menu.

Figure 3-20. Showing the Expression Property Editor

CHAPTER 3 ■ MANIPULATING XML FILES

85

 5. Click the Variable Mapping menu. Select the FileName
variable from the drop-down list. Figure 3-22 illustrates the
Variable Mapping menu. Click OK to complete the settings.

Figure 3-21. Demonstrating Collection menu settings

CHAPTER 3 ■ MANIPULATING XML FILES

86

 6. The “Insert XML Data” Execute SQL Task. Open the Execute
SQL Task Editor. The General tab will be displayed by default.

• Select the existing Connection that was in the previous
Execute SQL Task.

• In the SQLStatement property, type “exec sp_executesql ?”.
The question mark specifies that the task will have an input
variable as a parameter.

Figure 3-23 illustrates the General menu.

Figure 3-22. Mapping FileName variable

CHAPTER 3 ■ MANIPULATING XML FILES

87

Click on the Parameter Mapping menu.

• Select the User::SQLScript variable from the drop-down
list. The SQLScript variable composes the INSERT T-SQL
statement through an expression formula. When the Foreach
Loop Container “Load XML Content” assigns the file name
to the FileName variable, then the SQLScript expression
formula constantly recomposes the new T-SQL code as
it loops through all the files in the specified directory, as
demonstrated in the following example:

INSERT INTO _XML
SELECT 'C:\TEMP\Categories.xml', X, GETDATE()
FROM OPENROWSET(BULK N'C:\TEMP\Categories.xml', SINGLE_BLOB)
as tempXML(X)

Figure 3-23. Showing General menu settings

CHAPTER 3 ■ MANIPULATING XML FILES

88

• For the Direction property select Input

• For the Data Type property select NVARCHAR

• For the Parameter Name Property, type 0

• For the Parameter Size Property, type 1000. Figure 3-24
illustrates the Parameter Mapping menu.

• Click OK to complete the settings.

 7. File System Task “Archive File”: open the File System Task
Editor. On General menu:

• Set the Operation property to “Rename file.”

• IsSourcePathVariable property set to “True.”

• For the SourceVariable property select the “User::SourceFile”
variable.

• Set the IsDestinationPathVariable property to “True.”

• For the DestinationVariable property select
“User::ArchiveFile” variable.

• Set the OverwriteDestination property to “True.”

• Click OK to complete the settings. Figure 3-25 illustrates the
File System Task Editor.

Figure 3-24. Showing Parameter Mapping menu settings

CHAPTER 3 ■ MANIPULATING XML FILES

89

I recommend setting the File System Task property (located on the right side of SSIS
IDE) DelayValidation to True in order to prevent an error in case the package loads and the
default file name does not exist in the source location. Figure 3-26 illustrates the property.

Figure 3-25. Showing File System Task settings

Figure 3-26. Showing settings for the property DelayValidation

CHAPTER 3 ■ MANIPULATING XML FILES

90

Congratulations, the SSIS package LoadXMLFromFile configuration is completed! Be
sure to save your work. Figure 3-27 shows your successfully completed SSIS Package.

How It Works
The SSIS package starts the process by inspecting the files with an .xml extension in
the source location indicated by the SourceLocation variable. The default value can be
modified outside the package. The code is as follows:

Dts.Variables["User::FlagIsFileExist"].Value = (System.IO.Directory.
GetFiles(Dts.Variables["User::SourceLocation"].Value.ToString(), "*.xml").
Length != 0);
returns count of the files (if any). Comparison condition !=0 returns
boolean values; true - when count greater than 0 or false – when count equal
0. The result value assignes to FlagIsFileExist variable.

The expression @[User::FlagIsFileExist] == true in the Precedence Constraint
conditionally inspects the User::FlagIsFileExist variable value. When the expression
returns true then the package goes to the next task. When the expression returns a
negative result (false), the package execution is terminated.

The “Truncate Table” Execute SQL Task removes the old value and prepares the
table _XML for a new set of rows.

Figure 3-27. Showing succeeded SSIS Package

CHAPTER 3 ■ MANIPULATING XML FILES

91

As the package progresses, the Foreach Loop Container is configured to inspect the
source location and retrieve all available files with .xml extension. The Foreach Loop
Container iterates the list of filenames and assigns each filename to the User::FileName
variable on each iteration.

The expression formula for the variable SQLScript changes the INSERT T-SQL
statement each time the FileName variable receives a new value. The “Insert XML Data”
Execute SQL Task sends the INSERT T-SQL statement to the SQL Server instance.

The File System Task sends the processed files from the source location to the
archive location.

An alternative to the File System Task is the Script Task, which is my personal
preference for those DBAs who feel uncomfortable with the C# programing language
used in the Script Task. Therefore, the File System Task is a set task, and there is no code
involved with the configuration of the task. For those who prefer more control over the
process of moving the files, I would suggest implementing the Script Task instead of the
File System Task. To configure the Script task, please complete the following steps:

• Drag and drop the Script Task inside the Foreach Loop Container
“Load XML Content.”

• Double-click on the Script Task to open the Script Task Editor.

• For the ScriptLanguage property, select Microsoft Visual C#.

• For the ReadOnlyVariable property, add the variable
User::ArchiveFile and User::SourceFile (highlight and copy the
variable’s name).

• Click the Edit Script… button.

• Go to Main() function and add following code:

string from = Dts.Variables["User::SourceFile"].Value.
ToString();
string to = Dts.Variables["User::ArchiveFile"].Value.
ToString();
System.IO.File.Move(from, to); // move a file

• Save and close the C# Visual Studio

• Click the OK button to complete the configuration.

As you can see from this example, with a little bit of minor coding, you now have full
control over moving the files from the source location to the archive directory.

The SSIS package can be deployed through the SQL Server Agent job, which will
run automatically on a customized schedule. The package can also be executed from the
stored procedure. Listing 3-7 demonstrates how to execute the SSIS package from the
stored procedure.

CHAPTER 3 ■ MANIPULATING XML FILES

92

Listing 3-7. Showing the code to execute the SSIS package from a stored procedure

DECLARE @SourceLocation VARCHAR(200) = 'C:\\TEMP\\';
DECLARE @ArchiveLocation VARCHAR(200) = 'C:\\TEMP\\Archive\\';

SET @SQLQuery = 'DTEXEC /FILE ^"C:\SQL2016\Chapter3\CreateXMLFile\
CreateXMLFile\LoadXMLFromFile.dtsx^" '
SET @SQLQuery = @SQLQuery + ' /SET \Package.Variables[SourceLocation].
Value;^"'+ @SourceLocation + '^"
/SET \Package.Variables[ArchiveLocation].Value;^"'+ @ArchiveLocation + '^"';
EXEC master..xp_cmdshell @SQLQuery;

3-5. Implementing a CLR Solution
Problem
You want to create SQL Server objects to write and read XML files that that do not
implement extended stored procedures and provide more secure functionalities.

Solution
The CLR (Common Language Runtime) functions could extend T-SQL functionality and
operate the same way as a SQL Server user-defined object (user-defined functions, for
this recipe solution). However, CRL objects require a dll (dynamic link library) file format
(extension .dll) that is used for Windows program codes and procedures. For this recipe,
the code demonstrates using Visual Studio C#. Listing 3-8 demonstrates the code for the
C# file.

Listing 3-8. Creating WriteXMLFile and ReadXMLFile SQL Server CLR functions

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.IO;

public partial class XMLFileETL
{
 [SqlFunction]
 public static SqlString WriteXMLFile(SqlString XMLContent,
 SqlString DirPath,
 SqlString FileName,
 SqlBoolean DateStamp)
 {
 /* Parameters:
 XMLContent: Contains XML document.

CHAPTER 3 ■ MANIPULATING XML FILES

93

 DirPath: The directory path to write to.
 FileName: The file name.
 DateStamp: Determines add datetime stamp to the file or not.
 */

 try
 {
 string strXMLFile = "";
 // Check input parameters for NULL.
 if (!XMLContent.IsNull &&
 !DirPath.IsNull &&
 !FileName.IsNull)
 {
 // Build File Path string
 string strStamp = (DateStamp) ? "_" + DateTime.Now.To

String("yyyyMMdd_HHmmss") : "";
 strXMLFile = DirPath.Value + "\\" + FileName.Value +

strStamp + ".xml";

 // Initialize a new instance of the StreamWriter class
 using (var newFile = new StreamWriter(strXMLFile.Value))
 {
 // Write the file.
 newFile.WriteLine(XMLContent);
 }
 // Return the file path on success.
 return strXMLFile;
 }
 else
 // Return warning when any of input value is NULL.
 return "Input parameters with NULL detected";
 }
 catch (Exception ex)
 {
 // Return null on error.
 return ex.Message.ToString();
 }
 }
 [SqlFunction]
 public static SqlString ReadXMLFile(SqlString FilePath)
 {
 // Parameters:
 // FilePath: The file path to the XML file.
 try
 {
 // Declare local variable
 string fileContent = "";

CHAPTER 3 ■ MANIPULATING XML FILES

94

 // Check paremeter for null.
 if (!FilePath.IsNull)
 {
 // Initialize a new instance of the StreamReader class for

the specified path.
 var fileStream = new FileStream(FilePath.Value, FileMode.

Open, FileAccess.Read);
 using (var streamReader = new StreamReader(fileStream))
 {
 fileContent = streamReader.ReadToEnd();
 }
 }
 // Return XML document
 return fileContent;
 }
 catch (Exception ex)
 {
 // Send exception message on error.
 return ex.Message.ToString();
 }
 }
};

To register the C# code file:

• Create folder “Chapter3.”

• Save the XML_ETL.cs file (the file available in the book code
samples) the in “Chapter3” folder.

• Open Windows Command Line (cmd.exe) and then run the
command line that is shown in Listing 3-9. The cmd.exe output is
shown in Figure 3-28.

Listing 3-9. Eemonstrating the Command Line to register the dll.

C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe /target:library /out:C:\
Chapter3\ReadWriteXML.dll C:\Chapter3\XML_ETL.cs

Figure 3-28. Showing the command-line result

http://dx.doi.org/10.1007/978-1-4842-3117-3_3
http://dx.doi.org/10.1007/978-1-4842-3117-3_3

CHAPTER 3 ■ MANIPULATING XML FILES

95

Listing 3-10 demonstrates the T-SQL solution to configure the server and database.
Created scalar functions are shown in Figure 3-29.

Listing 3-10. Creating CLR functions

-- Enable CLR
USE master
GO
 sp_configure 'clr enabled', 1;
GO
RECONFIGURE
GO
-- Configure
USE AdventureWorks
GO

ALTER DATABASE AdventureWorks SET TRUSTWORTHY ON;

GO
-- Create Assembly
CREATE ASSEMBLY ReadWriteXML
 FROM 'C:\Chapter3\ReadWriteXML.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS;
GO

-- Create functions
CREATE FUNCTION dbo.WriteXMLFile(
 @Content nvarchar(MAX),
 @DirPath nvarchar(500),
 @FileName nvarchar(100),
 @DateStamp bit)
RETURNS nvarchar(MAX) WITH EXECUTE AS CALLER
AS
EXTERNAL NAME ReadWriteXML.XMLFileETL.WriteXMLFile;
GO

CREATE FUNCTION dbo.ReadXMLFile(@FilePath nvarchar(500))
RETURNS nvarchar(MAX) WITH EXECUTE AS CALLER
AS
EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile;
GO

CHAPTER 3 ■ MANIPULATING XML FILES

96

How It Works
The CLR project combines reading and writing XML files. It is more practical to have
several C# functions in one class rather creating one class per function. Therefore, both
read and write functionality is wrapped into one C# class object. To create a C# file, MS
Visual Studio C# or VB is the tool to use. Covering how to create Visual Studio project is
beyond the scope of this this book. There are many resources available that explain how
to create CRL projects in great detail.

The top part of the C# code lists namespaces or libraries that are necessary to
recognize code functions and methods. The using method adds a namespace to a class.
When a new project starts, a class lists default namespaces. The System.IO namespace
that contains reading and writing as part of the file’s functionality is not part of the default
list. Therefore, you must add the System.IO namespace manually. A CLR class must
have a partial type. The procedure attribute specifies a SQL Server target object. For
example: a user-defined function is the [SQLFunction] attribute, a stored procedure is
[SQLProcedure], etc. A CLR procedure type must be public static.

The WriteXMLFile function returns a created file full path on success and an error
message on failure or when a NULL parameter value is detected.

The function has four input parameters:

• XMLContent – required, data type SQLString, Contains XML
document.

• DirPath – required, data type SQLString, the directory path to
write to.

• FileName – required, data type SQLString, the file name.

• DateStamp – required, data type SQLBoolean, determines
whether to add a datetime stamp to the file or not.

Figure 3-29. Showing created CLR functions

CHAPTER 3 ■ MANIPULATING XML FILES

97

After validating the input parameters, the next step is to build up a file path. First, the
parameter DateStamp needs to check whether a datetime stamp will be part of the file
name, then concatenate the parameters and the variable:

string strStamp = (DateStamp) ? "_"
 + DateTime.Now.ToString("yyyyMMdd_HHmmss") : "";
 strXMLFile = DirPath.Value + "\\" + FileName.Value + strStamp + ".xml";

As a final point – write an XML file with the provided path:

 using (var newFile = new StreamWriter(strXMLFile.Value))
 {
 newFile.WriteLine(XMLContent);
 }

The ReadXMLFile function returns XML file content on success and an error
message on failure. The function has one parameter:

• FilePath – required, data type SQLString, the file path
to the XML file.

When the FileStream function establishes a connection to the XML file, then the
StreamReader function reads the entire file and the ReadXMLFile function returns the
XML document:

var fileStream = new FileStream(FilePath.Value, FileMode.Open,
FileAccess.Read);
using (var streamReader = new StreamReader(fileStream))
{
fileContent = streamReader.ReadToEnd();
}
return fileContent;

If you develop a CRL procedure with Visual Studio, then you could build the solution
to create a dll file or run a Command Line to build and register a dll file:

C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe /target:library /out:C:\
Chapter3\ReadWriteXML.dll C:\Chapter3\XML_ETL.cs

When the dll file is ready then we are moving to the SSMS to:

 1. Make sure that the ‘clr enabled’ option is enabled:

sp_configure 'clr enabled', 1

 2. Swith to user database and SET TRUSTWORTHY ON.

CHAPTER 3 ■ MANIPULATING XML FILES

98

 3. Create an assembly that sets the reference to dll:

CREATE ASSEMBLY ReadWriteXML FROM
'C:\Chapter3\ReadWriteXML.dll'
WITH PERMISSION_SET = EXTERNAL_ACCESS

For the assembly, after the name and dll file path are specified, you need to set the
PERMISSION_SET argument that has three options:

• SAFE – preferred, used when a dll cannot access external system
resources, for example, the registry, files, environment variables,
or the network.

• EXTERNAL_ACCESS – the dll can access to the registry, files,
and environment variables. However, these cannot be accessed
outside an instance of SQL Server.

• UNSAFE – unrestricted access.

The ReadWriteXML.dll accesses to files; therefore, the EXTERNAL_ACCESS option is
set to the PERMISSION_SET for the assembly of ReadWriteXML. Once the ASSEMBLY is
created, the functions can now be created. For example:

CREATE FUNCTION dbo.ReadXMLFile(@FilePath nvarchar(500))
RETURNS nvarchar(MAX) WITH EXECUTE AS CALLER
AS
EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile

In the CREATE FUNCTION section after the schema and name, you need to list all
of the parameters to match to the function in the C# dll. Make sure that the positions and
the data types are the same. The RETURNS section must match the data type as well. The
EXTERNAL NAME has three references, for example:

EXTERNAL NAME ReadWriteXML.XMLFileETL.ReadXMLFile

 1. The ASSEMBLY name

 2. CLR class name

 3. CLR function name

Listing 3-11 demonstrates the execution of T_SQL for the WriteXMLFile functions.
The result is shown in Figure 3-30.

Listing 3-11. Executing the WriteXMLFile functions

SELECT dbo.WriteXMLFile(N'<Category>
 <CategoryName>Accessories</CategoryName>
 <Subcategory>
 <SubcategoryName>Bike Racks</SubcategoryName>
 <Product>
 <Name>Hitch Rack - 4-Bike</Name>

CHAPTER 3 ■ MANIPULATING XML FILES

99

 <Number>RA-H123</Number>
 <Price>120.0000</Price>
 </Product>
 </Subcategory>
 <Subcategory>
 <SubcategoryName>Bike Stands</SubcategoryName>
 <Product>
 <Name>All-Purpose Bike Stand</Name>
 <Number>ST-1401</Number>
 <Price>159.0000</Price>
 </Product>
 </Subcategory>
</Category>', 'C:\Chapter3', 'CategoriesXML', 0) NewFilePath

Listing 3-12 demonstrates the execution of T_SQL for the ReadXMLFile functions.
The result is shown in Figure 3-31.

Listing 3-12. Executing the ReadXMLFile functions

SELECT cast(dbo.ReadXMLFile('C:\Chapter3\CategoriesXML.xml') as xml) XMLFile

The CRL procedures provide a secure way to extend SQL Server functionality.
However, programming skills are preferred when dealing with CLR procedures.

Summary
This chapter demonstrates a variety of solutions detailing how to write the XML result
into a file, and how to load the XML file (or files) from the source location. Please be
aware that this is not the only solution, since in today’s world, such tasks could be
completed using other technologies, such as PowerShell, .NET applications (either C#
or VB.NET), among others. However, these are excellent solutions to compiling SSIS
packaged using SQL Server the T-SQL code.

In the next chapter the recipes will cover how to convert an XML document into rows
and columns, also known as “XML Shredding.”

Figure 3-30. Showing the function result

Figure 3-31. Showing the function result

101© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_4

CHAPTER 4

Shredding XML

Converting XML data into relational columns and rows is not an easy process. The
OPEXML function was introduced to shred XML data in SQL Server 2000, and then XML
shredding was improved by the XPath language (also known as XQuery) in SQL Server
2005. Since then, the process of querying XML data became a solid solution to deliver
results. This chapter will demonstrate how to query XML data as a single unit and return
the retrieved data across a table’s column.

4-1. Shredding XML with Internal ENTITY
Declarations
Problem
You want to return a rowset result out of the XML data that is passing to a stored
procedure as a parameter or retrieved out of the table as the single XML value.

Solution
The OPEXML function provides a comprehensive solution to query XML data assigned
to VARCHAR, NVARCHAR, and XML data typed variable and parameters. The T-SQL code
in Listing 4-1 demonstrates the solution. A sample set of data can be found in the
AdventureWorks database.

Listing 4-1. Shredding the XML with the OPENXML function

DECLARE @xml nvarchar(max),
 @idoc int,
 @ns varchar(200) =
N'<root xmlns:df="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions" />';

SELECT @xml = cast(Instructions as nvarchar(max))
FROM [Production].[ProductModel]
WHERE ProductModelID = 7;

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 4 ■ SHREDDING XML

102

EXECUTE sp_xml:preparedocument @idoc OUTPUT, @xml, @ns;

SELECT StepInstruction,
 LaborStation,
 LaborHours,
 LotSize,
 MachineHours,
 SetupHours,
 Material,
 Tool
FROM OPENXML(@idoc, 'df:root/df:Location/df:step', 2)
WITH (
 LaborStation INT '../@LocationID',
 LaborHours REAL '../@LaborHours',
 LotSize INT '../@LotSize ',
 MachineHours REAL '../@MachineHours ',
 SetupHours REAL '../@SetupHours ',
 Material VARCHAR(100) 'df:material',
 Tool VARCHAR(100) 'df:tool',
 StepInstruction VARCHAR(2000) '.'
);

EXECUTE sp_xml:removedocument @idoc;

The query output is shown in Figure 4-1.

How It Works
Before we shred the XML, the first step is to determine the XML structure and which
elements and attributes will be a part of the result set. This can be done on the
AdventureWorks database executing SQL to analyze the XML data as shown in Listing 4-2.

Figure 4-1. Showing the process output

CHAPTER 4 ■ SHREDDING XML

103

Listing 4-2. Query to retrieve sample XML instructions for one product model

SELECT Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

The XML result is too large to display in a book page. For this reason, the XML
snippet in Listing 4-3 has been formatted for demonstration purposes.

Listing 4-3. XML Snippet demonstrating the result data

<root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions">
 Adventure Works CyclesFR-210B Instructions....
 <Location LaborHours="2.5"
 LotSize="100" MachineHours="3" SetupHours="0.5" LocationID="10">
 Work Center 10 - Frame Forming...
 <step>Insert
 <material>aluminum sheet MS-2341</material> into the
 <tool>T-85A framing tool</tool>.
 </step>
...
 </Location>
</root>

The <root> element has a namespace that must be part of the XML initialization of
the OPENXML function. Therefore, several variables were declared. The purpose for these
variables is the following:

 1. @xml XML – Retrieve the XML data as a single unit from the
table.

 2. @idoc INT – Store the returned document handle from the
sp_xml:preparedocument system stored procedure to allow
OPENXML to access the XML data.

 3. @ns VARCHAR(200) – Store the XML namespace to supply to
the sp_xml:preparedocument system stored procedure, and
the parameter xpath_namespaces to specify the namespace
declaration.

 ■ Note When XML has a namespace, the namespace cannot be avoided. The OPENXML

function will not return the result set when the namespace is not declared and specified

in the sp_xml:preparedocument system stored procedure. The namespaces help to avoid

name conflict and uniquely identify the elements and attributes in the XML data.

CHAPTER 4 ■ SHREDDING XML

104

The value assigned to the @ns variable needs more clarification. In Listing 4-1, the
namespace declaration in the <root> element is a little different from the one assigned to
the @ns variable. The root element namespace looks like Listing 4-4.

Listing 4-4. Namespace declaration in the <root> element

<root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
ProductModelManuInstructions">

The @ns variable namespace declaration in the sample code looks slightly different,
as shown in Listing 4-5.

Listing 4-5. @ns variable namespace declaration

<root xmlns:df="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions" />

The value of the variable @ns has an extra part xmlns:df=…, where the df (short for
“default”) can specify any alias. The most commonly used alias is ns. The namespace is
used as a reference to the elements of the OPENXML function. In simple terms, it’s the same
reference as if the ProductModel table were referenced without the schema “Production.”
We must use Production.ProductModel to provide a reference to the table; otherwise
SSMS will throw an error: “object not found.” The main difference is that the XML parser
will not raise an error and will simply ignore the elements and the element’s attributes.
Therefore, no results will be returned.

The code in Listing 4-6 builds on Listing 4-2 by assigning the result to an XML
variable:

Listing 4-6. Assigning XML sample data to an XML variable

SELECT @xml = Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

The system stored procedure sp_xml:preparedocument uses the MSXML parser
(Msxmlsql.dll) to parse the XML data, and returns a numeric (INT data type) value that
provides a pointer (variable @doc) to access the XML.

The stored procedure sp_xml:preparedocument has three parameters:

 1. @hdoc INT OUTPUT – required, integer data type.

 2. @xmltext NTEXT – required, can be any texual data type
(VARCHAR, NVARCHAR, XML, TEXT, or NTEXT). The data type used
must be implicitly convertible to the legacy NTEXT data type;
so VARBINARY is not allowed.

 3. @xpath_namespaces NTEXT – optional, can be any texual data
type (VARCHAR, NVARCHAR, XML, TEXT, NTEXT, or XML). Note the
type conversion restrictions on this parameter are the same as
for the @xmltext parameter.

CHAPTER 4 ■ SHREDDING XML

105

When the XML document is loaded into the memory after the stored procedure
sp_xml:preparedocument is executed and retuned, the XML document handler (memory
pointer) returns the value by outputting value into an @doc variable, as demonstrated in
Listing 4-7.

Listing 4-7. Calling the sp_xml:preparedocument procedure

EXECUTE sp_xml:preparedocument @doc OUTPUT, @xml, @ns;

Now the process is ready to convert the XML document into a relational result set.
The query that returns the result set has three parts:

• SELECT clause – delivers the result to the user.

• OPENXML function – provides access to the XML document and
sets the XPath to the startup element.

• WITH construct – defines the table that describes each element
and attribute that form the XML data.

The XML shredding process starts with the OPENXML function. The OPENXML
function has three input parameters:

 1. @idoc INT – [required] is an internal representation of
an XML document that is created by executing the sp_
xml:preparedocument stored procedure.

 2. @rowpattern NVARCHAR – [required] is the XPath pattern that
identifies the startup element

 3. @flags BYTE – [optional] indicates the mapping for the XML

document. The flag values are listed in Table 4-1.

The OPENXML function is part of the FROM clause because the XML data is the data
source. Listing 4-1 demonstrated the OPENXML function set with the values in the FROM
clause: FROM OPENXML(@idoc, 'df:root/df:Location/df:step', 2).

Table 4-1. Listing values for the @flags parameter

Flag Description

0 Defaults to attribute-centric mapping.

1 Specifies attribute-centric mapping of the data.

2 Specifies element-centric mapping of the data.

8 Can be combined with flag 1 or flag 2, with the bitwise OR operator. This
flag indicates that the consumed data should not be copied to the overflow
property @mp:xmltext.

CHAPTER 4 ■ SHREDDING XML

106

The first parameter is straightforward output from the stored procedure sp_
xml:preparedocument, where we provide the function with output that is stored in the
variable. The XPath pattern is not intuitive, and requires detailed XML structure analysis.
Let’s remove the data from the XML that is shown in Sample 4-1, to isolate and analyze
the structure, as shown in Listing 4-8.

Listing 4-8. Showing snippet of bare XML structure

<root>
 <Location>
 <step>
 <material></material>
 <tool></tool>
 </step>
 <step>
 <material></material>
 <tool></tool>
 </step>
...
 </Location>
...
</root>

The rule that I am using to properly define XPath and shred the XML is this:

• When the same child element is listed more than once, the XPath
pattern must point to that element.

• The hierarchy for the <step> element is: root/Location/step.

• This analysis is very important to specify an efficient XPath for
the OPENXML function. The query from Listing 4-1 returns the
result where the LaborStation attribute (property of the Location
element) with value “10” has 6 steps in this particular example,
however the number of steps can vary. The element hierarchy
from Listing 4-8 is root/Location/step/, so both <material> and
<tool> are the child step elements, and they each contain a single
text node. Therefore, XPath root/Location/step will satisfy the
@rowpattern parameter for an OPENXML function. Later, we will
provide a precise path for each element and attribute data cell in
the WITH construct.

For the optional parameter @flags we have provided a value of 2, because the XPath
final point <step> is an element, and the <Location> element has several attributes that
will be part of the result set. This combination of element-centric and attribute-centric
properties is the best scenario for @flags = 2.

The WITH construct provides the specification for the resulting output. The XML
is hierarchical data, so in order to retrieve a specific element and attribute, we need to
provide a precise source data location. In most cases the source data is located outside of
the location that is specified for the @rowpattern parameter.

CHAPTER 4 ■ SHREDDING XML

107

The hierarchical structure of XML data can be compared to the Windows folder/file
structure. Imagine navigating the folder structure. In simple terms, if you need to copy
several files from different folders into a new folder, then you are navigating from one
folder to another to collect all needed files. Therefore, the WITH construct builds the table
that will return the collected data from elements and attributes. Unlike the tables, the
WITH construct has a column name, datatype, and the XML item location path. The WITH
construct from Listing 4-1, reproduced in Listing 4-9, defines the shape.

Listing 4-9. WITH clause defining XML structure

WITH (
 LaborStation INT '../@LocationID',
 LaborHours REAL '../@LaborHours',
 LotSize INT '../@LotSize ',
 MachineHours REAL '../@MachineHours ',
 SetupHours REAL '../@SetupHours ',
 Material VARCHAR(100) 'df:material',
 Tool VARCHAR(100) 'df:tool',
 StepInstruction VARCHAR(2000) '.'
)

The LocationID, LaborHours, LotSize, and MachineHours are attributes of the
<Location> element (see Listing 4-3), which is the parent of the <step> element. To
retrieve the data from these attributes, we need to move one level up from the <step>
element, because the OPENXML function is set to the <step> element, which is one step
below. In order to have XML read the proper step and account for it reading one step
below, you must move one step above. The “LaborStation” is an alias for the LocationID
attribute, and the data type is INT because LocationID is a whole number. The path
structure for ‘../@LocationID’ value means:

• “../” - move one level up from current location.

• “@” - specifies that this is an attribute.

• LocationID – is the original attribute name.

The same mechanism applies to other LaborHours, LotSize, and MachineHours
attributes.

The <material> and <tool> elements are both children of the <step> element.
Therefore, we need to move down to access the elements’ data, for example:

• Material - element alias.

• VARCHAR(100) - presented data type.

• ‘df:material’ – df: namespace reference, and material is the
element name.

The last column is StepInstruction, where the data type is VARCHAR(2000), and ‘ . ’
means that the current context node is the final element from the XPath rowpattern
parameter.

CHAPTER 4 ■ SHREDDING XML

108

The SELECT clause returns the following columns, which are aliased in the WITH
construct:

• StepInstruction – alias for the <step> element.

• LaborStation – alias for the LocationID attribute.

• LaborHours – alias for the LaborHours attribute.

• LotSize – alias for the LotSize attribute.

• MachineHours – alias for the MachineHours attribute.

• SetupHours – alias for the SetupHours attribute.

• Material – alias for the <material> element.

• Tool – alias for the <tool> element.

Finally, we need to deallocate the XML document from the memory. The stored
procedure sp_xml:removedocument removes the XML document when we set the XML
handler to the required parameter:

EXECUTE sp_xml:removedocument @idoc;

 ■ Caution SQL Server does not provide garbage collection for XML documents

processed by the sp_xml:preparedocument stored procedure. The XML document is stored

in the internal cache of SQL Server, and the MSXML parser uses one-eighth of the total

memory available for SQL Server. Therefore, memory deallocation must be set explicitly by

the sp_xml:removedocument stored procedure. Otherwise, the server will have a memory

leak problem and will periodically restart the procedure, which requires server memory.

4-2. Migrating OPENXML into XQuery
Problem
You need to find an alternative to OPENXML function to shred the XML documents.

Solution
SQL Server 2005 introduced the XML data type and XQuery language support via five
XML data type methods: nodes(), value(), query(),exist(), and modify(). These methods
allow comprehensive manipulation of XML data. For the XML data type, the legacy
stored procedures sp_xml:preparedocument and sp_xml:removedocument are obsolete
(see Solution 4-1 for details), and are unused. Listing 4-10 shows how to migrate the
OPENXML() function process to XQuery code using the nodes() and value() methods.

CHAPTER 4 ■ SHREDDING XML

109

Listing 4-10. Migrating OPENXML into XQuery

DECLARE @xml XML;

SELECT @xml = Instructions
FROM [Production].[ProductModel]
WHERE ProductModelID = 7;

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT RTRIM(LTRIM(REPLACE(instruct.value('.', 'VARCHAR(2000)'), CHAR(10),
''))) AS StepInstruction,
 instruct.value('../@LocationID', 'INT') AS LaborStation,
 instruct.value('../@LaborHours', 'REAL') AS LaborHours,
 instruct.value('../@LotSize', 'INT') AS LotSize,
 instruct.value('../@MachineHours', 'REAL') AS MachineHours,
 instruct.value('../@SetupHours', 'REAL') AS SetupHours,
 instruct.value('df:material[1]', 'VARCHAR(100) ') AS Material,
 instruct.value('df:tool[1]', 'VARCHAR(100) ') AS Tool
FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct);

 ■ Caution All XQuery methods are case sensitive; therefore, to avoid an error, the

methods nodes(), value(), query(), exist(), and modify() must be used in lowercase only.

How It Works
The OPENXML function was introduced in SQL Server 2000 where the XML data type was
nonexistent at the time. Therefore, each XML document needed to be converted from
data types such as VARCHAR, NVARCHAR, BINARY, IMAGE, TEXT, and NTEXT, into an internal
format that could be manipulated by MSXML. This was accomplished with the sp_
xml:preparedocument stored procedure.

Since SQL Server 2005, when the XML data type was implemented, the XML
shredding and the building process were dramatically simplified. The XQuery language
works with the XML data type directly. Therefore, extra steps to prepare XML data are
no longer necessary when the shredding process is based on the XML data type, or
the XML data can be explicitly converted to the XML data type using the CAST() and
CONVERT() functions.

The difference between the CONVERT and CAST functions is that the CONVERT
function is not part of an ANSI-SQL specification, whereas CAST is. However, most
importantly, CONVERT has a third optional parameter that provides additional
functionality to the conversion process, such a controlling whitespace handling or
applying an inline Document Type Definition (DTD). The following is a description of
XML Style Parameter Values for the CONVERT function:

• 0 – (default) Discard insignificant whitespace in the XML and
does not allow the use of an internal DTD.

CHAPTER 4 ■ SHREDDING XML

110

• 1 – Preserve insignificant whitespace in the XML. However, does
not allow the use of an internal DTD.

• 2 – Discards insignificant whitespace and enable limited
internal DTD

• 3 – Preserve insignificant whitespace and enable limited
internal DTD.

Listing 4-2 demonstrates the solution to migrate the OPENXML function into the
XQuery language. The first line declares the XML variable, as shown in Listing 4-11.

Listing 4-11. Declaring an XML variable

DECLARE @xml XML;

Next, we assign the XML data value to the variable, as shown in Listing 4-12.

Listing 4-12. Populating the XML variable

SELECT @xml = Instructions
FROM Production.ProductModel
WHERE ProductModelID = 7;

To shred an XML document that has an xml namespace (as in Listing 4-2), we need
to declare the instance of the XML namespace. The SQL Server WITH XMLNAMESPACES
clause allows us to list and instantiate the XML namespaces. The declaration syntax for
the WITH XMLNAMESPACES clause combines the WITH and XMLNAMESPACES keywords. Always
make sure that a semicolon (;) precedes the WITH construct when writing this T-SQL code.

 ■ Tip It’s a good practice to have all SQL statements terminated with a semicolon (;). The

WITH XMLNAMESPACES clause, like the WITH CTE clause, must always be separated from

preceding statements by a semicolon. Otherwise, SQL Server will throw an error.

To match the legacy syntax from Listing 4-1, this example creates the same xml
namespace name, with “df”, as shown in Listing 4-13.

Listing 4-13. Declaring the XML namespace with prefix “df”

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)

However, when the XML document has only a single XML namespace, the
namespace can be declared as DEFAULT with no explicit namespace prefix requirements
for the XML namespace. Listing 4-14 demonstrates shredding of the XML document with
the default xml namespace.

CHAPTER 4 ■ SHREDDING XML

111

Listing 4-14. Shredding the XML document with DEFAULT xml namespace and
again with “df” prefix

WITH XMLNAMESPACES(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/
07/adventure-works/ProductModelManuInstructions')
SELECT RTRIM(LTRIM(REPLACE(instruct.value('.', 'varchar(2000)'),
CHAR(10), ''))) AS StepInstruction
 instruct.value('../@LocationID', 'int') AS LaborStation,
 instruct.value('../@LaborHours', 'real') AS LaborHours,
 instruct.value('../@LotSize', 'int') AS LotSize,
 instruct.value('../@MachineHours', 'real') AS MachineHours,
 instruct.value('../@SetupHours', 'real') AS SetupHours,
 instruct.value('material[1]', 'varchar(100) ') AS Material,
 instruct.value('tool[1]', 'varchar(100) ') AS Tool
FROM @xml.nodes('root/Location/step') prod(instruct);

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT RTRIM(LTRIM(REPLACE(instruct.value('.', 'varchar(2000)'), CHAR(10),
''))) AS StepInstruction,
 instruct.value('../@LocationID', 'int') AS LaborStation,
 instruct.value('../@LaborHours', 'real') AS LaborHours,
 instruct.value('../@LotSize', 'int') AS LotSize,
 instruct.value('../@MachineHours', 'real') AS MachineHours,
 instruct.value('../@SetupHours', 'real') AS SetupHours,
 instruct.value('df:material[1]', 'varchar(100) ') AS Material,
 instruct.value('df:tool[1]', 'varchar(100) ') AS Tool
FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct);

To return the table structured result set from the XML document, we need to provide
an element path and then denote the element and attribute values. The nodes() method
is similar to the OPENXML function for providing the element reference; however the
differences are the following:

Set access to XML document from the variable using OPENXML

FROM OPENXML(@doc, 'df:root/df:Location/df:step', 2)

Compare to set access to the XML variable using nodes() method

FROM @xml.nodes('df:root/df:Location/df:step') prod(instruct)

 1. The main differences between the XML data type nodes()
method and the OPENXML function that XQuery is expecting
the XML data type; therefore, the XML handler (@doc variable)
is not needed.

 2. The mapping @flags parameter is not used by the nodes()
method.

CHAPTER 4 ■ SHREDDING XML

112

The element location path is the same for both the OPENXML function and nodes
methods. It is important to note that the nodes() method requires a fully qualified alias,
such as table(column). In Listing 4-14 the alias is prod(instruct). Within my personal SQL
scripts, I use the T(C) alias, which is short and simple, but in a production environment I
would recommend being more specific than T(C).

To construct XML output the OPENXML function must use the WITH() construct while,
when using XQuery, the value() method denotes the element and attribute values and
the WITH() construct is not used. The major difference between the WITH() construct and
the value() method is that the WITH() construct syntax sequence is ALIAS + DATATYPE
+ ITEM, while the value() method all is the reverse: ITEM + DATATYPE + ALIAS; for
example:

Part of OPENXML out put specification
WITH (
 LaborStation INT '../@LocationID',
 LaborHours REAL '../@LaborHours',
 LotSize INT '../@LotSize ',
 MachineHours REAL '../@MachineHours ',
 SetupHours REAL '../@SetupHours ',
 Material VARCHAR(100) 'df:material',
 Tool VARCHAR(100) 'df:tool',
 StepInstruction VARCHAR(2000) '.'
)
Compare to XQuery out put specificationSELECT instruct.value('.',
'varchar(2000)') AS StepInstruction,
 instruct.value('../@LocationID', 'int') AS LaborStation,
 instruct.value('../@LaborHours', 'real') AS LaborHours,
 instruct.value('../@LotSize', 'int') AS LotSize,
 instruct.value('../@MachineHours', 'real') AS MachineHours,
 instruct.value('../@SetupHours', 'real') AS SetupHours,
 instruct.value('df:material[1]', 'varchar(100) ') AS Material,
 instruct.value('df:tool[1]', 'varchar(100) ') AS Tool

The value() method has two parameters:

 1. The XPath path indicating the element or attribute.

 2. The target data type from conversion.

Both parameters are NVARCHAR; therefore, the values must be surrounded by single
quotes, and value() method must be based on the column alias that is specified in the
nodes() method. If references are not specified, the error “Msg 195, Level 15, State 10, Line
‘value’ is not a recognized built-in function name” will be thrown.

Another important difference between the OPENXML() WITH clause and the value()
method is that the value() method requires a singleton atomic value, indicated by a one-
based index reference (“[1]”) for element references. For example:

instruct.value('df:material[1]', VARCHAR(100)') AS Material

CHAPTER 4 ■ SHREDDING XML

113

The singleton atomic value indicated has a one-based array index (most modern
programming languages implement a zero-based array index). That provides the ability
for the XML data to list the same element name multiple times. For example, the XML has
the element Address listed several times:

<Address>Line 1</Address>
<Address>Line 2</Address>
<Address>Line 3</Address>

In this case, in order to display all three Address lines, the value() method code
would look like the following:

c.value('Address[1]', 'VARCHAR(100)') AS Line1
c.value('Address[2]', 'VARCHAR(100)') AS Line2
c.value('Address[3]', 'VARCHAR(100)') AS Line3

When the singleton is missing then the compiler will throw the error: “Msg 2389,
Level 16, State 1, Line # XQuery [value()]: ‘value()’ requires a singleton (or empty
sequence).” Therefore, make sure the singleton atomic value always provides for an
element when using the value() method.

4-3. Shredding XML from a Column
Problem
Shredding the XML documents that is shown in previous recipes (4-1 and 4-2) is a cursor
process required to navigate from one XML value to another. You need to shred the XML
across the table’s column without opening the cursor.

Solution
Recipes 4-1 and 4-2 are based on shredding the XML content of a single XML variable one
at a time. However, in many situations we need to shred the XML across an entire table or
at least multiple rows, as demonstrated in Listing 4-15.

Listing 4-15. Showing the XML from table Sales.Store column Demographics

<StoreSurvey xmlns="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/StoreSurvey">
 <AnnualSales>800000</AnnualSales>
 <AnnualRevenue>80000</AnnualRevenue>
 <BankName>United Security</BankName>
 <BusinessType>BM</BusinessType>
 <YearOpened>1996</YearOpened>
 <Specialty>Mountain</Specialty>
 <SquareFeet>21000</SquareFeet>

CHAPTER 4 ■ SHREDDING XML

114

 <Brands>2</Brands>
 <Internet>ISDN</Internet>
 <NumberEmployees>13</NumberEmployees>
</StoreSurvey>

The XML data type allows you to shred the XML data from not only an XML variable,
but also directly from an XML type column in a table. Listing 4-16 demonstrates how to
query the XML column.

Listing 4-16. Showing the XQuery code to return the result set from the XML column

WITH XMLNAMESPACES(default 'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/StoreSurvey')
SELECT details.value('AnnualSales[1]', 'MONEY') AS AnnualSales,
 details.value('AnnualRevenue[1]', 'MONEY') AS AnnualRevenue,
 details.value('BankName[1]', 'VARCHAR(50)') AS BankName,
 details.value('BusinessType[1]', 'VARCHAR(10)') AS BusinessType,
 details.value('YearOpened[1]', 'INT') AS YearOpened,
 details.value('Specialty[1]', 'VARCHAR(50)') AS Specialty,
 details.value('SquareFeet[1]', 'INT') AS SquareFeet,
 details.value('Brands[1]', 'VARCHAR(10)') AS Brands,
 details.value('Internet[1]', 'VARCHAR(10)') AS Internet,
 details.value('NumberEmployees[1]', 'SMALLINT') AS NumberEmployees
FROM Sales.Store
CROSS APPLY Demographics.nodes('StoreSurvey') survey(details);

The results are shown in Figure 4-2.

How It Works
The XML document from the table Sales.Store, column Demographics demonstrated
in Listing 4-17 is relatively simple. The XML has the root element <StoreSurvey>, and
all subsequent elements are children of this XML root. This is a one-level deep XML
structure. Such a structure is common in production environments, because database

Figure 4-2. Resulting from XQuery process

CHAPTER 4 ■ SHREDDING XML

115

designers prefer to keep a simple XML structure within a column, when possible for
performance reasons. Therefore, to convert XML data into rows, we need to provide
a reference to the root element in the nodes() method. After that, the value() method
displays each element in a separate column, as shown previously in Figure 4-2.

To navigate over the table’s column, SQL Server 2005 introduced two operators:

 1. CROSS APPLY – allows a table-valued function to be invoked
on each row returned by an outer-table expression of a
query. The XML nodes() method is treated as a table-valued
functionin terms of CROSS APPLY.

 2. OUTER APPLY - equivalent to LEFT OUTER JOIN, when the
result set returns all rows from the outer-table expression
of a query.

The solution is in Listing 4-16, implementing CROSS APPLY operator for the
query. However, the OUTER APPLY operator returns the same result set, because the
Demographics column does not have any rows containing NULL values.

Let’s compare the differences between shredding the XML value based on the XML
variable in Listing 4-17, and the table’s column demonstrated in Listing 4-15.

Listing 4-17. Shredding XML variable

DECLARE @x XML;

SELECT @x = Demographics FROM Sales.Store WHERE BusinessEntityID = 292;

WITH XMLNAMESPACES(default 'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/StoreSurvey')
SELECT details.value('AnnualSales[1]', 'MONEY') AS AnnualSales,
 details.value('AnnualRevenue[1]', 'MONEY') AS AnnualRevenue,
 details.value('BankName[1]', 'VARCHAR(50)') AS BankName,
 details.value('BusinessType[1]', 'VARCHAR(10)') AS BusinessType,
 details.value('YearOpened[1]', 'INT') AS YearOpened,
 details.value('Specialty[1]', 'VARCHAR(50)') AS Specialty,
 details.value('SquareFeet[1]', 'INT') AS SquareFeet,
 details.value('Brands[1]', 'VARCHAR(10)') AS Brands,
 details.value('Internet[1]', 'VARCHAR(10)') AS Internet,
 details.value('NumberEmployees[1]', 'SMALLINT') AS NumberEmployees
FROM @x.nodes('StoreSurvey') survey(details);

The major SQL code differences are seen in Listing 4-18. When we reference the
variable in the FROM clause the nodes() method applied to a variable returns a rowset
that represents the result of shredding a single document. This is as opposed to CROSS
APPLY against a table, which shreds the XML from each row of the table and generates a
single rowset. Listing 4-17 shows the code difference between shredding an XML variable
and column.

FROM @x.nodes('StoreSurvey') survey(details);

CHAPTER 4 ■ SHREDDING XML

116

Shredding XML from a variable, and compare to:

FROM Sales.Store CROSS APPLY Demographics.nodes('StoreSurvey')
survey(details);

 Shredding XML from a column

The SELECT clause is identical for both the variable and column shredding processes.
To retrieve an element value, the value() method needs to be given the XPath path
indicating the element name with a singleton index indicator and the data type. For
example: details.value('SquareFeet[1]', 'INT') AS SquareFeet.

It is always good practice to list the column alias in the SELECT clause. We do not
receive an error when the alias is missing, and personally, I prefer not to receive a result
with the default column name “(No column name).”

 ■ Caution The XML elements and attributes are case sensitive; therefore, when

the elements and attributes are referenced in the value() method then the case must

be identical to the XML document. Otherwise, for XML type columns, the parser will

throw an error. For example, when the element AnnualSales is specified as details.

value(‘annualsales[1]’, ‘money’) then you will receive the error: Msg 2263, Level

16, State 1, Line 2 XQuery [Sales.Store.Demographics.value()]: There is no element

named “{http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

StoreSurvey}:annualsales” in the type element “({http://schemas.microsoft.com/

sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous)”.

If the XML value stores the columns as untyped XML then the shredding result of the

incorrectly specified item will be NULL. The same applies to the XML variable. I keep

warning my readers about XML case sensitivity because it is the most common mistake

for those who are new to XQuery. SQL Server T-SQL does not raise any errors when we

type the function CASE, for instance, in lower, upper, or mixed case. However, XQuery

does not provide us with such a convenient luxury and we must follow the case rules.

However, when an SQL Server instance or a database is installed in any type of binary

collation, then object name metadata (tables, columns, etc.) is case sensitive.

4-4. Dealing with Legacy XML Storage
Problem
You want to process XML data that has been stored in a table column as a data type other
than XML.

http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:annualsales
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:annualsales
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/StoreSurvey}:StoreSurvey,#anonymous

CHAPTER 4 ■ SHREDDING XML

117

Solution
Over the last two decades SQL Server has changed dramatically. One of the biggest
modifications was delivered in SQL Server 2005. Microsoft introduced a revolutionary
RDBMS product to the IT market. The NTEXT, TEXT, and IMAGE data types were
deprecated. However, in legacy databases, XML documents could be stored in columns of
VARCHAR, NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data types. In this case the column
has to be converted to the XML data type.

 ■ Note There are several cases when you would store data in a column type other than

XML, for example: XML data contains internal DTDs or ENTITY declarations and Business

requirement to store XML data exactly as it was received, including insignificant whitespace.

However, NTEXT, TEXT, and IMAGE data types should not be considered. Use VARCHAR,

NVARCHAR, VARBINARY instead.

As an example, SQL Server continues to use the IMAGE data type to store SSIS
packages in the msdb.dbo.sysssispackages table, shown in Figure 4-3. All SSIS packages
are XML documents.

Figure 4-3. Showing msdb.dbo.sysssispackages structure

CHAPTER 4 ■ SHREDDING XML

118

Let’s set this scenario: you have an assignment to find all servers where backup
databases were run by the SQL Server Maintenance Plan, and list all databases that
were used in the plan. This task is easy to do for a few servers. You also need to inspect
several hundred SQL Server instances. Instead of logging in to each instance and opening
each individual Maintenance Plan, you can shred the packagedata column from the
sysssispackages table, as shown in Listing 4-18, as this is a much more efficient process.

Listing 4-18. Shredding SSIS package code

WITH XMLNAMESPACES ('www.microsoft.com/SqlServer/Dts' AS DTS,
 'www.microsoft.com/sqlserver/dts/tasks/sqltask' AS SQLTask),
Package
AS
(
 SELECT name,
 CAST(CAST(packagedata AS VARBINARY(MAX)) AS XML) AS package
 FROM msdb.dbo.sysssispackages
 WHERE packagetype = 6
)
SELECT Package.name as MaintenancePlanName,
 PKG.value('@SQLTask:DatabaseName', 'NVARCHAR(128)') AS DatabaseName,
 PKG.value('(../@SQLTask:BackupDestinationAutoFolderPath)',
'NVARCHAR(500)') AS BackupDestinationFolderPath
FROM Package
CROSS APPLY package.nodes('//DTS:ObjectData/SQLTask:SqlTaskData/
SQLTask:SelectedDatabases') SSIS(PKG);

The result of shredding the SQL Server Maintenance Plan SSIS package is shown in
Figure 4-4.

How It Works
As I mentioned in the Solution, the packagedata column is an IMAGE data type and cannot
be processed by the nodes() method directly. Therefore, the column must be converted to
the XML data type. This is why the solution query has an XMLNAMESPACES declaration block
and a CTE named Package to convert the packagedata column into the XML data type for
further shredding.

Figure 4-4. Result of shredding the maintenance plan

CHAPTER 4 ■ SHREDDING XML

119

These SQL Maintenance Job SSIS packages contain two namespaces, so the
XMLNAMESPACES declaration has to include them both:

 1. 'www.microsoft.com/SqlServer/Dts' – <DTS:Executable>
top element.

 2. ‘www.microsoft.com/sqlserver/dts/tasks/sqltask’ –
<SQLTask:SqlTaskData> child element.

The Package CTE prepares the packagedata column for the XQuery shredding
process. The CTE returns the SSIS package’s name and explicitly converts the
packagedata column to the XML data type. The IMAGE data type cannot be converted
explicitly in the XML data type. The first step is to explicitly convert the IMAGE data
type to VARBINARY(MAX), which is eligible to be converted into XML, for example:
CAST(CAST(packagedata AS varbinary(MAX)) AS XML).

The packagetype column has five possible values.

• 0 - default value

• 1 - SQL Server Import and Export Wizard

• 3 - SQL Server Replication

• 5 - SSIS Designer

• 6 - Maintenance Plan Designer or Wizard

In this example, we are focusing on Maintenance Plans; therefore, we can filter the
result to packagetype = 6 in the WHERE clause.

The final part of the solution query shreds the Maintenece Plan XML and delivers
the result set. Before we process the values in the SELECT clause, we need to establish
an element path in the XML data. As we process the table and column, the CROSS APPLY
operator helps navigate through the values. The nodes() method does not have a full path
to the source element. The SSIS XML is large; therefore, “//” provides a shortcut path to
the source element and matchs an expression pattern within the XML document. You can
also use a leading wildcard “%” in a WHERE clause. The element path ‘//DTS:ObjectData/
SQLTask:SqlTaskData/SQLTask:SelectedDatabases’ tells you to ignore the leading
elements and match the rightmost part in the XML structure. Remember that the double-
part alias is required for the nodes() method, so SSIS(PKG) is the table(column) alias.

The SELECT clause along with Package.name column returns two values from the
XML data, part of the XML demonstrated in Sample 4-6:

 1. PKG.value(‘@SQLTask:DatabaseName’, ‘NVARCHAR(128)’)
as DatabaseName, is the SQLTask:DatabaseName attribute
of the SQLTask:SelectedDatabases element. To process an
attribute within the value() method the “@” character directs
you to the method that the value is the attribute, and no
singleton is required.

 2. PKG.value(‘(../@SQLTask:BackupDestinationAuto
FolderPath)’, ‘NVARCHAR(500)’) can be used as the
BackupDestinationFolderPath.

http://www.microsoft.com/SqlServer/Dts
http://www.microsoft.com/sqlserver/dts/tasks/sqltask

CHAPTER 4 ■ SHREDDING XML

120

The SQLTask:BackupDestinationAutoFolderPath is an attribute as well. However,
the nodes() method is set to the SQLTask:SelectedDatabases element that is the child of
SQLTask:SqlTaskData element. Therefore, to access the SQLTask:BackupDestinationAuto
FolderPath attribute, we need to step up one XML level to SQLTask:SqlTaskData element.
The step operator “../” completes the process.

Listing 4-19. Demonstrating a formatted snippet of the source XML

<DTS:ObjectData>
 <SQLTask:SqlTaskData ... SQLTask:BackupDestinationAutoFolderPath=

"C:\SQLBackup">
 <SQLTask:SelectedDatabases
 SQLTask:DatabaseName="AdventureWorks2016" />
 <SQLTask:SelectedDatabases
 SQLTask:DatabaseName="AdventureworksDW2016" />
 <SQLTask:SelectedDatabases SQLTask:DatabaseName="Northwind" />
 </SQLTask:SqlTaskData>
</DTS:ObjectData>

4-5. Navigating Typed XML Columns
Problem
You want to fix the “Cannot implicitly atomize or apply ‘fn:data()’ to complex content
elements” error encountered when shredding a typed XML column.

Solution
When you attempt to shred a typed XML column, as shown in Listing 4-20, the XPath
paths might generate errors.

Listing 4-20. First attempt at shredding a typed XML column

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT ProductModelID,
 instruct.value('.', 'VARCHAR(2000)') AS StepInstruction,
 instruct.value('../@LocationID', 'INT') AS LaborStation,
 instruct.value('../@LaborHours', 'REAL') AS LaborHours,
 instruct.value('../@LotSize', 'INT') AS LotSize,
 instruct.value('../@MachineHours', 'REAL') AS MachineHours,
 instruct.value('../@SetupHours', 'REAL') AS SetupHours,
 instruct.value('df:material[1]', 'VARCHAR(100) ') AS Material,
 instruct.value('df:tool[1]', 'VARCHAR(100) ') AS Tool
FROM Production.ProductModel
CROSS APPLY Instructions.nodes('df:root/df:Location/df:step')
prod(instruct);

CHAPTER 4 ■ SHREDDING XML

121

This code, however, generates an error similar to the following:

Msg 9314, Level 16, State 1, Line 2
XQuery [Production.ProductModel.Instructions.value()]: Cannot implicitly
atomize or apply 'fn:data()' to complex content elements, found type
'df{http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Product
ModelManuInstructions}:StepType' within inferred type 'element(df{http://
schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInst
ructions}:step,df{http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions}:StepType)'.

To fix this error we have to introduce the XQuery data accessor function fn:string()
to prevent the error when the value() method access a singleton atomic instance using
the “../” step operator, as shown in Listing 4-21.

Listing 4-21. Applying the fn:string() function to fix Msg 9314 error

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT ProductModelID,
 instruct.value('fn:string(.)', 'varchar(2000)') AS StepInstruction,
 instruct.value('fn:string(../@LocationID)', 'int') AS LaborStation,
 instruct.value('fn:string(../@LaborHours)', 'real') AS LaborHours,
 instruct.value('fn:string(../@LotSize)', 'int') AS LotSize,
 instruct.value('fn:string(../@MachineHours)', 'real') AS

MachineHours,
 instruct.value('fn:string(../@SetupHours)', 'real') AS SetupHours,
 instruct.value('df:material[1]', 'varchar(100) ') AS Material,
 instruct.value('df:tool[1]', 'varchar(100) ') AS Tool
FROM Production.ProductModel
CROSS APPLY Instructions.nodes('df:root/df:Location/df:step')
prod(instruct);

The query result is demonstrated in Figure 4-5.

Figure 4-5. Result of shredding typed XML column with fn:string() function

CHAPTER 4 ■ SHREDDING XML

122

How It Works
SQL Server XQuery implements three data accessor functions:

• fn:string() – extracts the string values of the elements or attributes.

• fn:data() – extracts scalar (typed) values from the elements or
attributes.

• text() – returns a single value from the elements or attributes.

As you can see, these three functions are very similar in functionality. To examine
each function’s functionality, let’s analyze the result of Listing 4-22, where the XML
partially simulates the XML from the column Instructions.

Listing 4-22. Analyzing the data accessor functions. A query() method covered in the
next Recipe 4-6, “Retrieving a Subset of Your XML Data”

DECLARE @x XML = '<top>
 <level1>1</level1>
 <level2>2</level2>
</top>
<!-- second reference to <top> element -->
<top><level3>3</level3></top>';

SELECT @x.query('/top/level1/text()') Text_Function,
 @x.query('fn:data(/*)') Data_Function,
 @x.query('fn:string(/*[1])') String_Function;

The results of this query are shown in Figure 4-6.

The code in Listing 4-22 and its result, shown in Figure 4-6, demonstrate the data
accessor functions:

• text() function returns single value “1” from the element <level1>.

• fn:data() function concatenated.

• fn:string() function requires singleton, and returns values for
level1 and level2 elements.

Figure 4-6. Showing data accessor function results

CHAPTER 4 ■ SHREDDING XML

123

For the solution in Listing 4-22 the fn:string() function is most appropriate, because
of the local element reference: instruct.value(‘fn:string(.)’, ‘varchar(2000)’). For example,
fn:data(),returns an error, and text() function returns a partial value for the Instructions
column, as shown in Listing 4-23.

Listing 4-23. Demonstrating result difference between text() and fn:string() functions

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT instruct.value('./text()[1]', 'varchar(2000)') AS Step_Instruction_
by_text,
 instruct.value('fn:string(.)', 'varchar(2000)') AS Step_Instruction_
by_string
FROM Production.ProductModel
CROSS APPLY Instructions.nodes('df:root/df:Location/df:step')
prod(instruct);

The result of Listing 4-23 is shown in Figure 4-7.

4-6. Retrieving a Subset of Your XML Data
Problem
You want to return a specific subset from your XML document and maintain the XML format.

Solution
The query() method allows you to retrieve a specific part of an XML instance. Listing 4-24
demonstrates how to query the execution plans from SQL Server’s Dynamic Management
Views (DMVs) and retrieve the Statements section out of the execution plans.

Figure 4-7. Difference between text() and fn:string() functions

CHAPTER 4 ■ SHREDDING XML

124

Listing 4-24. Returning SQL Statements XML from the Execution Plan

SELECT TOP (25)
 @@SERVERNAME as ServerName,
 qs.Execution_count as Executions,
 qs.total_worker_time as TotalCPU,
 qs.total_physical_reads as PhysicalReads,
 qs.total_logical_reads as LogicalReads,
 qs.total_logical_writes as LogicalWrites,
 qs.total_elapsed_time as Duration,
 qs.total_worker_time/qs.execution_count as [Avg CPU Time],
 DB_NAME(qt.dbid) DatabaseName,
 qt.objectid,
 OBJECT_NAME(qt.objectid, qt.dbid) ObjectName,
 qp.query_plan as XMLPlan,
 query_plan.query('declare default element namespace

"http://schemas.microsoft.com/sqlserver/2004/07/showplan";
 //Batch/Statements') as SQLStatements
FROM sys.dm_exec_query_stats qs
 CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
 CROSS APPLY sys.dm_exec_query_plan(plan_handle) as qp
WHERE qt.dbid IS NOT NULL
ORDER BY TotalCPU DESC;

How It Works
Among XQuery methods, the query() method is straightfordard and simple to use.
To return the subset of an XML instance, you need to specify an XML variable or column,
and the path to the target element or attribute. The query() method returns an instance
of the XML data type. For example, to return Features XML out of the ProductDescription
XML instance assigned to the untype variable demonstarted in Listing 4-25, the result is
shown in Figure 4-8.

Listing 4-25. Returning Features subset fromthe XML

DECLARE @x XML ='<ProductDescription>
 <Manufacturer>
 <Name>AdventureWorks</Name>
 <Copyright>2002</Copyright>
 <ProductURL>HTTP://www.Adventure-works.com</ProductURL>
 </Manufacturer>
 <Features>
 <Warranty>
 <WarrantyPeriod>3 years</WarrantyPeriod>
 <Description>parts and labor</Description>
 </Warranty><Maintenance>
 <NoOfYears>10 years</NoOfYears>

CHAPTER 4 ■ SHREDDING XML

125

 <Description>maintenance contract available
through your dealer or any AdventureWorks retail
store.</Description>

 </Maintenance>
 </Features>
 <Picture>
 <Angle>front</Angle>
 <Size>small</Size>
 <ProductPhotoID>118</ProductPhotoID>
 </Picture>
</ProductDescription>';

SELECT @x.query('ProductDescription/Features');

The result is shown in Listing 4-26.

Listing 4-26. Resulting of query() method

<Features>
 <Warranty>
 <WarrantyPeriod>3 years</WarrantyPeriod>
 <Description>parts and labor</Description>
 </Warranty>
 <Maintenance>
 <NoOfYears>10 years</NoOfYears>
 <Description>maintenance contract available through your dealer or any
AdventureWorks retail store.</Description>
 </Maintenance>
</Features>

Listing 4-25 demonstrates returning results from an XML variable that does not
contain any namespaces. Therefore, no XMLNAMESPACES are specified for the query()
method. However, for typed XML the query() method is required to declare a namespace,
as demonstrated in the Solution section of this recipe, in Listing 4-24. The solution
uses the default syntax to declare a namespace, because the execution plan XML only
references a single namespace:

query_plan.query('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/showplan";
//Batch/Statements') as SQLStatements

Alternatively, Listing 4-27 has two namespaces defined in the XML instance.
Therefore, each namespace has to be declared individually, as shown.

CHAPTER 4 ■ SHREDDING XML

126

Listing 4-27. Declaring multiple namespaces in XQuery, in the query() method

SELECT name,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML) AS package,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query('declare

namespace DTS="www.microsoft.com/SqlServer/Dts";
declare namespace SQLTask="www.microsoft.com/sqlserver/dts/tasks/sqltask";
 //DTS:ObjectData//SQLTask:SqlTaskData/SQLTask:Selected

Databases') as SQLStatements
FROM msdb.dbo.sysssispackages
WHERE packagetype = 6;

To declare the namespaces, you can use either the internal XQuery format of the
query() method or the XMLNAMESPACES syntax, as shown in Listing 4-28.

Listing 4-28. Using XMLNAMESPACES instead of XQuery namespace declaration in the
query() method

WITH XMLNAMESPACES('www.microsoft.com/SqlServer/Dts' as DTS,
'www.microsoft.com/sqlserver/dts/tasks/sqltask' as SQLTask)
SELECT name,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML) AS package,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query

('//DTS:ObjectData//SQLTask:SqlTaskData/SQLTask:SelectedDatabases')
as SQLStatements

FROM msdb.dbo.sysssispackages
WHERE packagetype = 6;

To finalize this recipe, I would like to demonstrate one more example when the
subset of the XML instance is returned with user-defined root element, Listing 4-29. The
syntax for this is query(‘<Root>{/XMLPath/}</Root>’).

Listing 4-29. Returning query() function result with user-defined root element

WITH XMLNAMESPACES('www.microsoft.com/SqlServer/Dts' as DTS,
'www.microsoft.com/sqlserver/dts/tasks/sqltask' as SQLTask)
SELECT name,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML) AS package,
 CAST(CAST(packagedata AS varbinary(MAX)) AS XML).query('<Root>

{//DTS:ObjectData//SQLTask:SqlTaskData/SQLTask:SelectedDatabases}
</Root>') as SQLStatements

FROM msdb.dbo.sysssispackages
WHERE packagetype = 6;

You can pick your own preference on which syntax to use for the query() method.

CHAPTER 4 ■ SHREDDING XML

127

4-7. Finding All XML Columns in a Table
Problem
You want to find XML documents that can be stored with a data type other than XML.

Solution
I have never been in the situation where I needed to detect the XML document on the
client side; however, the client is not sure where XML is stored. Simply relying on the XML
data type is not a good strategy. As explained in Recipe 4-4, the XML documents could
store the columns with XML, VARCHAR, NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data
types. Therefore, I developed a SQL script that dynamically “sniffs” the XML document
across all columns within a database, as shown in Listing 4-30.

Listing 4-30. Detecting the XML document across the tables and columns

SET NOCOUNT ON;

DECLARE @SQL nvarchar(1000),
 @tblName nvarchar(200),
 @clmnName nvarchar(100),
 @DType nvarchar(100);

IF (OBJECT_ID('tempdb.dbo.#Result')) IS NOT NULL
 DROP TABLE #Result;

CREATE TABLE #Result
(
 XMLValue XML,
 TopElement NVARCHAR(100),
 tblName NVARCHAR(200),
 clmnName NVARCHAR(100),
 DateType NVARCHAR(100)
);

IF (OBJECT_ID('tempdb.dbo.#XML')) IS NOT NULL
 DROP TABLE #XML;

CREATE TABLE #XML
(
 Val XML,
 TopElmn VARCHAR(100)
);

DECLARE cur

CHAPTER 4 ■ SHREDDING XML

128

CURSOR FOR
SELECT XMLClmn = 'WITH CTE AS
(SELECT TOP 1 '+ CASE t.name WHEN 'IMAGE' THEN ' TRY_CONVERT(XML, CAST(' +
QUOTENAME(c.name) + ' AS VARBINARY(MAX))) AS tst, '
 ELSE ' TRY_CONVERT(XML, ' + QUOTENAME(c.name) + ') as tst, ' END +

QUOTENAME(c.name) + ' FROM '
 + QUOTENAME(s.name) +'.' + QUOTENAME(o.name) +
 '
WHERE '+ CASE t.name WHEN 'IMAGE' THEN ' TRY_CONVERT(XML, CAST(' +
QUOTENAME(c.name) + ' AS VARBINARY(MAX)))'
 ELSE ' TRY_CONVERT(XML, ' + QUOTENAME(c.name) + ') ' END +' IS NOT

NULL
)
SELECT TOP (1) tst,
 c.value(''fn:local-name(.)[1]'', ''VARCHAR(200)'') AS TopNodeName
FROM CTE CROSS APPLY tst.nodes(''/*'') AS t(c);',
 s.name + '.' + o.name AS TableName,
 c.name AS ColumnName,
 t.name
FROM sys.columns c
INNER JOIN sys.types t
 ON c.system_type_id = t.system_type_id
INNER JOIN sys.objects o
 ON c.object_id = o.object_id
 AND o.type = 'u'
INNER JOIN sys.schemas s
 ON s.schema_id = o.schema_id
WHERE (t.name IN('xml','varchar', 'nvarchar', 'varbinary') AND
c.max_length = -1)
 OR (t.name IN ('image', 'text', 'ntext'));

OPEN cur;

FETCH NEXT
FROM cur
INTO @SQL, @tblName, @clmnName, @DType;

WHILE @@FETCH_STATUS = 0
BEGIN

 INSERT INTO #XML
 EXEC(@SQL);

 INSERT #Result
 SELECT Val, TopElmn, @tblName, @clmnName, @DType
 FROM #XML;

 TRUNCATE TABLE #XML;

CHAPTER 4 ■ SHREDDING XML

129

 FETCH NEXT FROM cur INTO @SQL, @tblName, @clmnName, @DType;
END

DEALLOCATE cur;

SELECT XMLValue,TopElement,tblName,clmnName,DateType
FROM #Result;

DROP TABLE #Result;
DROP TABLE #XML;

SET NOCOUNT OFF;

To demonstrate the result, the SQL script is executed against the msdb database, as
shown in Figure 4-8.

 ■ Important This solution uses the TRY_CONVERT() function, which is only available on

SQL Server 2012 and later.

How It Works
The solution is based on several logical processes:

• The FROM clause obtains from the system tables (sys.columns, sys.
types, sys.objects, and sys.schemas) data about the columns, their
tables, and schemas that have the possibility to store XML data.

• The WHERE clause filters out the data types. Hypothetically, the XML
documents could be found in the columns with the XML, VARCHAR,
NVARCHAR, VARBINARY, IMAGE, TEXT, and NTEXT data types. The XML
documents are lengthy by nature. Therefore, the data types VARCHAR,
NVARCHAR, and VARBINARY are expected to have a length of -1, that
is MAX in the data type length specification. Other data types IMAGE,
TEXT, and NTEXT do not need to have this additional length filter.

Figure 4-8. Results from the msdb database

CHAPTER 4 ■ SHREDDING XML

130

• The SELECT clause dynamically builds verification SQL. The key
function is TRY_CONVERT() has been available since SQL Server
2012. We are taking advantage of the TRY_CONVERT() behavior:
when a data type fails to covert to specified type, then the function
returns NULL. For example, CAST() and CONVERT() functions
return an error (Msg 9420, XML parsing: line 1, character 2,
illegal xml character) when the conversion fails. Therefore, any
data value that fails to convert to the XML data type is filtered
out. As explained in Recipe 4-4, the IMAGE data type cannot be
converted directly to XML. Therefore, the CASE expression uses
two conversion verifications; first for IMAGE data type, as shown
in Listing 4-31, and the second for the VARCHAR, NVARCHAR,
VARBINARY, TEXT, and NTEXT data types, shown in Listing 4-32.

Listing 4-31. Verifying IMAGE data type

WITH CTE AS
(
 SELECT TOP (1) TRY_CONVERT(XML, CAST(packagedata AS VARBINARY

(MAX))) AS tst,
 packagedata
 FROM dbo.sysssispackages
 WHERE TRY_CONVERT(XML, CAST(packagedata AS VARBINARY(MAX)))

IS NOT NULL
)
SELECT TOP (1) tst,
 c.value('local-name(.)[1]', 'VARCHAR(200)') AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*') AS t(c);

Listing 4-32. Verifying VARCHAR, NVARCHAR, VARBINARY, TEXT, and NTEXT data types

WITH CTE AS
(
 SELECT TOP (1) TRY_CONVERT(XML, expression) as tst,
 expression
 FROM dbo.syspolicy_conditions_internal
 WHERE TRY_CONVERT(XML, expression) IS NOT NULL
)
SELECT TOP (1) tst,
 c.value('fn:local-name(.)[1]', 'VARCHAR(200)') AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*') AS t(c);

CHAPTER 4 ■ SHREDDING XML

131

This is how the code works:

• The cursor executes each SQL script generated in SELECT clause.

• The temp table #XML gets returned rows.

• The temp table #Result gets the row from #XML table and the
variables from the cursor.

• Clean up #XML table to prepare for next row verification.

• Destroying the cursor.

• Returning the collected data.

• Dropping the temp tables.

This is the description of the process. However, I would like take a closer look at the
CTE external SELECT block from Listing 4-32:

SELECT TOP (1) tst,
 c.value('fn:local-name(.)[1]', 'VARCHAR(200)') AS TopNodeName
FROM CTE
CROSS APPLY tst.nodes('/*') AS t(c);

The column tst, which stands for test, returns the XML value when it is successfully
converted to the XML data type. The column TopNodeName returns the first available
element name, that is, the root element. The fn:local-name() function returns an element
name by the provided argument. The dot (the current context node)is the argument to
the fn:local-name() function, and nodes() method set to “/*” (shortcut for child::node()
and /node() axis), which is a wildcard for a single element. Therefore, the XML parser of
this combination means – return the first available name out of the XML document.

We can get different effects when the node() method is set with “//*” (shortcut
for descendant-or-self axis), which means to look and visit every element in the XML
data. This can be compared to the T-SQL filter, for example, WHERE ColumnName
LIKE ‘%text%’. This way the parser navigates through all the elements within the XML
data, as shown in Listing 4-33. The fn:local-name() function with a single dot as the
argument returns the current element name, for example, details.value(‘local-name(.)
[1]’, ‘VARCHAR(100)’). With a parent axis step (double dot), it returns the element
that resides one level up, that is, parent, for example, details.value(‘local-name(..)[1]’,
‘VARCHAR(100)’), as shown in Figure 4-9.

Listing 4-33. Displaying all the elements from the XML data

WITH ALLELEMENTS
AS
(
 SELECT TOP 1 Demographics
 FROM Sales.Store
)

CHAPTER 4 ■ SHREDDING XML

132

SELECT
 details.value('local-name(..)[1]', 'VARCHAR(100)') AS
ParentNodeName,
 details.value('local-name(.)[1]', 'VARCHAR(100)') AS NodeName
FROM ALLELEMENTS
 CROSS APPLY Demographics.nodes('//*') survey(details);

Results of retrieving all elements from XML data are shown in Figure 4-9.

4-8. Using Multiple CROSS APPLY Operators
Problem
You want to shred a typed XML column, but you want to navigate the XML using multiple
CROSS APPLY operators.

Solution
In Recipe 4-5, “Navigating Typed XML Columns,” I demonstrated how to shred a typed
XML column with navigation “../”. Implementing multiple CROSS APPLY operators could
provide an alternate to XML navigation, as shown in Listing 4-34.

Figure 4-9. Resulting dynamically returning XML elements

CHAPTER 4 ■ SHREDDING XML

133

Listing 4-34. Demonstrating multiple CROSS APPLY operator solution

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions' as df)
SELECT ProductModelID,
 step.value('fn:string(.)', 'varchar(2000)') AS StepInstruction,
 instruct.value('@LocationID', 'int') AS LaborStation,
 instruct.value('@LaborHours', 'real') AS LaborHours,
 instruct.value('@LotSize', 'int') AS LotSize,
 instruct.value('@MachineHours', 'real') AS MachineHours,
 instruct.value('@SetupHours', 'real') AS SetupHours,
 step.value('df:material[1]', 'varchar(100) ') AS Material,
 step.value('df:tool[1]', 'varchar(100) ') AS Tool
FROM Production.ProductModel
 CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)
 CROSS APPLY instruct.nodes('df:step') ins(step);

The query result is shown in Figure 4-10.

How It Works
The key to using multiple CROSS APPLY operators is applying one CROSS APPLY to the
results of the second CROSS APPLY, as in our sample code:

FROM Production.ProductModel
 CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)
 CROSS APPLY instruct.nodes('df:step') ins(step)

The first CROSS APPLY references the XML Instruction column of the ProductModel
table to create a base result set to feed to the second CROSS APPLY:

CROSS APPLY Instructions.nodes('df:root/df:Location') prod(instruct)

Figure 4-10. Result of applying multiple CROSS APPLY operators

CHAPTER 4 ■ SHREDDING XML

134

The second CROSS APPLY takes the results of the first CROSS APPLY via its instruct
column alias:

CROSS APPLY instruct.nodes('df:step') ins(step)

Finally, the SELECT clause uses the instruct alias to retrieve the parent elements, and
the step alias to reference child elements. The solutions in Recipes 4-5 and 4-8 produce
absolutely the same result set, but the syntax in the SELECT and FROM clauses is different.

Summary
The ability to shred XML data is a very important aspect of manipulating XML in SQL
Server. Many of the built-in SQL Server processes use XML; for example:

• Execution Plans

• Extended Events

• DDL triggers

• SSIS and SSRS code behind

The XQuery language simplifies SQL Server and the tasks performed by DBAs and
Developers by allowing dynamic and powerful programmatic XML exploration and
manipulation, utilizing operational time more efficiently.

135© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_5

CHAPTER 5

Modifying XML

XML XQuery has the ability to modify an XML instance for the XML variable and XML
columns. The XQuery modify() method provides the ability to add, delete, and update
the XML elements, attributes, and their values. This chapter will discuss and demonstrate
real case scenarios to apply the modify() method for XML instances.

5-1. Inserting a Child Element into Your XML
Problem
You want to insert a child element into an existing XML instance.

Solution
You may encounter a situation in which you need to insert an XML element into an
existing XML instance. Consider the simple XML data shown in Listing 5-1.

Listing 5-1. Simple XML data

<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features />
 </ProductDescription>
</Root>

SQL Server provides XML Data Modification Language (XML DML) support via the
XML data type modify() method. XML DML is an extension to the W3C XQuery standard,
as XQuery lacks data manipulation statements and functions. Listing 5-2 shows how to
use the modify() method’s XML DML insert statement to insert a new element into a
specific location within your existing XML data. The result is demonstrated in Figure 5-1.

https://doi.org/10.1007/978-1-4842-3117-3_5

CHAPTER 5 ■ MODIFYING XML

136

Listing 5-2. Inserting the first child element for the Features element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');
SELECT @XMLDoc;

The result of the XML DML insert statement is shown in Figure 5-1.

How It Works
The XML modify() method’s XML DML language is comparable to the T-SQL DML INSERT,
UPDATE, and DELETE methods, but with many additional options. This makes sense because
XML DML must take XML structure into account when modifying your XML instance. The
modify() method alters an XML document not only by value, but also amends its elements
and attributes. Therefore, the modify() method can be logically considered a combination
of a subset of T-SQL’s DML and DDL languages. We will discuss these other XML DML
statements and additional options in other recipes of this chapter.

This recipe demonstrates how to add a new child element, Maintenance, to the
parent element Features in the XML instance. The Features element does not have any
child elements in the original XML instance, shown in Listing 5-1. We do not need to
provide a specification for the child element position to the modify() method since the
Maintenance element is the first child of the Features element. The solution to insert a
new element with the values provided in Listing 5-2 follows this pattern:

 1. insert is the keyword specifying an “insert” pattern.

 2. <Maintenance> 3 years parts and labor extended maintenance
is available</Maintenance> – is the element value pattern,
indicating the element we wish to insert.

Figure 5-1. Result of inserting a child element into existing XML data

CHAPTER 5 ■ MODIFYING XML

137

 3. into is the keyword the target XPath path indicating where we
will insert the element within the XML.

 4. (/Root/ProductDescription/Features)[1] is the insert target
XPath path. Note that a singleton instance is a required
component for the target XPath. When the singleton is not
provided (via the [1] index in this case), the XML DML parser
will throw the following error:

Msg 2226, Level 16, State 1, Line 10XQuery [modify()]: The target of
'insert' must be a single node, found 'element(Features,xdt:untyped) *'

The modify(@xml:dml) method takes one argument. Therefore, all @xml:dml
patterns sent to the method are submitted as a single string value, as shown in Listing 5-2:

modify('insert
<Maintenance>3 year parts and labor extended maintenance is available
</Maintenance>
into (/Root/ProductDescription/Features)[1]');

5-2. Inserting a Child Element into an Existing
XML Instance with Namespace
Problem
You want to insert a child element into an XML instance that contains a namespace.

Solution
When an XML instance contains an XML namespace, you need to declare the XML
namespace within the modify() method. Listing 5-3 builds on the solution in Recipe 5-1
to demonstrate.

Listing 5-3. Declaring an XML namespace within the modify() method

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions">
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

CHAPTER 5 ■ MODIFYING XML

138

SET @XMLDoc.modify('declare namespace ns="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/ProductModelManuInstructions";
insert <ns:Maintenance>3 year parts and labor extended maintenance is
available</ns:Maintenance> into (/ns:Root/ns:ProductDescription/ns:Features)
[1]');
SELECT @XMLDoc;

Showing the XML rusult:<Root xmlns="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/ProductModelManuInstructions">
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Maintenance>3 year parts and labor extended maintenance is

available</Maintenance>
 </Features>
 </ProductDescription>
</Root>

How It Works
As you can see, there is a small, but significant, difference between Listing 5-1 and
Listing 5-3. Listing 5-3 has an XML namespace defined within the XML instance. This
small difference affects the modify() method syntax. If the modify() method ignores the
XML namespace, the XQuery won’t find the target XPath path, resulting in no change to
the XML, as shown in Listing 5-4. The result is shown in Figure 5-2.

Listing 5-4. XML namespace causes modify() method to not update target XML

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/ProductModelManuInstructions">
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');
SELECT @XMLDoc;

CHAPTER 5 ■ MODIFYING XML

139

The result, shown in Figure 5-2, demonstrates that this modify() method does not
update the source XML.

Figure 5-2. Resulting XML when the namepspaces are ignored in the modify() method

As you can see in Figure 5-2, the XML instance returned has not changed. To correct
the problem, the XML namespace needs to be declared inside the modify() method.
Therefore, the first pattern for the XML instance with the namespace must be the
namespace declaration, for example:

modify('declare namespace ns = "http://schemas.microsoft.com/
sqlserver/2004/07/ adventure-works/ProductModelManuInstructions"; ...)

The declared name ns is user defined, so you can choose a name to declare the
namespace as long as it complies with SQL Server naming conventions, such as no spaces
in the name, the first character is alpha, the following characters are alphanumeric, etc.
When the namespace is declared, this name needs to be a part of each element in the
modify() method, for both new and target patterns. For example:

insert <ns:Maintenance>3 year parts and labor extended maintenance is
available</ns:Maintenance> into (/ns:Root/ns:ProductDescription/ns:Features)[1]

 ■ Tip Always verify the result after using the modify() method. For example, the parser

does not throw an error for an ignored namespace declaration, and the action appears to

complete successfully. However, modify() simply does not apply the XML DML action to your

XML data.

As an alternative to the modify() method’s internal namespace declaration syntax, it
is possible to complete this task with T-SQL’s external WITH XMLNAMESPACES declaration.
When an XML document has one namespace, the default namespace can be used, as
shown in Listing 5-5.

Listing 5-5. Using WITH XMLNAMESPACES to declare a default XML namespace

DECLARE @XMLDoc xml;
WITH XMLNAMESPACES(default 'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/ProductModelManuInstructions')
SELECT @XMLDoc =
'<Root>

CHAPTER 5 ■ MODIFYING XML

140

 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert <Maintenance>3 year parts and labor extended
maintenance is available</Maintenance> into (/Root/ProductDescription/
Features)[1]');

When you are implementing the WITH XMLNAMESPACES clause, then the SET
operator will not work. You must implement the SELECT clause instead.

5-3. Inserting XML Attributes
Problem
You want to insert an attribute into an XML element of existing XML data.

Solution
An attribute is a property of an XML element. Therefore, the modify() method has the
attribute option to insert an attribute to an element, as shown in Listing 5-6.

Listing 5-6. Inserting ProductModel attribute into the Maintenance element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Maintenance>3 year parts and labor extended maintenance is

available</Maintenance>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert attribute ProductModel {"Mountain-100"} into
(/Root/ProductDescription/Features/Maintenance)[1]');

SELECT @XMLDoc;

CHAPTER 5 ■ MODIFYING XML

141

The result is shown in Figure 5-3.

Figure 5-3. XML result of inserting an attribute into an element

How It Works
Chapter 4 explained the XPath path syntaxes for elements and attributes are different.
Likewise, the modify() method has differences as well. First of all, the insert statement
has an additional attribute option that is not specified when elements are inserted.
Second, the attribute is not surrounded by angle brackets. Finally, the attribute’s value is
placed into curly brackets with double quotes immediately following the attribute name.
Therefore, the syntax to add the attribute has the following patterns:

 1. The insert attribute keywords indicate you wish to insert an
attribute into an element.

 2. ProductModel {“Mountain-100”} is the attribute’s name and
value.

 3. into indicates the XPath path of the target element is coming up.

 4. (/Root/ProductDescription/Features/Maintenance)[1] is the
attribute target XPath path. The singleton numeric positional
predicate is a required component of the target XPath.

For example:

modify('insert attribute ProductModel {"Mountain-100"} into (/Root/
ProductDescription/Features/Maintenance)[1]');

Wrapping the XPath path in parentheses and then putting the numeric positional
predicate on the end means that the singleton applies to every step in the path. The
XPath path without parentheses expects that the singleton applies to each element. For
example: /Root[1]/ProductDescription[1]/Features[1]/Maintenance[1].

The sample syntax adds the attribute ProductModel with the value “Mountain-100”
to the first instance of the Maintenance element.

http://dx.doi.org/10.1007/978-1-4842-3117-3_4

CHAPTER 5 ■ MODIFYING XML

142

Also the modify() method allows you to insert several attributes for an element. To
add a list of attributes to the element:

 1. Open parentheses after the insert directive.

 2. List the attributes separated by a comma.

 3. Close the parentheses.

This is demonstrated in Listing 5-7.

Listing 5-7. Inserting multiple attributes into the Maintenance element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Maintenance>3 year parts and labor extended maintenance is

available</Maintenance>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert
(
 attribute ProductModel {"Mountain-100"},
 attribute LaborType {"Manual"}
) into (/Root/ProductDescription/Features/Maintenance)[1]');

SELECT @XMLDoc;

The result is shown in Figure 5-4.

Figure 5-4. Result of inserting multiple attributes to the Maintenance element

CHAPTER 5 ■ MODIFYING XML

143

5-4. Inserting XML Attribute Conditionally
Problem
You want to insert an XML attribute based on a comparison condition.

Solution
The if … else condition can be implemented in the modify() method, as shown in Listing 5-8.

Listing 5-8. Wrapping the attribute insert in an if-then-else condition

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Maintenance>3 year parts and labor extended maintenance is

available</Maintenance>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert
if (/Root/ProductDescription[@ProductID=1])
 then attribute ProductModel {"Road-150"}
 else (attribute ProductModel {"Mountain-100"})
into (/Root/ProductDescription/Features/Maintenance)[1]');

SELECT @XMLDoc;

The result is shown in Figure 5-5.

Figure 5-5. XML result of conditional attribute insert

CHAPTER 5 ■ MODIFYING XML

144

How It Works
To insert a new attribute conditionally, you can use the if … then … else construct within
the modify() method. Listing 5-8 demonstrates an example of this conditional logic. If
the attribute ProductID=“1” then a new attribute called ProductModel is added with the
value “Road-150,” and for all other ProductIDs, a new attribute called ProductModel is
added with the value “Mountain-100.”

After the insert statement (Listing 5-8), we immediately check the ProductID
attribute value:

if (/Root/ProductDescription[@ProductID=1])

When the check condition returns true, the ProductModel attribute with the value
“Road-150” is inserted into the Maintenance element:

then attribute ProductModel {"Road-150"}

For all other values, the else block is processed:

else (
 attribute ProductModel {"Mountain-100"}
)

No changes are necessary for the into keyword, which provides the functionality
establishing the target XPath path:

into (/Root/ProductDescription/Features/Maintenance)[1]

5-5. Inserting a Child Element with Position
Specification
Problem
You want to insert a new element into the existing element group and enforce a certain
position sequence.

Solution
The modify() method has four keywords that can be applied to the insert statement to
specify the child element position among a group of elements:

• as first

• as last

• after

• before

CHAPTER 5 ■ MODIFYING XML

145

These keywords are used to specify the placement of a new element, as shown in
Listing 5-9.

Listing 5-9. Demonstrating as first, as last, after, and before keywords to arrange the child
elements under the parent element Features

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

SET @XMLDoc.modify('insert <Warranty>1 year parts and labor</Warranty>
 as first into (/Root/ProductDescription/Features)[1]');

SET @XMLDoc.modify('insert <Material>Aluminium</Material>
 as last into (/Root/ProductDescription/Features)[1]');

SET @XMLDoc.modify('insert <BikeFrame>Strong long lasting</BikeFrame>
 after (/Root/ProductDescription/Features/Material)[1]')

SET @XMLDoc.modify('insert <Color>Silver</Color>
 before (/Root/ProductDescription/Features/BikeFrame)[1]')

SELECT @XMLDoc;

The result is shown in Figure 5-6.

Figure 5-6. Results for the insert directive with position specification

CHAPTER 5 ■ MODIFYING XML

146

How It Works
The keywords as first, as last, after, and before provide the position specification for a child
element. Each of the keywords is self-explanatory:

• as first – adds the child element into the first position.

• as last – adds the child element into the last position.

• after – adds the child element after provided sibling position.

• before – adds the child element before provided sibling position.

The syntax for as first and as last differs slightly from the syntax for after and before.
For example, the syntax for as first and as last is as follows:

• modify('insert <ChildElement> as first into
(/XPath/<ParentElement>)[1]')

• modify('insert <ChildElement> as last into
(/XPath/<ParentElement>)[1]')

The insert directive provides the child element and value, then as first or as last
specifier indicates the position the element takes among its sibling elements. In the final
step, the parent’s XPath provides the child element destination.

There are two differences for the keywords before and after compared to as first and
as last:

• No into keyword implemented.

• The XPath has a reference to the <ParentElement>/<SiblingElement>
element, beside which the new element (before or after) will be
placed.

• modify('insert <ChildElement> before (/XPath/<ParentElement>
/<SiblingElement>)[1]')

• modify('insert <ChildElement> after (/XPath/<ParentElement>
/<SiblingElement>)[1]')

5-6. Inserting Multiple Elements
Problem
You want to insert multiple sibling elements into an XML document.

Solution
Unlike attributes, where you can add several attributes and their values by separating
them with a comma, multiple elements are not supported in a direct insert within the
modify() method. However, the XQuery extension function sql:variable() helps solve the
problem, as shown in Listing 5-10.

CHAPTER 5 ■ MODIFYING XML

147

Listing 5-10. Inserting multiple sibling elements into an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 </Features>
 </ProductDescription>
</Root>';

DECLARE @newElements xml;
SET @newElements =
'<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>';

SET @XMLDoc.modify('insert
 sql:variable("@newElements")
into (/Root/ProductDescription/Features)[1]')
SELECT @XMLDoc;

The resulting XML is shown in Figure 5-6 (repeating the figure).

How It Works
As explained in the Solution section, the modify() method does not support a multiple
sibling element list within the insert directive. The XQuery sql:variable() extension
function provides us a reference to an XML block, which makes the insert directive
mechanism operate as it inserts a new element.

CHAPTER 5 ■ MODIFYING XML

148

To insert multiple sibling elements into an XML instance, the following is required:

 1. Declare a variable as an XML data type (NVARCHAR or VARCHAR
data types work as well, but I would recommend remaining
consistent with the XML data type).

 2. Assign an XML element list to the variable.

For example:

DECLARE @newElements xml;
SET @newElements =
'<Warranty>1 year parts and labor</Warranty>
<Material>Aluminium</Material>
<Color>Silver</Color>
<BikeFrame>Strong long lasting</BikeFrame>';

The insert part is the same as explained in Recipe 5-1, “Inserting a Child Element
into Your XML.” However, the function sql:variable() is used instead of the specific child
element. For example:

modify('insert
 sql:variable("@newElements")
into (/Root/ProductDescription/Features)[1]')

The XQuery extension function sql:variable() is a key part of this simple solution for
inserting multiple sibling elements into an XML instance.

5-7. Updating an XML Element Value
Problem
You want to update an XML instance element value.

Solution
The modify() method replace value of statement updates an XML instance element value.
Listing 5-11 demonstrates the solution to update the Color element value from “Silver” to
“Black.”

Listing 5-11. Updating the <Color> element value

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>

CHAPTER 5 ■ MODIFYING XML

149

 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('replace value of
(/Root/ProductDescription/Features/Color/text())[1] with "Black"')
SELECT @XMLDoc;

The result is shown in Figure 5-7.

Figure 5-7. Showing the result when the value of the Color element has been updated

How It Works
The modify() method implements the replace value of statement to update an XML
instance element value. When the XML data type was introduced in SQL Server
2005, many DBAs and SQL Server Developers were puzzled, at least all SQL Server
professionals that I know. We expected a directive name of “update” or so; however, the
replace value of directive updates the XML instance elements and attributes. Previous
recipes provided us with many “flavors” of the insert directive, which is practically correct.
The insert process has many options for XML instances. Compared to insert, updating
an XML instance element is fairly straightforward. To modify the XML instance element
value, you need the following:

 1. Specify the modify() method replace value of statement.

 2. Opening parenthesis, provide the XPath path to the XML
element; implement the text() function for the target element;
and closing the parenthesis and specifying the singleton.

 3. After the with keyword, specify a new element value in double
quotes.

CHAPTER 5 ■ MODIFYING XML

150

For example:

modify('replace value of
(/Root/ProductDescription/Features/Color/text())[1]
with "Black"')

5-8. Updating XML Attribute Value
Problem
You want to update the value of an attribute in an XML instance.

Solution
Updating an XML instance attribute solution is relatively close to updating the element.
However, updating the attribute has some specifics that are demonstrated in Listing 5-12.
The attribute ProductName value is modified from “Road Bike” to “Mountain Bike.”

Listing 5-12. Updating ProductName attribute

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('replace value of
 (/Root/ProductDescription/@ProductName)[1] with "Mountain Bike"');
SELECT @XMLDoc;

CHAPTER 5 ■ MODIFYING XML

151

The result is shown in Figure 5-8.

Figure 5-8. Showing the results when the attribute ProductName value is updated

How It Works
Updating an XML instance attribute is not much different from updating an element. To
modify the XML instance attribute value, you need to:

 1. Specify the modify() method replace value of statement.

 2. The XPath path to the XML attribute you want to update
with the @ symbol preceding the attribute name, wrapped in
parentheses. The XPath path must be a singleton node.

 3. After the with keyword, specify a new attribute value in
double quotes.

The major difference between modifying the element and attribute is that the
attribute must be prefixed with an @ symbol and the text() node test is not needed to
update the attribute.

5-9. Deleting an XML Attribute
Problem
You want to delete an attribute from an XML attribute.

Solution
Use the delete statement in the modify() method, as shown in Listing 5-13.

CHAPTER 5 ■ MODIFYING XML

152

Listing 5-13. Deleting the ProductName attribute from an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('delete /Root/ProductDescription/@ProductName')
SELECT @XMLDoc;

The result is shown in Figure 5-9.

Figure 5-9. Result of deleting attribute from an XML instance

How It Works
The syntax to delete an attribute is simpler than the syntax to update an attribute.
To delete an attribute from an XML instance, the modify() method needs the delete
statement and an XPath path to the attribute. Just remember the attribute is prefixed
by the “@” symbol. Also, the ProductDescription element is unique within the XML
document, therefore no singleton needed in such a case. For example:

modify('delete /Root/ProductDescription/@ProductName')

In the case when you need to remove all attributes from an element, the XPath
should have the destination element path followed by “/@*”, as shown in Listing 5-14.

CHAPTER 5 ■ MODIFYING XML

153

Listing 5-14. Deleting all attributes of the ProductDescription element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('delete /Root/ProductDescription/@*')
SELECT @XMLDoc;

The result is shown in Figure 5-10.

Figure 5-10. Showing the results when all attributes are deleted from the
<ProductDescription> element

5-10. Deleting an XML Element
Problem
You want to delete an element from an XML instance.

Solution
The mechanism for removing an element from an XML instance is very similar to
removing an attribute. The solution to delete the Color element from our sample XML is
demonstrated in Listing 5-15.

CHAPTER 5 ■ MODIFYING XML

154

Listing 5-15. Deleting the Color element from an XML instance

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('delete /Root/ProductDescription/Features/Color)
SELECT @XMLDoc;

The result is shown in Figure 5-11.

Figure 5-11. Result of deleting the Color element from an XML instance

How It Works
To delete an element from an XML instance, the modify() method specifies the delete
statement and the XPath path to the target element. A singleton is required to delete a
specific element when the XML has several elements with the same name, for example:

 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <Color>Blue</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
modify('delete /Root/ProductDescription/Features/Color[1]')

The result after delete is that <Color>Silver</Color> gone, <Color>Blue</Color> stays.
To remove all child elements from the parent element, the XPath should point to the

parent element plus “/*”, as shown in Listing 5-16.

CHAPTER 5 ■ MODIFYING XML

155

Listing 5-16. Deleting all child elements from the Features element

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';
SET @XMLDoc.modify('delete /Root/ProductDescription/Features/*')
SELECT @XMLDoc;

The result is shown in Figure 5-12.

Figure 5-12. XML result after all child elements are deleted from the Features element

To delete items like comments and processing instructions, or even the text within
an element, you could use node tests with delete as it demonstrates in Listing 5-17. The
result is shown in Figure 5-13.

Listing 5-17. Deleting other types of XML nodes by using node tests

DECLARE @XMLDoc xml;
SET @XMLDoc =
'<Root>
 <ProductDescription ProductID="1" ProductName="Road Bike">
 <Features>
 <!-- Comment 1-->
 <!-- Comment 2-->
 <?process abcd?>
 <Warranty>1 year parts and labor</Warranty>
 <Material>Aluminium</Material>
 <Color>Silver</Color>
 <BikeFrame>Strong long lasting</BikeFrame>
 </Features>
 </ProductDescription>
</Root>';

CHAPTER 5 ■ MODIFYING XML

156

Summary
The modify() method provides a comprehensive solution for manipulating the nodes of
an XML instance. The directives:

• insert

• replace value of

• delete

These directives are able to modify any elements and attributes within an XML
instance with a relatively simple syntax.

In the next chapter the recipes will cover how to efficiently filter the XML.

SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/comment())[1]');

SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/Color/text())[1]');

SET @XMLDoc.modify('delete (/Root/ProductDescription/Features/processing-
instruction())[1]');

SELECT @XMLDoc;

Figure 5-13. Showing delete result

157© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_6

CHAPTER 6

Filtering XML

The filtering mechanism for XQuery has some differences and specifications when
compared to the T-SQL WHERE clause. In my experience, when DBAs and Developers
implement filters for XQuery, it is mostly based on a T-SQL strategy or to create dynamic
SQL that is not efficient and could be very difficult to maintain, especially when the filter
is implemented as dynamic SQL. This chapter will demonstrate many examples of how to
implement filters for XQuery requests.

6-1. Implementing the exist() Method
Problem
You want to determine whether a specific element or attribute exists within your
XML data.

Solution
The exist() method allows you to determine whether an element or attribute exists
within an XML instance. Listing 6-1 is a demonstration of using the exist() method to
retrieve all XML instances containing the YearlyIncome element directly below the root
IndividualSurvey element.

Listing 6-1. Retrieving the instances that contains the YearrlyIncome element

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey/YearlyIncome') = 1;

https://doi.org/10.1007/978-1-4842-3003-9_5

CHAPTER 6 ■ FILTERING XML

158

The query result is demonstrated in Figure 6-1.

How It Works
The exist() method verifies the existence of a provided argument and then returns:

• TRUE (a bit value of 1), when the XQuery expression returns a
nonempty result.

• FALSE (a bit value of 0), when the XQuery expression returns an
empty result.

• NULL when a NULL is passed in as the XQuery expression or the
XML instance is NULL.

Therefore, to detect whether the YearlyIncome element is contained in an XML
instance, the exist() method accepts an XQuery expression that returns one or more
YearlyIncome elements when applied to the XML instance. The XML in Listing 6-2 is a
sample of the XML that the query in Listing 6-1 is run against.

Listing 6-2. Sample XML data

<IndividualSurvey

 xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
IndividualSurvey">
 <TotalPurchaseYTD>-16.01</TotalPurchaseYTD>
 <DateFirstPurchase>2003-09-01Z</DateFirstPurchase>
 <BirthDate>1961-02-23Z</BirthDate>
 <MaritalStatus>M</MaritalStatus>
 <YearlyIncome>25001-50000</YearlyIncome>
 <Gender>M</Gender>
 <TotalChildren>4</TotalChildren>
 <NumberChildrenAtHome>0</NumberChildrenAtHome>
 <Education>Graduate Degree</Education>

Figure 6-1. Filtering data by the YearlyIncome element

CHAPTER 6 ■ FILTERING XML

159

 <Occupation>Clerical</Occupation>
 <HomeOwnerFlag>1</HomeOwnerFlag>
 <NumberCarsOwned>0</NumberCarsOwned>
 <CommuteDistance>0-1 Miles</CommuteDistance>
</IndividualSurvey>

The XML in Listing 6-2 has a relatively simple structure. The root element is
IndividualSurvey, and it can contain up to 13 child elements.

To query this XML and return all rows where the XML instances contain the
YearlyIncome element, we need to refer to the XML namespace. In the provided solution,
for simplicity, the XML namespace is set to DEFAULT, as shown below:

WITH XMLNAMESPACES(DEFAULT
'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
IndividualSurvey')

In the WHERE clause, the exist() method takes an XQuery expression that targets our
element. The exist() method will return TRUE when the XQuery expression returns a
nonempty result:

WHERE Demographics.exist('IndividualSurvey/YearlyIncome') = 1

When the YearlyIncome element is present within an XML instance, the exist()
method returns a value of 1, (numeric for TRUE), and the row provides the result set.

The same mechanism is used to detect an attribute, with some minor syntax
differences required by XQuery to match attributes. The XML provided from the
Demographics column does not have attributes. Sample 6-2 demonstrates when the
YearlyIncome element has the attribute currency.

Sample 6-2. Showing the YearlyIncome element with currency as an attribute

DECLARE @survey XML = N'<?xml version = "1.0" encoding = "utf-16" ?>
<IndividualSurvey

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
IndividualSurvey">
 <TotalPurchaseYTD currency = "$">-16.01</TotalPurchaseYTD>
 <DateFirstPurchase>2003-09-01Z</DateFirstPurchase>
 <BirthDate>1961-02-23Z</BirthDate>
 <MaritalStatus>M</MaritalStatus>
 <YearlyIncome currency = "$">25001-50000</YearlyIncome>
 <Gender>M</Gender>
 <TotalChildren>4</TotalChildren>
 <NumberChildrenAtHome>0</NumberChildrenAtHome>
 <Education>Graduate Degree</Education>
 <Occupation>Clerical</Occupation>
 <HomeOwnerFlag>1</HomeOwnerFlag>
 <NumberCarsOwned>0</NumberCarsOwned>
 <CommuteDistance>0-1 Miles</CommuteDistance>

CHAPTER 6 ■ FILTERING XML

160

</IndividualSurvey>’;In this particular case the solution will be as demonstrated in
Listing 6-3.

Listing 6-3. Searching for an attribute @currency

WITH XMLNAMESPACES
(
 DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT @survey,
 CASE WHEN @survey.exist('IndividualSurvey/YearlyIncome/@currency')

= 1 THEN N'IndividualSurvey/YearlyIncome/@currency attribute is
present.'

 ELSE N'currency attribute is NOT present.'
 END AS hasCurrency;

As demonstrated, to detect the attributes you need to provide an XPath to the
attribute.

6-2. Filtering an XML Value with the exist()
Method
Problem
You want to filter an XML column by value, but the query does not implement XQuery
Methods, such as nodes(), value(), and query().

Solution
The exist() method can provide filtering against XML text nodes, especially when the
XML instances need to be inspected for a specific searching condition. At the same time,
the SELECT clause does not have any XQuery processes. Listing 6-4 retrieves all XML
instances where the TotalPurchaseYTD element contains a value greater than 9,000.

Listing 6-4. Using XQuery to filtering XML instances by values

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID,
 Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey[TotalPurchaseYTD > 9000]') = 1;

CHAPTER 6 ■ FILTERING XML

161

Figure 6-2 displays the query result.

How It Works
In addition to detecting XML elements and attributes, as described in Recipe 6-1, the
exist() method can efficiently filter XML based on instance values. When the query
returns columns from a table and the XML instance is not a required part of the
shredding processes, but at the same time the rows from the table need to be filtered
based on XML value, then the exist() Method can be used as the filtering mechanism to
return rows based on the search condition.

The difference, as demonstrated in Recipe 6-1, is that the exist() Method has a filter
condition for the TotalPurchaseYTD element value instead of checking for the existence
of an element, for example:

Demographics.exist('IndividualSurvey[TotalPurchaseYTD > 9000]')

The filters for an XML instance have some differences when we compare it to
the T-SQL WHERE clause. The XML filters specify a Boolean expression for the exist()
method surrounded by square brackets (“[“, “]”) (the filter for the nodes() method will
be demonstrated later in this chapter). The solution demonstrates filtering to return
rows where TotalPurchaseYTD value is greater than $9000.00. The filter argument for the
exist() Method has the following components:

 1. the parent element IndividualSurvey

 2. opening bracket

 3. the child element TotalPurchaseYTD with a comparison
operator and value

 4. closing bracket

Putting it all together, our XQuery filter has the following syntax:

IndividualSurvey[TotalPurchaseYTD > 9000]

Figure 6-2. Returning the rows where the TotalPurchaceYTD is greater than 9000.00

CHAPTER 6 ■ FILTERING XML

162

 ■ Note The step in the path is implied when you apply a filter. For instance, the actual

step would be: IndividualSurvey/.[TotalPurchaseYTD > 9000]. But when a filter is applied,

the step is implied: IndividualSurvey[TotalPurchaseYTD > 9000].

The XML comparison operators are listed in Table 6-1.

“Document order” is a central concept to XML. It is the basis for node order
comparisons. The XQuery Node Order Comparison operators “<<”, “>>”, and “is” might
be new to readers, because there are no equivalent operators in T-SQL. In XQuery the
“is” comparison operator checks for node identity equality; that is, it tells you whether
the two nodes on either side of the operator are the same node. The node operators “<<”
(precede) and “>>” (follow) compare XML nodes based on document order. The “<<”
operator returns true if the node on the left precedes the node on the right of the operator,
in document order. The “>>” operator returns true if the node on the left follows the node
on the right of the operator, in document order. Listing 6-5 Compares the first instance
of the <Education> to the first instance of the <Occupation> element node position,
returning true because the <Education> element appears before the <Occupation>
element in document order.

Listing 6-5. Comparing <Education> and <Occupation> elements position

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)

Table 6-1. Demonstrating XML comparison operators

Operator Value Description

= eq Equal

!= ne Not equal

> gt Greater than

< lt Less than

>= ge Greater than and equal to

<= le Less than and equal to

<< N/A Node order precede
comparison

>> N/A Node order follow
comparison

Is N/A Node identity equality

CHAPTER 6 ■ FILTERING XML

163

SELECT BusinessEntityID,

Demographics.value('(/IndividualSurvey/Education)[1] << (/IndividualSurvey/
Occupation)[1]', 'nvarchar(20)') [Node Comparison]
FROM Person.Person
WHERE BusinessEntityID = 2436;

XML filtering does not support the implicit conversion between data types
and returns an error in attempt to compare two incompatible values. For example,
TotalPurchaseYTD element expects an xs:decimal type, but the value is implemented as
an xs:string type. In this case SQL Server throws an error, in which Listing 6-6 triggered
the error message.

Listing 6-6. Raising type conversion error.

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 Demographics
FROM Person.Person
WHERE Demographics.exist('IndividualSurvey[TotalPurchaseYTD > "9000"]') = 1;

Figure 6-3. Showing the error message

String type values need to be surrounded by double quotes, and numeric type values
do not. The exceptions are the date, time, and datetime types, where XML filters directly
handle conversion, as shown in Listing 6-7.

Listing 6-7. Filtering with date types

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 Demographics
FROM Person.Person
WHERE Demographics.exist
('IndividualSurvey[DateFirstPurchase=xs:date("2002-06-28Z")]') = 1;

CHAPTER 6 ■ FILTERING XML

164

The result is demonstrated in Figure 6-4.

XQuery supports the following date and time conversion functions:

• xs:date() for date type

• xs:time() for time type

• xs:dateTime() for datetime type

The DateFirstPurchase element value is “2002-06-28Z,” where “Z” is the zero
meridian, that is, Z specifier (“Z” actually means UTC Offset of +00:00). For the filtered
value, the “Z” is an optional, therefore, xs:date("2002-06-28") and xs:date("2002-06-28Z")
will return the same result.

6-3. Finding All Occurrences of an XML Element
Anywhere Within an XML Instance
Problem
You want to locate all occurrences of an XML element regardless of where it occurs within
an XML instance.

Solution
Putting double forward slashes “//” (shortcut for /descendant-or-self::node()/) before
step within XQuery path expression gives you a shortcut step operator to retrieve the
current context node and all its descendant nodes. When it appears at the beginning of
an XQuery path expression, it retrieves all nodes in the XML data. You can use this in
the node() method to avoid explicitly specifying a full reference to the target element, as
shown in Listing 6-8.

Figure 6-4. Results from the XML instance filtered by date

CHAPTER 6 ■ FILTERING XML

165

Listing 6-8. Inserting a new row via the stored procedure

WITH XMLNAMESPACES
(
 N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

Resume' AS ns
)
SELECT

 Info.value(N'(/ns:Resume/ns:Name/ns:Name.First)[1]', 'NVARCHAR(30)')
AS FirstName,

 Info.value(N'(/ns:Resume/ns:Name/ns:Name.Last)[1]', 'NVARCHAR(30)')
AS LastName,

 Info.value('fn:string(../../../../ns:Address[1]/ns:Addr.Location[1]
/ns:Location[1]/ns:Loc.CountryRegion[1])', 'NVARCHAR(100)') AS
Country,

 Info.value('fn:string(../ns:Tel.Type[1])', 'NVARCHAR(15)') AS
PhoneType,

 Info.value('fn:string(../ns:Tel.AreaCode[1])', 'NVARCHAR(9)')
AS AreaCode,

 Info.value('fn:string(.)', 'NVARCHAR(20)') AS CandidatePhone FROM
HumanResources.JobCandidate

 CROSS APPLY Resume.nodes('//ns:Tel.Number') AS Person(Info);

The query result is shown in Figure 6-5.

Figure 6-5. Showing the SQL result

CHAPTER 6 ■ FILTERING XML

166

How It Works
SQL Server XQuery has the ability to shorten the reference to the source element within
the node() Method by adding leading double forward slashes to the source element, for
example Resume.nodes(‘//ns:Tel.Number’). In this case “//” is shortcut for the XQuery
“descendant-or-self::node()” path step. The XQuery engine uses this when searching for
all occurrences of an element contained within the XML data that the nodes() method is
acting upon.

The hierarchy for the Tel.Number element that is part of the HumanResources.
JobCandidate table’s Resume column is shown in Figure 6-6.

The fully qualified XQuery path expression for the nodes() method to the Tel.
Number element is demonstrated in Listing 6-9.

Listing 6-9. Demonstrating a fully qualified reference to the Tel.Number element

WITH XMLNAMESPACES
(
N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume' AS ns
)
SELECT
.
.
.
FROM HumanResources.JobCandidate
 CROSS APPLY Resume.nodes
('/ns:Resume/ns:Address/ns:Addr.Telephone/ns:Telephone/ns:Tel.Number')
AS Person(Info);

Figure 6-6. Showing the Tel.Number element hierarchy

CHAPTER 6 ■ FILTERING XML

167

 ■ Caution It is obvious that the “//” axis operator provides a convenient way to set the

reference to a deep child element. However, this technique should be tested thoroughly

before coming to a final consideration because it could cause performance problems during

the XML shredding process. Chapter 7 will provide more details about the nodes() method

performance optimization.

6-4. Filtering by Single Value
Problem
You need to set a single value filter when shredding the XML instance.

Solution
Set the filter within the nodes() Method, Listing 6-10. The result is demonstrated in
Figure 6-7.

Listing 6-10. Setting a single value filter within the nodes() Method

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID ,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person CROSS APPLY
 Demographics.nodes('IndividualSurvey[TotalPurchaseYTD > 9000]')

AS dmg(ref);

Figure 6-7. Result of filtered XQuery query

http://dx.doi.org/10.1007/978-1-4842-3117-3_7

CHAPTER 6 ■ FILTERING XML

168

How It Works
The XQuery language supports filtering from within the nodes() method. The syntax for
the XQuery filter is very similar to the T-SQL WHERE clause, but it’s not exactly the same.
Table 6-1 lists all comparison operators for the XQuery filters (see Recipe 6-2 in the How It
Works section). They are the same except for one small difference: the not equal operator,
XQuery implements “!=” as the only option. On the other hand, T-SQL provides a choice
for DBAs and Developers between “!=” and “<>” operators (best practice in T-SQL,
however, is to use the “<>” operator).

To set a single value filter within the nodes() method you need:

 1. the parent element IndividualSurvey

 2. opening bracket

 3. the child element TotalPurchaseYTD with comparison
operator and value to compare against

 4. closing bracket

Practically speaking, all steps are the same as those demonstrated in Recipe 6-2 for
the exist() method. For example, the filter part for both is:

IndividualSurvey[TotalPurchaseYTD > 9000]

However, the exist() method has slightly better performance compared to the
nodes() method. Because those two methods serve completely different functions, the
exist() method is for filtering, and nodes() is for shredding.

6-5. Filtering XML by T-SQL Variable
Problem
You want to filter XML results based on T-SQL variable values.

Solution
The SQL Server XQuery function sql:variable() allows your XQuery query expression to
access the values of T-SQL variables or parameters for inclusion in your search criteria.
The best implementation and demonstration of the sql:variable() function is a stored
procedure, as shown in Listing 6-11.

Listing 6-11. Creating a stored procedure with sql:variable() function

CREATE PROCEDURE dbo.usp_DemographicsByYearlyIncome
 @YearlyIncome NVARCHAR(20)
AS
BEGIN
 WITH XMLNAMESPACES
 (

CHAPTER 6 ■ FILTERING XML

169

 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/IndividualSurvey'

)
 SELECT BusinessEntityID ,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
 FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[YearlyIncom

e=sql:variable("@YearlyIncome")]') AS dmg(ref);
END;
GO

How It Works
XQuery has the function sql:variable() that allows you to filter XQuery without explicitly
specify a search criteria. The sql:variable() function renders and maps a T-SQL declared
variable or stored procedure parameter to the XQuery. The sql:variable() function could
be a part of the nodes() and exist() Methods to provide filtering functionalities.

The syntax to implement the sql:variable() function to filter an XML element is as
follows:

parentElement[childElement comparisonOperator sql:variable(“@varible”)]

The syntax to implement the sql:variable() function to filter an XML attribute is as
follows:

parentElement[@attribute comparisonOperator sql:variable(“@varible”)]

Listing 6-12 demonstrates several executions of the usp_DemographicsByYearly
Income stored procedure with different parameter values.

Listing 6-12. Calling the usp_DemographicsByYearlyIncome stored procedure

EXECUTE dbo.usp_DemographicsByYearlyIncome '0-25000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '25001-50000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '50001-75000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome '75001-100000';
GO

EXECUTE dbo.usp_DemographicsByYearlyIncome 'greater than 100000';
GO

CHAPTER 6 ■ FILTERING XML

170

The result from the stored procedure execution with parameter value '0-25000' is
demonstrated in Figure 6-8.

 ■ Caution The sql:variable() function is part of XQuery; therefore the function is case

sensitive and must be referenced in lowercase only. Any other case implementation will

trigger the error: Msg 2395, … There is no function ‘{urn:schemas-microsoft-com:xml-

sql}:Variable()’. However, a variable name that sends to the sql:variable() function is not

case sensitive.

6-6. Comparing to a Sequence of Values
Problem
You need to filter an XML instance by list a of values, in a fashion similar to the T-SQL IN
predicate for the WHERE clause.

Solution
Listing 6-13 demonstrates how to simulate the IN predicate within an XML instance using
the “=” general comparison operator against a sequence of values.

Listing 6-13. Sending a list of values to filter an XML instance

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'
)

Figure 6-8. Showing the stored procedure result

CHAPTER 6 ■ FILTERING XML

171

SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[Occupation=

("Clerical","Manual", "Professional")]') AS dmg(ref);

The query results are demonstrated in Figure 6-9.

How It Works
The mechanism for filtering an XML instance by a sequence of values is relatively simple,
but it is not intuitive. The most common mistake that DBAs and Developers make is that
they try to adopt the IN predicate from T-SQL to define this filter. However, the solution is
much simpler. The syntax to list the values within the nodes() method is:

parentElement[childElement = (value1, value2, value3,...)]

When filtering the data by list of values, the difference between T-SQL and XQuery
is that XQuery syntax uses the equal general comparison operator (=), while the IN
predicate in T-SQL uses the WHERE clause.

6-7. Matching a Specified String Pattern
Problem
You want to filter an XML instance by a string pattern.

Figure 6-9. Showing XQuery result that processed by list of values

CHAPTER 6 ■ FILTERING XML

172

Solution
The XQuery fn:contains() function matches a string pattern within an XML element or
attribute, as shown in Listing 6-14.

Listing 6-14. Searching for the string “Manual” within the Occupation element

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID ,
 Demographics,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[(
fn:contains(Occupation[1], "Manual"))]') AS dmg(ref);

Figure 6-10 demonstrates the result.

How It Works
The XQuery contains() function has two arguments:

 1. an XML instance element or attribute

 2. a string pattern

Figure 6-10. Showing the XQuery result for query where IndividualSurvey element
matched a value pattern

CHAPTER 6 ■ FILTERING XML

173

The contains() function returns an xs:boolean data type (true, false) depending on
whether the element or the attribute value in argument 1 matches the string pattern in
argument 2. The contains() function mechanism is similar to the T-SQL LIKE operator,
when the argument is surrounded by wild cards, for example: ‘%ARGUMENT%’, that is,
matching any occurrences.

Unfortunately, SQL Server does not support the XQuery functions fn:starts-with()
and fn:ends-with(). However, when your task requires you to filter values using fn:starts-
with() or fn:ends-with()-type functionality, you can complete this task by using an
XQuery and T-SQL hybrid solution, as shown in Listing 6-15.

Listing 6-15. Filtering an XML instance using fn:contains() XQuery and T-SQL
hybrid solution

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
),
Subset AS
(
 SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS Commute

Distance
 FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey

[fn:contains(Occupation[1], "Manual")]') AS dmg(ref)
)
SELECT BusinessEntityID,
 TotalPurchase,
 DateFirstPurchase,
 YearlyIncome,
 Occupation,
 CommuteDistance
FROM Subset
WHERE Occupation LIKE 'Manual%';

CHAPTER 6 ■ FILTERING XML

174

Figure 6-11 demonstrates the result.

6-8. Filtering a Range of Values
Problem
You want to filter an XML instance by a range of values, similar to the T-SQL BETWEEN
operator.

Solution
The XQuery logical and operator can be used to join two predicates to define a range filter
for an XML instance, as shown in Listing 6-16.

Listing 6-16. Implementing the value range filter

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD', 'MONEY') TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') CommuteDistance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[TotalPurchase

YTD >= 1000 and TotalPurchaseYTD <= 2000]') AS dmg(ref);

Figure 6-11. Showing the XQuery and T-SQL hybrid solution result

CHAPTER 6 ■ FILTERING XML

175

The result is demonstrated in Figure 6-12.

How It Works
Setting the value range filter for XQuery uses a method of implementation similar to using
the T-SQL WHERE clause. T-SQL has the BETWEEN operator as an additional option for the
values range filter. However, the XQuery filter “elementName >= value and elementName
<= value” implements the same functionality as the BEWTEEN operator. Therefore, the
solution in Listing 6-16 demonstrates the value range filter for XQuery, for example:
‘IndividualSurvey[TotalPurchaseYTD >= 1000 and TotalPurchaseYTD <= 2000]’.

 ■ Caution All operators within XQuery are case sensitive as well. To avoid errors, utilize

“and” “or” operators in lowercase only.

6-9. Filtering by Multiple Conditions
Problem
You want to filter an XML instance by multiple elements, attributes, or conditions.

Solution
XQuery provides the and and or logical operators to create compound predicates, which
implement multiple filtering conditions against an XML instance, as shown in Listing 6-17.

Figure 6-12. Showing the XQuery result with range of values filter conditions

CHAPTER 6 ■ FILTERING XML

176

Listing 6-17. Implementing multiple filter conditions

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome', 'NVARCHAR(20)') AS YearlyIncome,
 ref.value('Occupation', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
CROSS APPLY Demographics.nodes('IndividualSurvey[TotalPurchaseYTD >= 1001
 and TotalPurchaseYTD < 1004
 and CommuteDistance = "0-1 Miles"
 or DateFirstPurchase > xs:date("2004-07-30Z")]'
) AS dmg(ref);

The result is demonstrated in Figure 6-13.

How It Works
This recipe demonstrates an XQuery filter for several elements in Listing 6-17. The logic
in this recipe is to filter the XML instance where:

 1. TotalPurchaseYTD values are between 1001 and 1004, AND

 2. CommuteDistance is equal to “0-1 Miles,” OR

 3. The DateFirstPurchase > “2004-07-30Z.”

Figure 6-13. Showing the XQuery result with multiple filter conditions

CHAPTER 6 ■ FILTERING XML

177

The nodes() method implements four predicates to satisfy the filtering criteria.
This recipe demonstrates the two logical operators and and or. The solution XQuery
expression is written as:

IndividualSurvey[TotalPurchaseYTD >= 1001
 and TotalPurchaseYTD <= 1004
 and CommuteDistance = "0-1 Miles"
 or DateFirstPurchase > xs:date("2004-07-30")]

This way the recipe demonstrates multiple filtering conditions within the XML
instance.

 ■ Note For demo purposes, the table Person.Person and the column Demographics,

containing 19,972 rows, has been selected for this chapter. However, the Demographics

column is element-centric XML. Therefore, no filtering samples were provided for the XML

attribute. There is a small difference when referencing the XML attribute. The attribute has a

leading “@” when it is referenced in a predicate. Listing 6-17 demonstrates the XML portion

with the TotalPurchaseYTD element currency attribute. Therefore, the syntax to filter by the

attribute is: nodes(‘IndividualSurvey/YearlyIncome[@currency=“$”)’).

6-10. Setting a Negative Predicate
Problem
You need to filter an XML instance by setting a negative operator. For instance, the T-SQL
NOT IN predicate.

Solution
The XQuery negation function is fn:not(). When wrapped around an XQuery predicate,
fn:not() returns the opposite of the Effective Boolean Value of the predicate. Listing 6-18
shows an example of using fn:not() as well as the “!=” general comparison operator, which
is itself the equivalent of wrapping an “=”predicate with fn:not().

Listing 6-18. Demonstrating negative operators

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD[1]', 'MONEY') AS TotalPurchase,

CHAPTER 6 ■ FILTERING XML

178

 ref.value('DateFirstPurchase[1]', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome[1]', 'NVARCHAR(15)') AS YearlyIncome,
 ref.value('Occupation[1]', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance[1]', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[YearlyIncome !=

"0-25000" and fn:not(Occupation = ("Clerical","Manual",
"Professional"))]') AS dmg(ref);

The result is demonstrated in Figure 6-14.

How It Works
XQuery has three negative operators:

• “!=” not equal operator for a general comparison

• “ne” not equal operator for a value comparison

• fn:not() function for a list and range of values

In the Solution section, Listing 6-18 demonstrates both single value criteria and a list
of the values setting negative filters, for example:

IndividualSurvey[YearlyIncome ne "0-25000" and fn:not(Occupation = (“Clerical”,
“Manual”, “Professional”))]

6-11. Filtering Empty Values
Problem
You want to filter an XML instance based on the existence of a value within an element or
attribute.

Figure 6-14. Showing the XQuery result with negative predicate

CHAPTER 6 ■ FILTERING XML

179

Solution
The XQuery fn:empty() function verifies if a value exists for a given XML element or
attribute, as shown in Listing 6-19.

Listing 6-19. Verifying the value existence

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD[1]', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase[1]', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome[1]', 'NVARCHAR(15)') AS YearlyIncome,
 ref.value('Occupation[1]', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance[1]', 'NVARCHAR(15)') AS CommuteDistance
FROM person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[fn:not(fn:empty

(Occupation))
and fn:not(Occupation = ("Clerical", "Manual", "Professional"))]')
AS dmg(ref);

The result is demonstrated in Figure 6-15.

Figure 6-15. Showing the XQuery result with implemented fn:empty() function as a filter

CHAPTER 6 ■ FILTERING XML

180

 ■ Note The fn:empty() XQuery function is an alternative to the exist() method within

XQuery. The exist() method is not supported in the nodes() Method. Therefore, fn:empty()

and fn:not() work very well within the nodes() Method, similarly to the functionality of T-SQL

IS NULL and IS NOT NULL operators.

How It Works
The fn:empty() function checks if the XML instance elements and attribute values are
empty or not. Logically, fn:empty() provides functionality to detect any empty values
within your XML data. The Solution section demonstrates the syntax to return rows where
the Occupation element has a value, that is, the element is not empty. Therefore, both
fn:not() and fn:empty() are implemented in Listing 6-14:

IndividualSurvey[fn:not(fn:empty(Occupation))

As mentioned in the Solution section, the fn:empty() function is an alternate to the
exist() Method, Listing 6-20.

Listing 6-20. Demonstrates an alternative to the fn:empty() function

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('TotalPurchaseYTD[1]', 'MONEY') AS TotalPurchase,
 ref.value('DateFirstPurchase[1]', 'DATE') AS DateFirstPurchase,
 ref.value('YearlyIncome[1]', 'NVARCHAR(15)') AS YearlyIncome,
 ref.value('Occupation[1]', 'NVARCHAR(15)') AS Occupation,
 ref.value('CommuteDistance[1]', 'NVARCHAR(15)') AS CommuteDistance
FROM Person.Person
 CROSS APPLY Demographics.nodes
('IndividualSurvey[fn:not(Occupation = ("Clerical", "Manual",
"Professional"))]') AS dmg(ref)
WHERE Demographics.exist('IndividualSurvey/Occupation') = 1;

CHAPTER 6 ■ FILTERING XML

181

The result is demonstrated in Figure 6-16.

When both Listings 6-19 and 6-20 are executed with the T-SQL SET STATISTICS
TIME ON; option set, SQL Server shows that fn:empty() has a minor performance
advantage over the exist() Method, as shown in Listing 6-21.

Listing 6-21. Showing the execution output for the fn:empty() function and the exist()
Method

-- fn:empty() function
(7652 row(s) affected)
 SQL Server Execution Times:
 CPU time = 454 ms, elapsed time = 496 ms.

-- exist() method
(7652 row(s) affected)
 SQL Server Execution Times:
 CPU time = 485 ms, elapsed time = 577 ms.

 ■ Note The output on your PC could return different performance numbers.

Figure 6-16. Showing the XQuery result with implemented an alternative to the fn:empty()
function

CHAPTER 6 ■ FILTERING XML

182

Summary
The “Filtering XML” chapter demonstrates the ability to implement an internal XQuery
filtering mechanism for the XML instance. The T-SQL WHERE clause provides a more
comprehensive filtering mechanism compared to XQuery internal filtering. However, as
was demonstrated in the previous recipes, XQuery has sufficient ability to filter an XML
instance.

The most common misconceptions that SQL DBAs and Developers make for filtering
the XML is that they are implementing a T-SQL WHERE clause for simplicity. This is an
inefficient solution to handle the filtering process for XML instances because the T-SQL
WHERE clause filters the XML when the engine returns the result set, while the XQuery
returns the filtered values. Listing 6-22 compares the execution CPU utilization and time
for both XQuery and the WHERE clause.

Listing 6-22. Demonstrating execution differences

SET STATISTICS TIME ON;

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('fn:string(TotalPurchaseYTD[1])', 'MONEY') AS Total

Purchase,
 ref.value('fn:string(DateFirstPurchase[1])', 'DATE') AS Date

FirstPurchase,
 ref.value('fn:string(YearlyIncome[1])', 'NVARCHAR (20)') AS Yearly

Income,
 ref.value('fn:string(Occupation[1])', 'NVARCHAR(15)') AS Occupation,
 ref.value('fn:string(CommuteDistance[1])', 'NVARCHAR(15)') AS Commute

Distance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey[Occupation=

"Manual"]') AS dmg(ref);

WITH XMLNAMESPACES
(
 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/IndividualSurvey'
)
SELECT BusinessEntityID,
 ref.value('fn:string(TotalPurchaseYTD[1])', 'MONEY') AS

TotalPurchase,
 ref.value('fn:string(DateFirstPurchase[1])', 'DATE') AS DateFirst

Purchase,

CHAPTER 6 ■ FILTERING XML

183

 ref.value('fn:string(YearlyIncome[1])', 'NVARCHAR(20)') AS Yearly
Income,

 ref.value('fn:string(Occupation[1])', 'NVARCHAR(15)') AS Occupation,
 ref.value('fn:string(CommuteDistance[1])', 'NVARCHAR(15)') AS Commute

Distance
FROM Person.Person
 CROSS APPLY Demographics.nodes('IndividualSurvey') AS dmg(ref)
WHERE ref.value('fn:string(Occupation[1])', 'NVARCHAR(15)') = 'Manual';

SET STATISTICS TIME OFF;

The result is demonstrated in Listing 6-23.

Listing 6-23. Showing the execution output for XQuery and WHERE clause processes:

-- XQuery nodes() filter
(2384 row(s) affected)

 SQL Server Execution Times:
 CPU time = 235 ms, elapsed time = 271 ms.

-- T-SQL WHERE clause
(2384 row(s) affected)

 SQL Server Execution Times:
 CPU time = 593 ms, elapsed time = 601 ms.

The result in Listing 6-23 demonstrates that XQuery is more than twice as efficient as
compared to the WHERE clause. Therefore, XQuery filtering should be your first choice.

 ■ Note The output on your PC could return different performance numbers.

185© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_7

CHAPTER 7

Improving XML Performance

Performance efficiency is always a top concern for DBAs and developers. Indexes are a
front runner to improve data delivery processes. However, the logical tree structure of
XML data cannot be indexed in the same way as plain old relational data. Therefore, with
the introduction of SQL Server 2005, Microsoft added an indexing mechanism for XML
data type columns. XML data is not the same as scalar data in a table’s column, therefore
the XML indexing mechanism provides for specialized primary and secondary XML
indexes. In SQL Server 2012, the XML indexes are enhanced with a Selective XML Index,
which provides an improvement in search efficiency for big XML data.

7-1. Creating a Primary XML Index
Problem
You want to improve the filtering processes on an XML data type column.

Solution
Adding a primary XML index can improve the filtering processes on an XML data type
column. To demonstrate, we will create a new table with an XML column, populate it with
data, and then create a primary XML index on it. Listing 7-1 demonstrates how to create
a primary XML index on the Demographic column of our new table. Figure 7-1 displays a
created index.

Figure 7-1. Showing the created index for a PersonXML table

https://doi.org/10.1007/978-1-4842-3117-3_7

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

186

Listing 7-1. Creating a primary XML index

-- These settings are important when creating XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.PersonXML

-- Create and populate a table called PersonXML
CREATE TABLE dbo.PersonXML
(
 PersonID INT NOT NULL,
 FirstName NVARCHAR(30) NOT NULL,
 MiddleName NVARCHAR(20)NULL,
 LastName NVARCHAR(30) NOT NULL,
 Demographics XML NULL,
 CONSTRAINT PK_PersonXML PRIMARY KEY CLUSTERED
 (
 PersonID ASC
)
);
GO

INSERT dbo.PersonXML
(
 PersonID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
)
SELECT BusinessEntityID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
FROM Person.Person;
GO

-- Now create the Primary XML index on the dbo.PersonXML table
CREATE PRIMARY XML INDEX IX_PXML_PersonXML_Demographics
ON dbo.PersonXML

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

187

(
 Demographics
);
GO

How It Works
In our example we created a dbo.PersonXML table to demonstrate XML index creation
and performance. Listing 7-2 shows the SQL code that creates the table and loads it with
data from the Person.Person table in the AdventureWorks database. Note the session-
level settings shown (via the SET statements). These are important when creating XML
columns in tables or adding XML indexes to XML columns.

Listing 7-2. Creating and populating a PersonXML table

-- These settings are important when creating XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.PersonXML

-- Create and populate a table called PersonXML
CREATE TABLE dbo.PersonXML
(
 PersonID INT NOT NULL,
 FirstName NVARCHAR(30) NOT NULL,
 MiddleName NVARCHAR(20)NULL,
 LastName NVARCHAR(30) NOT NULL,
 Demographics XML NULL,
 CONSTRAINT PK_PersonXML PRIMARY KEY CLUSTERED
 (
 PersonID ASC
)
);
GO

Listing 7-3 demonstrates a SQL query to get a result from the XML column. Figure 7-2
shows the actual execution plan for the SQL code for this query before a primary XML index
is created.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

188

Listing 7-3. Sampling XQuery with a filter

SELECT PersonID, Demographics
FROM dbo.PersonXML
WHERE Demographics.exist('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 IndividualSurvey[TotalPurchaseYTD > 9000]') = 1;

Looking at the execution plan that is created for the XQuery is different by several
steps that are not typical for T-SQL queries:

• Table Valued Function [XML Reader with XPath filter]

• Table Valued Function [XML Reader]

Two of these steps have the highest percentage of the total query cost, 92% and 7%,
respectively. These steps specify the XML runtime shredding mechanism and is very
similar to a table scan for a normal relational SQL query. That means, depending on how
big your XML instance is, the XML shredding process could potentially be very costly in
terms of performance. Figure 7-3 demonstrates the Table Valued Function [XML Reader]
step property values.

Figure 7-2. Showing the execution plan before the primary XML index is created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

189

Listing 7-4. Creating the XML Primary index

CREATE PRIMARY XML INDEX IX_PXML_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
);
GO

Once the primary XML index is created, you can re-run the query from Listing 7-5
(same as Listing 7-2) with the actual execution plan enabled on SSMS:

Figure 7-3. Showing a Table Valued Function [XML Reader] step property

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

190

Listing 7-5. Querying the PersonXML table with a Primary XML index

SELECT PersonID, Demographics
FROM dbo.PersonXML
WHERE Demographics.exist('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 IndividualSurvey[TotalPurchaseYTD > 9000]') = 1;

In the resulting execution plan, the Table Valued Function [XML Reader with XPath
filter] step and Table Valued Function [XML Reader] are replaced with a Clustered Index
Seek(PrimaryXML) step. Figure 7-4 demonstrates the returned execution plan.

Figure 7-4. Showing the execution plan after PRIMARY XML index created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

191

Figure 7-5 demonstrates a Clustered Index Seek (PrimaryXML) step property. With
the primary XML index, the Estimated Operator Cost went down from 35782.9 (92%) for
the Table Valued Function [XML Reader] step to 21.2796 (46%) for the Clustered Index
Seek (PrimaryXML) step.

Figure 7-5. Showing the Clustered Index Seek(PrimaryXML) step property

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

192

The CREATE PRIMARY XML INDEX statement has three parts to identify the index
name, the table on which to create the index, and the name of the XML column on which
to create the index, as shown below:

CREATE PRIMARY XML INDEX <PRIMARY_XML_INDEX_NAME>

ON <TABLE_NAME>

(<XML_COLUMN_NAME>);

When creating a primary XML index, you need to follow several rules:

• The table that contains the XML column must have a clustered
primary key.

• When a primary XML index exists, the clustered primary key of
the table cannot be dropped or altered with DDL statements. All
XML indexes must be dropped before modifying the primary key.

• A primary XML index can be created on a single XML type
column.

• Each XML index must have a database-wide unique name.

• You cannot separately specify filegroup or partitioning
information for the user table when creating an XML index.

• When the primary XML index is dropped, all secondary XML
indexes relying on it are dropped automatically.

• Set IGNORE_DUP_KEY and ONLINE options OFF for XML
indexes.

• Primary XML indexes have the same restrictions on names as
views have on their names.

• Only tables with an XML type column can have an XML index. A
view, table-valued variable with XML type columns, or XML type
variables cannot have an XML index.

• No XML indexes should exist when changing an XML type
column from untyped to typed XML. The ALTER TABLE ALTER
COLUMN option could be used if an XML index exists on the
table. The XML indexes must be dropped before the column type
can be changed.

• The following session options must be set to ON when an XML
index is created:

ARITHABORT

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

193

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIER

• The option NUMERIC_ROUNDABORT must be set to OFF when
an XML index is created.

A primary XML index can improve XQuery performance significantly. Therefore,
XML indexing can be a very attractive solution to improving SQL Server XQuery
performance. However, there are several considerations associated with XML indexing.
First of all, adding a primary XML index might consume a large amount of storage space.
When a PRIMARY XML index is created, SQL Server shreds the XML data in a given
column into relational format, accessible only by the query execution engine. That could
potentially consume more than double the storage space required to store the unindexed
XML data.

Consider these recommendations when deciding whether to add a primary XML index:

• Often times, an XML index is not needed if the XML columns are
not part of an XQuery process.

• Determine your query profiles. An XML index is worth
considering if you are querying against a large number of rows at
a time or if your XML data is large in size. If these conditions do
not apply, then the storage cost could outweigh the efficiency.

• A good reason for adding a primary XML index is if you need to
add a secondary XML index to increase the efficiency of a specific
class of queries (discussed in the next three sections). Adding a
primary XML index is mandatory if you wish to add secondary
XML indexes.

7-2. Creating a Secondary PATH Type Index
Problem
You want to improve am XML column filtering with the exist() method.

Solution
The secondary path type XML index improves query performance for the exist() method
of the XML data type. Listing 7-6 creates the same table from Solution 7-2 and applies
a primary XML index to it, as these are both required for this solution. Listing 7-7
demonstrates how to create a secondary path XML index on the table. Figure 7-6 displays
the created index.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

194

Listing 7-6. Creating sample table with primary XML index

-- These settings are important when creating XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.PersonXML

-- Create and populate a table called PersonXML
CREATE TABLE dbo.PersonXML
(
 PersonID INT NOT NULL,
 FirstName NVARCHAR(30) NOT NULL,
 MiddleName NVARCHAR(20)NULL,
 LastName NVARCHAR(30) NOT NULL,
 Demographics XML NULL,
 CONSTRAINT PK_PersonXML PRIMARY KEY CLUSTERED
 (
 PersonID ASC
)
);
GO

INSERT dbo.PersonXML
(
 PersonID,
 FirstName,
 MiddleName,

Figure 7-6. Showing a created secondary path type XML index

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

195

 LastName,
 Demographics
)
SELECT BusinessEntityID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
FROM Person.Person;
GO

-- Now create the Primary XML index on the dbo.PersonXML table
CREATE PRIMARY XML INDEX IX_PXML_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
);

GO Listing 7-7 adds a secondary path XML index to our previously-created sample
table with primary XML index on it.

Listing 7-7. Creating a secondary path XML index

CREATE XML INDEX IX_XMLPATH_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
)
USING XML INDEX IX_PXML_PersonXML_Demographics
FOR PATH;

How It Works
A primary XML index can improve the performance of queries on XML data type
columns. Secondary XML indexes can increase query performance on top of the primary
XML index. If your queries tend to specify the exist() method in their WHERE clauses, a
SECONDARY PATH type index can potentially further improve query speed. Listing 7-8
specifies a query for the existence of an XQuery path.

Listing 7-8. Demonstrating a SECONDARY PATH type index which specifies a query path

SELECT PersonID, Demographics
FROM dbo.PersonXML
WHERE Demographics.exist('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
/IndividualSurvey/Occupation') = 1;

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

196

Another option is demonstrated in Listing 7-9, where both the path and a predicate
are specified.

Listing 7-9. Showing a secondary path type XML index specifying the path and
predicate.

SELECT PersonID, Demographics
FROM dbo.PersonXML
WHERE Demographics.exist('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
/IndividualSurvey[TotalPurchaseYTD > 9000]') = 1;

A secondary path type XML index, as well as value and property type secondary
indexes, are each built on top of a primary XML index. The syntax of the CREATE XML
INDEX to create a secondary path XML index has four parts:

CREATE XML INDEX <SECONDARY_PATH_XML_INDEX_Name>

ON <Table_Name>

(<XML_data_type_Column_Name>)
USING XML INDEX <PRIMARY_XML_INDEX_Name> FOR PATH;

 ■ Note When the primary XML index is dropped, all associated secondary XML indexes

are dropped automatically.

7-3. Creating a Secondary VALUE Type Index
Problem
You want to improve an XML column when a wildcard is implemented in XQuery or the
path is not fully specified.

Solution
A secondary value type XML index benefits XQuery performance when the path is not
fully specified or if it includes a wildcard. Listing 7-10 creates the sample table and
primary XML index we previously created in Solutions 7-1 and 7-2. If you have already
created this table, then you do not need to recreate it.

Listing 7-10. Creating sample table with XML column and primary XML index

-- These settings are important when creating XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

197

SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.PersonXML

-- Create and populate a table called PersonXML
CREATE TABLE dbo.PersonXML
(
 PersonID INT NOT NULL,
 FirstName NVARCHAR(30) NOT NULL,
 MiddleName NVARCHAR(20)NULL,
 LastName NVARCHAR(30) NOT NULL,
 Demographics XML NULL,
 CONSTRAINT PK_PersonXML PRIMARY KEY CLUSTERED
 (
 PersonID ASC
)
);
GO

INSERT dbo.PersonXML
(
 PersonID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
)
SELECT BusinessEntityID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
FROM Person.Person;
GO

-- Now create the Primary XML index on the dbo.PersonXML table
CREATE PRIMARY XML INDEX IX_PXML_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
);
GO

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

198

Listing 7-11 shows how to create a secondary value XML index on the sample table,
and Figure 7-7 displays the created XML index.

Listing 7-11. Creating a secondary value type index

CREATE XML INDEX IX_XMLVALUE_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
)
USING XML INDEX IX_PXML_PersonXML_Demographics
FOR VALUE;

How It Works
A secondary value type index can improve the efficiency of a XQuery when the path is not
fully specified, or includes wildcards, for example:

• //ELEMENT[ELEMENT = “Filter Condition”]

• /ELEMENT/@*[. = “Filter Condition”]

• //ELEMENT[@ATTRIBUTE = “Filter Condition”]

Practically speaking, the secondary value type index improves query performance
where the predicate filter condition value is known. Listing 7-12 demonstrates XQuery
benefits from using a value index.

Listing 7-12. Showing XQuery benefits from utilizing a secondary value XML index

SELECT PersonID,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 TotalPurchaseYTD[1]', 'money') TotalPurchase,

Figure 7-7. Confirming the secondary value XML index was created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

199

 ref.value('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";

 DateFirstPurchase[1]', 'date') DateFirstPurchase,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 YearlyIncome[1]', 'varchar(20)') YearlyIncome,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 Occupation[1]', 'varchar(15)') Occupation,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 CommuteDistance[1]', 'varchar(15)') CommuteDistance
FROM PersonXML
CROSS APPLY Demographics.nodes('declare default element namespace "http://
schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 /*[YearlyIncome="50001-75000"]') dmg(ref);

The syntax to create a secondary value type index has four components:

CREATE XML INDEX <SECONDARY_VALUE_XML_INDEX_Name>

ON <Table_Name>

(<XML_data_type_Column_Name>)
USING XML INDEX <PRIMARY_XML_INDEX_Name> FOR VALUE;

 ■ Caution An ancestor-or-self axis operator, for example XML_Column.nodes

('//ELEMENT’, is a convenient way to establish the path reference in the nodes() method.

However, this technique could slow down performance for an XML data type column where

the XML instance has deeply nested elements. This is one of the most common performance

issues in the XML shredding process. Therefore, I would recommend (when possible)

to provide a more detailed path within the nodes() method. For example, XML_Column.

nodes(‘//ELEMENT/CHILD_ELMNT’) could improve your XML shredding performance.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

200

7-4. Creating a Secondary PROPERTY Type Index
Problem
You want to improve performance on an XML column where XQuery retrieves one or
more values from the column.

Solution
A secondary property type XML index can be beneficial if your XQuery retrieves one or
more values from an XML column. Listing 7-13 creates our demonstration table we have
used in Solutions 7-1, 7-2 and 7-3, and creates the primary XML index on it.

Listing 7-13. Create sample table with XML column and primary XML index

-- These settings are important when creating XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.PersonXML

-- Create and populate a table called PersonXML
CREATE TABLE dbo.PersonXML
(
 PersonID INT NOT NULL,
 FirstName NVARCHAR(30) NOT NULL,
 MiddleName NVARCHAR(20)NULL,
 LastName NVARCHAR(30) NOT NULL,
 Demographics XML NULL,
 CONSTRAINT PK_PersonXML PRIMARY KEY CLUSTERED
 (
 PersonID ASC
)
);
GO

INSERT dbo.PersonXML
(
 PersonID,
 FirstName,
 MiddleName,

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

201

 LastName,
 Demographics
)
SELECT BusinessEntityID,
 FirstName,
 MiddleName,
 LastName,
 Demographics
FROM Person.Person;
GO

-- Now create the Primary XML index on the dbo.PersonXML table
CREATE PRIMARY XML INDEX IX_PXML_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
);
GO

Listing 7-14 shows how to create a secondary property XML index. Figure 7-8
displays the created index.

Listing 7-14. Creating a secondary property XML index

CREATE XML INDEX IX_XMLPROPERTY_PersonXML_Demographics
ON dbo.PersonXML
(
 Demographics
)
USING XML INDEX IX_PXML_PersonXML_Demographics
FOR PROPERTY;

Figure 7-8. Confirming the index was created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

202

How It Works
A secondary property type index can provide performance benefits when querying
an XML column that retrieves one or more values via the value() method. Listing 7-15
demonstrates the benefits of using XQuery when a PROPERTY index is present.

Listing 7-15. Showing the benefits of using XQuery when a PROPERTY index is present

SELECT PersonID,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 TotalPurchaseYTD[1]', 'money') TotalPurchase,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 DateFirstPurchase[1]', 'date') DateFirstPurchase,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 YearlyIncome[1]', 'varchar(20)') YearlyIncome,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 Occupation[1]', 'varchar(15)') Occupation,
 ref.value('declare default element namespace "http://schemas.

microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 CommuteDistance[1]', 'varchar(15)') CommuteDistance
FROM PersonXML
CROSS APPLY Demographics.nodes('declare default element namespace "http://
schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey";
 IndividualSurvey[TotalPurchaseYTD > 1000 and TotalPurchaseYTD < 1005
 and CommuteDistance = "0-1 Miles"]') dmg(ref);

The syntax to create the secondary property XML index has four components:

CREATE XML INDEX <SECONDARY_PROPERTY_XML_INDEX_Name>
ON <Table_Name>

(<XML_data_type_Column_Name>)
USING XML INDEX <PRIMARY_XML_INDEX_Name> FOR PROPERTY;

7-5. Creating a Selective XML Index
Problem
You want to create an XML index on an XML column that stores large XML documents,
but you want to minimize storage for the index.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

203

Solution
A selective XML index is designed to improve XQuery performance and XML index
storage for an XML column that stores large XML documents. Listing 7-16 creates a new
sample table with an untyped XML column, populates it with sample XML data, and
creates a selective XML index on it. Figure 7-9 displays the created index.

Listing 7-16. Creating a selective XML index

-- These settings are important when creating a table with XML columns and
XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.ProductXML

-- Create demo table with an XML column
CREATE TABLE dbo.ProductXML
(
 ProductID INT NOT NULL,
 Name NVARCHAR(50) NOT NULL,
 ProductNumber NVARCHAR(25) NOT NULL,
 ProductDetails XML NULL
 CONSTRAINT PK_ProductXML_ProductID PRIMARY KEY CLUSTERED
 (
 ProductID ASC
)
);
GO

Figure 7-9. Confirming the selective XML index was created for the ProductXML table

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

204

-- Populate table with sample XML data
INSERT INTO dbo.ProductXML
(
 ProductID,
 Name,
 ProductNumber,
 ProductDetails
)
SELECT Product2.ProductId,
 Product2.Name,
 Product2.ProductNumber,
 (
 SELECT ProductCategory.Name AS "Category/CategoryName",
 (
 SELECT DISTINCT Location.Name "text()", ',

cost rate $',
 Location.CostRate "text()"
 FROM Production.ProductInventory Inventory
 INNER JOIN Production.Location Location
 ON Inventory.LocationID = Location.

LocationID
 WHERE Product.ProductID = Inventory.ProductID
 FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
 Subcategory.Name AS "Category/Subcategory/

SubcategoryName",
 Product.Name AS "Category/Subcategory/Product/

ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
 Inventory.Shelf AS "Category/Subcategory/Product/

ProductLocation/Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/

ProductLocation/Bin",
 Inventory.Quantity AS "Category/Subcategory/Product/

ProductLocation/Quantity"
 FROM Production.Product Product
 LEFT JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 LEFT JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.

ProductSubcategoryID
 LEFT JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.

ProductCategory.ProductCategoryID
 WHERE Product.ProductID = Product2.ProductId
 ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
 FOR XML PATH('Categories'), ROOT('Products'), ELEMENTS, TYPE
)

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

205

FROM Production.Product Product2;
GO

-- Create the selective XML index
CREATE SELECTIVE XML INDEX IX_SELECTIVE_XML_ProductXML
ON dbo.ProductXML
(
 ProductDetails
)
FOR
(
 Quantity = '/Products/Categories/Category/Subcategory/Product/
ProductLocation/Quantity',
 ProductName = '/Products/Categories/Category/Subcategory/Product/
ProductName'
);
GO

How It Works
While the primary XML index shreds all your XML data into a relational format, the
selective XML index does not. A primary XML index can utilize a lot of space and
consume server resources for large XML instances. The selective XML index acts against
the values are specified in one or more paths. This can make the selective XML much
smaller than the primary XML index in many cases. The syntax to create a selective XML
index is more complex than the syntax to create a primary XML index. For example, the
selective XML index, demonstrated in Listing 7-16, identifies two XQuery paths in the
FOR clause, pointing to two deeply nested element nodes; namely:

• Quantity

• ProductName

A selective XML index path must be a fully qualified and complete path, i.e., no
shortcuts are allowed for the path. The index contains the nodes that are identified by the
paths. Listing 7-17 shows a sample XML fragment that demonstrates the XML paths to the
Quantity and ProductName element nodesidentified in the selective XML index paths.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

206

Listing 7-17. Sample XML fragment from the previous example

The query from Listing 7-18 was run before the selective XML index was created. The
result is demonstrated in Figure 7-10 for time statistics, with the execution plan shown in
Figure 7-11.

Figure 7-10. Shows time statistics before the index created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

207

Listing 7-18. Showing the demo query

SET STATISTICS TIME ON;

SELECT ProductID, Name, ProductNumber, ProductDetails
FROM dbo.ProductXML
WHERE ProductDetails.exist('Products/Categories/Category/Subcategory/
Product/ProductLocation/Quantity[.="622"]') = 1;

SET STATISTICS TIME OFF;

After the index IX_SELECTIVE_XML_ProductXML was created, the query from
Listing 7-19 generates more efficient runtime and execution plan , as shown in Figure 7-12
and Figure 7-13.

Figure 7-11. Execution plan before the index is created

Figure 7-12. Shows improved time statistics

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

208

Listing 7-19. Demo query run after selective XML index is created

SET STATISTICS TIME ON;

SELECT ProductID, Name, ProductNumber, ProductDetails
FROM dbo.ProductXML
WHERE ProductDetails.exist('Products/Categories/Category/Subcategory/
Product/ProductLocation/Quantity[.="622"]') = 1;

The syntax to create the SELECTIVE XML index on an XML column without
XMLNAMESPACES on the XML instances has following parts:

CREATE SELECTIVE XML INDEX <SELECTIVE_XML_Index_Name>
ON <Table_Name>
(<Column_Name>)
FOR (Path_name1 = 'XML path',
 Path Name2 = 'XML path',
 Path Name3 = 'XML path')

When an XML column stores the XML instances with XMLNAMESPACES,
the XMLNAMESPACE must be declared within the CREATE SELECTIVE INDEX
statement. For example, if you want to improve search on the Resume column of the
HumanResources.JobCandidate table. Listing 7-20 shows how to query an XML column
with a namespace.

Listing 7-20. SQL code for searching for a job candidate

WITH XMLNAMESPACES('http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/Resume' as ns)
SELECT JobCandidateID, Resume
FROM HumanResources.JobCandidate
WHERE Resume.exist('/ns:Resume/ns:Name/ns:Name.First[.="Stephen"]') = 1

Figure 7-13. Shows an improvement in the execution plan after creation of a selective
XML index

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

209

Listing 7-21 demonstrates how to create a selective XML index on the Resume
column of the HumanResources.JobCandidate table. Figure 7-14 shows the SQL
execution plan for the query in Listing 7-19 after the selective XML index is created.

Listing 7-21. The CREATE SELECTIVE XML INDEX statement on a column with
XMLNAMESPACE

CREATE SELECTIVE XML INDEX IX_SELECTIVE_XML_HumanResources_JobCandidate
 ON [HumanResources].[JobCandidate]
(
 [Resume]
)
WITH XMLNAMESPACES
(
 DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/Resume'
)
FOR
(
 LastName = '/Resume/Name/Name.Last'
 ,FirstName = '/Resume/Name/Name.First'
);

The syntax to create a select XML index on an XML column with XMLNAMESPACES
on the XML instances has the following parts:

CREATE SELECTIVE XML INDEX <SELECTIVE_XML_Index_Name>
ON <Table_Name>
(<Column_Name>)
WITH XMLNAMESPACES(DEFAULT 'XMLNAMESPACE URI')
FOR (Path_Name1 = 'XML path',
 Path_Name2 = 'XML path',
 Path_Name3 = 'XML path')

Figure 7-14. Shows the SQL execution plan after the selective XML index is created

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

210

The advantage of creating a selective XML index is that you can implement one or
more XML paths to focus on the XML values that are primarily used in your search criteria.

 ■ Note Microsoft recommends setting the preference to selective XML indexes first.

However, if your selective XML indexes are set with many paths mapped to them, the

PRIMARY XML index could be a better choice.

7-6. Optimizing a Selective XML Index
Problem
You want to optimize the performance of a selective XML index.

Solution
Implementing the hints can optimize a selective XML index. Listing 7-22 demonstrates
different hints for the selective XML index.

Listing 7-22. Testing different hints for the selective XML index

CREATE SELECTIVE XML INDEX IX_SELECTIVE_XML_ProductXML_Hint_Sample
ON dbo.ProductXML
(
 ProductDetails
)
FOR
(
 SubcategoryName = '/Products/Categories/Category/Subcategory/

SubcategoryName' AS XQUERY 'node()',
 Shelf = '/Products/Categories/Category/Subcategory/Product/

ProductLocation/Shelf',
 Bin = '/Products/Categories/Category/Subcategory/Product/

ProductLocation/Bin' AS XQUERY 'xs:double' SINGLETON,
 ProductName = '/Products/Categories/Category/Subcategory/Product/

ProductName' AS SQL nvarchar(40),
 CategoryName = '/Products/Categories/Category/CategoryName' AS

XQUERY 'xs:string' MAXLENGTH(35)
);

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

211

How It Works
Selective XML index hints come in two flavors:

• SQL Server – oriented with SQL data-type mappings. For example,
PathName = ‘/root/element’ AS SQL nvarchar(40)

• XQUERY – oriented with XQuery data-type mappings. For
example, PathName = ‘/root/element AS XQUERY ‘xs:string’

Table 7-1 describes the optimization hints that could be implements to improve the
selective XML index.

Table 7-2 lists the eligible XQuery data types for selective XML index hints, created
on XML typed and untyped columns.

Table 7-1. Descriptions of the selective XML index optimization hints

Optimization hint Applies to Hint description

node() XQuery Reduces the amount of storage
required. Check for node existence.

SINGLETON XQuery and SQL Server Provides assurance that there is only
one instance of the group so that the
index can be optimized with that
in mind. Avoid adding additional
instances subsequently, as this can
cause issues.

DATA TYPE XQuery Optimizes the index with the data types.
An issue could arise if something breaks
the data type, then a null will show in
the index.

MAXLENGTH XQuery It is helpful to look at the XQuery type
xs:string and optimize the index with
the maximum allowed value for the
strings. However, this could cause an
issue if the existing string is longer than
the specified MAXLENGTH, since the
index could fail.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

212

The selective XML index can obtain benefits when a hint applies to the index.
Table 7-3 lists the benefits of the selective XML index optimization hints.

Table 7-2. Hint-eligible XQuery data types

Typed XML Untyped XML

xs:anyUri

xs:boolean xs:boolean

xs:date xs:date

xs:dateTime xs:dateTime

xs:day

xs:decimal

xs:double xs:double

xs:float

xs:int

xs:integer

xs:language

xs:long

xs:name

xs:NCName

xs:negativeInteger

xs:nmtoken

xs:nonNegativeInteger

xs:nonPositiveInteger

xs:positiveInteger

xs:qname

xs:short

xs:string xs:string

xs:time xs:time

xs:token

xs:unsignedByte

xs:unsignedInt

xs:unsignedLong

xs:unsignedShort

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

213

Table 7-4 lists which optimization hints are supported with each data type.

7-7. Creating a Secondary Selective XML Index
Problem
You want to improve selective XML index performance.

Solution
A secondary selective XML index can improve the performance of a selective XML index.
Listing 7-23 creates the selective XML index on the HumanResources.JobCandidate table
from Solution 7-6, which is a prerequisite for this solution.

Listing 7-23. Testing different hints for the selective XML index

CREATE SELECTIVE XML INDEX IX_SELECTIVE_XML_ProductXML_Hint_Sample
ON dbo.ProductXML
(
 ProductDetails
)
FOR
(
 SubcategoryName = '/Products/Categories/Category/Subcategory/

SubcategoryName' AS XQUERY 'node()',
 Shelf = '/Products/Categories/Category/Subcategory/Product/

ProductLocation/Shelf',

Table 7-3. Effectiveness of selective XML index optimization hints

Optimization hint Storage efficiency Performance improvement

node() Yes No

SINGLETON No Yes

DATA TYPE Yes Yes

MAXLENGTH Yes Yes

Table 7-4. List of optimization hints and data types

Optimization hint XQuery data types SQL data types

node() Yes No

SINGLETON Yes Yes

DATA TYPE Yes No

MAXLENGTH Yes No

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

214

 Bin = '/Products/Categories/Category/Subcategory/Product/
ProductLocation/Bin' AS XQUERY 'xs:double' SINGLETON,

 ProductName = '/Products/Categories/Category/Subcategory/Product/
ProductName' AS SQL nvarchar(40),

 CategoryName = '/Products/Categories/Category/CategoryName' AS
XQUERY 'xs:string' MAXLENGTH(35)

);

Listing 7-24 shows how to create a secondary selective XML index on the
HumanResources.JobCandidate table.

Listing 7-24. Demonstrating how to create a secondary selective XML index

CREATE XML INDEX IX_SELECTIVE_SECONDARY_XML_HumanResources_JobCandidate
ON HumanResources.JobCandidate
(
 Resume
)
USING XML INDEX IX_SELECTIVE_XML_HumanResources_JobCandidate
FOR (LastName);

How It Works
The secondary selective XML index improves the performance of a selective XML index.
The syntax is similar to the syntax of a secondary XML index, the main difference being
that the selective XML index is specified in the USING XML INDEX clause and the FOR
clause implements one of the selective XML index paths.

The syntax to create the secondary selective XML index has following components:

CREATE XML INDEX <SECONDARY_SELECTIVE_XML_Index_Name>
ON <Table_Name>
(<Column_Name>)
USING XML INDEX (<SELECTIVE_XML_Index_Name>)
FOR (<PathName>)

The secondary selective XML index must have a path with a promoted data type.
For example:

• SQL Server type is ‘/Resume/Name/Name.First’ AS SQL
varchar(20)

• XQuery type is ‘/Resume/Name/Name.First’ AS XQUERY
‘xs:string’ MAXLENGTH(20)

When a data type is not promoted, SQL Server raises an error:

Msg 6391, Level 16, State 0, Line 111
Path 'LastName' is promoted to a type that is invalid for use as a key
column in a secondary selective XML index.

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

215

7-8. Modifying Selective XML Indexes
Problem
You want to add or remove a path from a selective XML index.

Solution
You can add or remove a path on a selective XML index. Listing 7-25 creates the
demonstration table we previously created in Solution 7-5. It populates the table with
XML data and creates a selective XML index on the table. This is a prerequisite for this
solution.

Listing 7-25. Create demonstration table with selective XML index

-- These settings are important when creating a table with XML columns and
XML indexes
SET NUMERIC_ROUNDABORT OFF;
SET ARITHABORT ON;
SET ANSI_NULLS ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET QUOTED_IDENTIFIER ON;
GO
-- Drop table SQL Server 2016 syntax
DROP TABLE IF EXISTS dbo.ProductXML

-- Create demo table with an XML column
CREATE TABLE dbo.ProductXML
(
 ProductID INT NOT NULL,
 Name NVARCHAR(50) NOT NULL,
 ProductNumber NVARCHAR(25) NOT NULL,
 ProductDetails XML NULL
 CONSTRAINT PK_ProductXML_ProductID PRIMARY KEY CLUSTERED
 (
 ProductID ASC
)
);
GO

-- Populate table with sample XML data
INSERT INTO dbo.ProductXML
(
 ProductID,
 Name,
 ProductNumber,

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

216

 ProductDetails
)
SELECT Product2.ProductId,
 Product2.Name,
 Product2.ProductNumber,
 (
 SELECT ProductCategory.Name AS "Category/CategoryName",
 (
 SELECT DISTINCT Location.Name "text()", ',

cost rate $',
 Location.CostRate "text()"
 FROM Production.ProductInventory Inventory
 INNER JOIN Production.Location Location
 ON Inventory.LocationID = Location.

LocationID
 WHERE Product.ProductID = Inventory.

ProductID
 FOR XML PATH('LocationName'), TYPE
) AS "Locations/node()",
 Subcategory.Name AS "Category/Subcategory/

SubcategoryName",
 Product.Name AS "Category/Subcategory/Product/

ProductName",
 Product.Color AS "Category/Subcategory/Product/Color",
 Inventory.Shelf AS "Category/Subcategory/Product/

ProductLocation/Shelf",
 Inventory.Bin AS "Category/Subcategory/Product/

ProductLocation/Bin",
 Inventory.Quantity AS "Category/Subcategory/Product/

ProductLocation/Quantity"
 FROM Production.Product Product
 LEFT JOIN Production.ProductInventory Inventory
 ON Product.ProductID = Inventory.ProductID
 LEFT JOIN Production.ProductSubcategory Subcategory
 ON Product.ProductSubcategoryID = Subcategory.

ProductSubcategoryID
 LEFT JOIN Production.ProductCategory
 ON Subcategory.ProductCategoryID = Production.

ProductCategory.ProductCategoryID
 WHERE Product.ProductID = Product2.ProductId
 ORDER BY ProductCategory.Name, Subcategory.Name, Product.Name
 FOR XML PATH('Categories'), ROOT('Products'), ELEMENTS, TYPE
)
FROM Production.Product Product2;
GO

-- Create the selective XML index
CREATE SELECTIVE XML INDEX IX_SELECTIVE_XML_ProductXML
ON dbo.ProductXML

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

217

(
 ProductDetails
)
FOR
(
 Quantity = '/Products/Categories/Category/Subcategory/Product/
ProductLocation/Quantity',
 ProductName = '/Products/Categories/Category/Subcategory/Product/
ProductName'
);
GO

Listing 7-26 demonstrates how to remove the Quantity path from this index and add
the CategoryName path to it.

Listing 7-26. Altering selective XML index

ALTER INDEX IX_SELECTIVE_XML_ProductXML
ON dbo.ProductXML
FOR
(
 ADD CategoryName = '/Products/Categories/Category/CategoryName',
 REMOVE Quantity
);

How It Works
The ALTER INDEX statement can be used on the selective XML index to change the index
contents. It is possible to drop an existing path using the REMOVE keyword and a new
path can be added by using the ADD keyword within the FOR() clause, as demonstrated
in Listing 7-26. You can combine the ADD and REMOVE keywords as we did in Listing 7-26,
or they can be issued in individual ALTER INDEX statements, as shown in Listing 7-27.

Listing 7-27. Altering selective index with separate ALTER INDEX statements

ALTER INDEX IX_SELECTIVE_XML_ProductXML
ON dbo.ProductXML
FOR
(
 ADD CategoryName = '/Products/Categories/Category/CategoryName'
);
GO

CHAPTER 7 ■ IMPROVING XML PERFORMANCE

218

ALTER INDEX IX_SELECTIVE_XML_ProductXML
ON ProductXML
FOR
(
 REMOVE Quantity
);
GO

Each ALTER INDEX statement rebuilds the entire index. Therefore, for efficiency
reasons, it is more practical to implement a list of changes in a single ALTER INDEX
statement instead of running the ALTER INDEX statement multiple times.

To drop a selective XML index, use the DROP INDEX statement, as shown in Listing
Sample 7-28.

Listing 7-28. Dropping a selective XML index

DROP INDEX IX_SELECTIVE_XML_ProductXML
ON dbo.ProductModelXML;

 ■ Note Keep in mind, similarly to the primary XML index, when the selective XML index

is dropped, all associated secondary selective XML indexes are dropped automatically.

Wrapping up
This chapter completes the XML section of the book. I hope that you learned a lot from
the recipes provided in the XML portion.

If you practice the solutions in the XML chapters then you should able to build XML,
shred XML instances, load XML documents from different sources, utilize XML-based
searches via XQuery statements, and create XML indexes.

The upcoming section will introduce JSON and demonstrate SQL Server 2016’s
integration with new JSON features.

PART II

JSON in SQL Server

221© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_8

CHAPTER 8

Constructing JSON

Welcome to Part II of this book. Part II will cover JSON for SQL Server, which was
introduced in SQL Server 2016. JSON has many similarities to XML; however, they are
not the same. JSON can be thought of as a “fat-free” version of XML. To run the samples
for Part II, make sure that the database compatibility level in SQL Server 2016 is set to
130. The sample database for Part II is WideWorldImporters. Please use the following
link to download the database: https://github.com/Microsoft/sql-server-samples/
releases/tag/wide-world-importers-v1.0?utm_source=MyTechMantra.com.

JSON Introduction
JSON is an acronym for “JavaScript Object Notation” and is pronounced “Jason.” It’s
meant to be a more easily decipherable and compact solution to represent a complex
data structure and facilitate data interchange between systems.

When comparing JSON to XML, there are many benefits to choosing JSON:

• Unlike XML, JSON does not use a full markup structure, which
makes it more compact.

• JSON is not a data type (at least for SQL Server 2016). SQL Server
represents JSON as a string that is similar to nvarchar(max).
Microsoft recommends storing JSON as an nvarchar(max).

• JSON is easy to parse and build.

• JSON data structure is easy to understand.

• JSON is the native file structure for NoSQL databases, such as
CouchDB, MongoDB, and others.

The JSON model format has two blocks:

• Objects - encapsulated within opening and closing brackets {}.
An empty object {} is considered valid JSON data. Listing 8-1:
TopObject is an object block.

• Arrays - encapsulated within opening and closing square brackets
[]. An empty array [] is also considered valid JSON data. Listing 8-1:
ArrayOfObjects and arrayOfValues are array blocks.

https://doi.org/10.1007/978-1-4842-3117-3_8
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0?utm_source=MyTechMantra.com
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0?utm_source=MyTechMantra.com

CHAPTER 8 ■ CONSTRUCTING JSON

222

Listing 8-1. Demonstrating JSON structure

{
 "TopObject": {
 "numericKey": 2016,
 "stringKey": "a text value",
 "nullKey": null,
 "booleanKey": true,
 "dateKey": "2017-11-14"
 },
 "arrayOfObjects": [
 {"item": 1},
 {"item": 2},
 {"item": 3}
] ,
 "arrayOfValues": [
 "SQL",
 "XML",
 "JSON"
]
}

A JSON member is represented by a key-value pair {“key”: “value”}. The key of
a member should be contained in double quotes. A key must be unique within the
structure of an object. String type and date type values of a member are required to be
contained in double quotes. Boolean and numeric values should not be contained within
double quotes. However, when Boolean values use true or false literals, those values
should be in lowercase. Table 8-1 demonstrates data type conversion between SQL Server
data types and JSON.

Numbers with leading zeroes are considered strings. Therefore, they are required to
be contained within double quotes. Each member of an object and each array value must

be followed by a comma, except the last key-value pair.

CHAPTER 8 ■ CONSTRUCTING JSON

223

A side-by-side comparison of XML and JSON data and parsing methods is

demonstrated in Table 8-2.

Table 8-1. Showing data type conversion from SQL Server to JSON

Category SQL type JSON type

Character and
string types

nvarchar, varchar, nchar,
char

string

Numeric types int, bigint, float, decimal,
numeric

number

Bit type bit Boolean (true or false)

Date and time
types

date, datetime, datetime2,
time, datetimeoffset

string

CLR types geometry, geography (except
hierarchyid)

Not supported. These types
return an error. Cast
or convert the data to a
supported JSON type, or use
a CLR property or method
in the SELECT list – for
example, ToString() for any
CLR type, or STAsText() for
the geometry type. Data type
hierarchyid does not require
explicit conversion.

Other types uniqueidentifier, money,
varbinary, binary, timestamp,
rowversion

string

CHAPTER 8 ■ CONSTRUCTING JSON

224

Table 8-2. Comparing XML and JSON

XML Sample JSON Sample

<employees>
 <employee>
 <firstName>Bill</firstName>
 <lastName>Adams</lastName>
 </employee>
 <employee>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 </employee>
<employee>
 <firstName>Peter</firstName>
 <lastName>White</lastName>
 </employee>
</employees>

{"employees":
 [
 {"firstName":"Bill",

"lastName":"Adams"},
 {"firstName":"John",

"lastName":"Smith"},
 {"firstName":"Peter",

"lastName":"White"}
]
}

XML Parsing Method JSON Parsing Method

Declare @x XML =
'<employees>
 <employee>
 <firstName>Bill</firstName>
 <lastName>Adams</lastName>
 </employee>
<employee>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 </employee>
<employee>
 <firstName>Peter</firstName>
 <lastName>White</lastName>
 </employee>
</employees>';
SELECT
c.value('firstName[1]',
'varchar(30)') AS firstName
,c.value('lastName[1]',
'varchar(30)') AS lastName
FROM @x.nodes('//employee') t(c);

declare @j nvarchar(max) =
'{"employees":
 [
 {"firstName":"Bill",

"lastName":"Adams"},
 {"firstName":"John",

"lastName":"Smith"},
 {"firstName":"Peter",

"lastName":"White"}
]
}';
SELECT firstName, lastName
FROM OPENJSON (@j, '$.employees')
WITH
 (
 firstName varchar(30),
 lastName varchar(30)
);

XML Result JSON Result

CHAPTER 8 ■ CONSTRUCTING JSON

225

SQL Server provides four built-in functions and the FOR JSON clause of SELECT
queries to process and create JSON documents, as shown in Table 8-3.

Unlike XML methods, JSON functions are not key sensitive. However, key members
remain key sensitive when referenced in JSON functions as well as the ToString() and

STAsText() CLR functions.

Part II of this book provides JSON recipes for SQL Server.

8-1. Building JSON with AUTO Mode
Problem
You want to build a JSON-formatted result automatically.

Solution
The FOR JSON clause in AUTO mode returns JSON-formatted rows. Listing 8-2
demonstrates a FOR JSON clause with AUTO mode from a single object. Figure 8-1 shows
a JSON returned row. Listing 8-3 demonstrates a formatted JSON from the query result.

Listing 8-2. Showing

SELECT TOP (2) CustomerName
 ,PrimaryContact
 ,AlternateContact
 ,PhoneNumber
FROM WideWorldImporters.Website.Customers
FOR JSON AUTO;

Table 8-3. Describing JSON built-in functions

JSON Procedure Procedure Type Description

FOR JSON Clause Builds a JSON document.

ISJSON() Function Verifies whether a string has a valid
JSON.

JSON_VALUE() Function Retrieves a scalar value from a JSON
document.

JSON_QUERY() Function Retrieves an object or an array from a
JSON document.

JSON_MODIFY() Function Modifies a JSON document.

OPENJSON() Table-valued function Converts a JSON document into a
table format that contains rows and
columns.

CHAPTER 8 ■ CONSTRUCTING JSON

226

Listing 8-3. Showing formatted JSON result

[
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100"
 },
 {
 "CustomerName":"Tailspin Toys (Sylvanite, MT)",
 "PrimaryContact":"Lorena Cindric",
 "AlternateContact":"Hung Van Groesen",
 "PhoneNumber":"(406) 555-0100"
 }
]

How It Works
The FOR JSON clause in AUTO mode formats the output into a JSON result set.
AUTO mode automatically determines the JSON format based on the table (or tables)
implemented in the FROM and SELECT clauses. Listing 8-3 returns simple JSON output
because of the result based on the single Website.Customers table. The result, by default,
is displayed in the SSMS grid as a hyperlink. When the user clicks on the result, JSON
opens it in the XML Editor. However, the result will load as an unformatted single-line
string. Figure 8-2 demonstrates the unformatted result in the XML Editor.

Therefore, a small JSON result could be formatted manually, as shown in Listing 8-3.
However, for a bigger JSON, manual formatting could take an enormous time to complete
such a task.

Figure 8-2. Showing JSON result in the XML Editor

Figure 8-1. Showing JSON result in a grid

CHAPTER 8 ■ CONSTRUCTING JSON

227

There are several websites offering the capability to validate and convert a JSON
unformatted value into formatted JSON data. One of my preferred JSON formatting
tools is JSONFormatter, and the URL is the following: https://jsonformatter.
curiousconcept.com/. This program is easy to operate:

 1. JSON result from XML Editor.

 2. Paste into JSONFormatter validation window, shown in Figure 8-3.

 3. Click Process button.

 4. Valid JSON displays in the Formatted JSON Data window,
shown in Figure 8-4.

Figure 8-3. Showing JSONFormatter interface

Figure 8-4. Showing Formatted JSON Data window

https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/

CHAPTER 8 ■ CONSTRUCTING JSON

228

 ■ Note As an alternative to JSONFormatter, JSON Editor Online is another formatting

application; URL: http://www.jsoneditoronline.org/. I prefer JSONFormatter because

this application retains all submitted JSON code. Therefore, when I need to go back to some

result, I do not need to resubmit the JSON code.

When dealing with many tables in the FROM clause to return JSON data, you must
keep in mind that the table and column aliases take effect on JSON output. For example,
Listing 8-4 demonstrates the JSON built with a query where the query does not have table
and column aliases. Only a Database alias will be created for such a db_name() function.
Listing 8-5 displays the query result in JSON output.

Listing 8-4. Showing SQL with original tables name

SELECT db_name() as [Database],
 sys.schemas.name,
 sys.objects.name,
 sys.columns.name
FROM sys.objects
JOIN sys.schemas on sys.objects.schema_id = sys.schemas.schema_id
JOIN sys.columns ON sys.columns.object_id = sys.objects.object_id
JOIN (SELECT TOP (1) o.object_id, count(c.name) [name]
 FROM sys.columns c
 JOIN sys.objects o ON c.object_id = o.object_id WHERE

type = 'u'
 GROUP BY o.object_id HAVING COUNT(c.name) < 6
) countCol
 ON countCol.object_id = sys.objects.object_id
WHERE type = 'u'
FOR JSON AUTO;

Listing 8-5. Showing JSON output

{ "Database":"WideWorldImporters",
 "name":"Purchasing",
 "sys.objects":[
 { "name":"SupplierCategories",
 "sys.columns":[
 {
 "name":"SupplierCategoryID"
 },
 {
 "name":"SupplierCategoryName"
 },
 {
 "name":"LastEditedBy"
 },

http://www.jsoneditoronline.org/

CHAPTER 8 ■ CONSTRUCTING JSON

229

 {
 "name":"ValidFrom"
 },
 {
 "name":"ValidTo"
 }
]
 }
]
}

Listing 8-6 demonstrates the JSON that builds with a query where the tables do have
aliases. Listing 8-7 displays the query result in JSON output.

Listing 8-6. Showing SQL with the table aliases

SELECT db_name() as [Database],
 [Schema].name as [SchemaName],
 [Table].name as [TableName],
 [Column].name as [ColumnName]
FROM sys.objects [Table]
JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
JOIN sys.columns [Column] ON [Column].object_id = [Table].object_id
JOIN (SELECT TOP (1) o.object_id, COUNT(c.name) [name]
 FROM sys.columns c JOIN sys.objects o
 ON c.object_id = o.object_id where type = 'u'
 GROUP BY o.object_id HAVING COUNT(c.name) < 6) countCol
 ON countCol.object_id = [Table].object_id
WHERE type = 'u'
FOR JSON AUTO;

Listing 8-7. Showing JSON output

{ "Database":"WideWorldImporters",
 "SchemaName":"Purchasing",
 "Table":[
 { "TableName":"SupplierCategories",
 "Column":[
 {
 "ColumnName":"SupplierCategoryID"
 },
 {
 "ColumnName":"SupplierCategoryName"
 },
 {
 "ColumnName":"LastEditedBy"
 },
 {

CHAPTER 8 ■ CONSTRUCTING JSON

230

 "ColumnName":"ValidFrom"
 },
 {
 "ColumnName":"ValidTo"
 }
]
 }
]
}

When compared to the JSON in Listings 8-5 and 8-7, you could see that Listing 8-7 is
more descriptive than Listing 8-5, for example, “sys.objects” vs “Table.”

8-2. Handling NULL When JSON Build
Problem
You want to preserve key element names when a value is NULL.

Solution
The INCLUDE_NULL_VALUES option within the FOR JSON clause specifies that when
a column has a NULL value, then a JSON key element must be presented in the JSON
output. Listing 8-8 demonstrated a FOR JSON clause with an INCLUDE_NULL_VALUES
option. Listing 8-9 is showing JSON output generated by the query.

Listing 8-8. FOR JSON clause with INCLUDE_NULL_VALUES option

USE [WideWorldImporters];
SELECT TOP (1) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [Website].[Customers] where [AlternateContact] IS NOT NULL
UNION ALL
SELECT TOP (1) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [Website].[Customers] where [AlternateContact] IS NULL
FOR JSON AUTO, INCLUDE_NULL_VALUES;

Listing 8-9. Showing returned JSON

[{
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",

CHAPTER 8 ■ CONSTRUCTING JSON

231

 "PhoneNumber":"(308) 555-0100"
 },
 {
 "CustomerName":"Eric Torres",
 "PrimaryContact":"Eric Torres",
 "AlternateContact":null,
 "PhoneNumber":"(307) 555-0100"
 }
]

How It Works
By default, the FOR JSON clause ignores elements with default values. Therefore,
key elements will be missing in the JSON output. For example, when you execute the
query demonstrated in Listing 8-8 without the INCLUDE_NULL_VALUES option, then
"AlternateContact" will be missing in the second part of the JSON output. Listing 8-10
demonstrates the query and returned JSON output.

Listing 8-10. Showing query and JSON output

SELECT TOP (1) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [Website].[Customers] where [AlternateContact] IS NOT NULL
UNION ALL
SELECT TOP (1) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [Website].[Customers] where [AlternateContact] IS NULL
FOR JSON AUTO;

[
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100"
 },
 {
 "CustomerName":"Eric Torres",
 "PrimaryContact":"Eric Torres",
 "PhoneNumber":"(307) 555-0100"
 }
]

CHAPTER 8 ■ CONSTRUCTING JSON

232

8-3. Escaping the Brackets for JSON Output
Problem
You want to remove the square brackets that surround JSON output.

Solution
The WITHOUT_ARRAY_WRAPPER option builds JSON output without surrounding
square brackets []. Listing 8-11 is demonstrating a WITHOUT_ARRAY_WRAPPER
option in the FOR JSON clause. Listing 8-12 demonstrates JSON output without square
brackets [].

Listing 8-11. Showing WITHOUT_ARRAY_WRAPPER option

SELECT TOP (2) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [WideWorldImporters].[Website].[Customers]
FOR JSON AUTO, WITHOUT_ARRAY_WRAPPER;

Listing 8-12. Showing JSON output

{
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100"
},
{
 "CustomerName":"Tailspin Toys (Sylvanite, MT)",
 "PrimaryContact":"Lorena Cindric",
 "AlternateContact":"Hung Van Groesen",
 "PhoneNumber":"(406) 555-0100"
}

How It Works
By default, the FOR JSON clause returns JSON output surrounded by square brackets
[]. That creates a JSON output as an initial array instead of an object. However, some
output does not require the surrounding brackets. In such cases, the WITHOUT_ARRAY_
WRAPPER option removes square brackets that surround the JSON output.

CHAPTER 8 ■ CONSTRUCTING JSON

233

8-4. Adding ROOT Key Element to JSON
Problem
You want to add a user-defined, single top-level key element a JSON output.

Solution
The ROOT option adds a single top-level key element to JSON output. Listing 8-13
demonstrates a FOR JSON clause with a ROOT option. Listing 8-14 demonstrates JSON
output with the top key element “Customers.”

Listing 8-13. Showing ROOT option

SELECT TOP (2) [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
FROM [WideWorldImporters].[Website].[Customers]
FOR JSON AUTO, ROOT('Customers')

Listing 8-14. Showing JSON output with top key element “Customers”

{
"Customers":[
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100"
 },
 {
 "CustomerName":"Tailspin Toys (Sylvanite, MT)",
 "PrimaryContact":"Lorena Cindric",
 "AlternateContact":"Hung Van Groesen",
 "PhoneNumber":"(406) 555-0100"
 }
]
}

How It Works
The ROOT option is an optional part of a FOR JSON clause.

The ROOT option could be combined with an INCLUDE_NULL_VALUES option.
However, when the WITHOUT_ARRAY_WRAPPER is combined with a ROOT option,
SQL Server raises the error shown in Listing 8-15.

CHAPTER 8 ■ CONSTRUCTING JSON

234

Listing 8-15. Showing the error message when ROOT combined with WITHOUT_
ARRAY_WRAPPER option

Msg 13620, Level 16, State 1, Line 5
ROOT option and WITHOUT_ARRAY_WRAPPER option cannot be used together in FOR
JSON. Remove one of these options.

8-5. Gaining Control over JSON Output
Problem
You want to obtain full control over complex JSON output.

Solution
PATH mode allows you to build JSON output that is controlled by you. Listing 8-16
demonstrates a query with a FOR JSON clause with the PATH mode, which returns
cascading JSON output shown in Listing 8-17.

Listing 8-16. Showing FOR JSON with PATH mode

USE WideWorldImporters;

SELECT db_name() as 'Database',
 [Schema].name as 'Tables.SchemaName',
 [Table].name as 'Tables.TableName',
 [Column].name as 'Tables.Columns.ColumnName'
FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
 JOIN sys.columns [Column] ON [Column].object_id = [Table].object_id
WHERE type = 'u' and [Table].name = 'SupplierCategories'
FOR JSON PATH;

Listing 8-17. Showing JSON output

[{
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": {
 "ColumnName": "SupplierCategoryID"
 }
 }
 },
 {
 "Database": "WideWorldImporters",
 "Tables": {

CHAPTER 8 ■ CONSTRUCTING JSON

235

 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": {
 "ColumnName": "SupplierCategoryName"
 }
 }
 },
 {
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": {
 "ColumnName": "LastEditedBy"
 }
 }
 },
 {
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": {
 "ColumnName": "ValidFrom"
 }
 }
 },
 {
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": {
 "ColumnName": "ValidTo"
 }
 }
 }]

How It Works
PATH mode allows the specification of the structure that builds JSON output. The
difference between PATH and AUTO mode is that AUTO mode builds up a JSON output
automatically by figuring out how the FROM and SELECT clauses are structured in a
query. If a query is based on one table, then the PATH and AUTO modes return similar
JSON output. However, in most cases, JSON output is built based on multiple tables, and
in this case the AUTO mode is not the best choice because your expectation for JSON
output is not always the same as what AUTO mode returns. With the PATH mode, you
dictate how your JSON structure is going to look.

CHAPTER 8 ■ CONSTRUCTING JSON

236

JSON structure is constructed in the SELECT clause. When alias names are separated
by a comma, a parent-child level is established for the elements and value. For example,
Figure 8-5 demonstrates three levels of structure:

 1. Database

 2. Tables {Schema and Table}

 3. Columns {ColumnName}

The T-SQL results returned by the same query are demonstrated in Figure 8-5, but
without the FOR JSON clause, shown in Listing 8-18.

Listing 8-18. Showing query that generated a result for Figure 8-5

SELECT db_name() as 'Database',
 [Schema].name as 'Tables.SchemaName',
 [Table].name as 'Tables.TableName',
 [Column].name as 'Tables.Columns.ColumnName'
FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
 JOIN sys.columns [Column] ON [Column].object_id = [Table].object_id
WHERE type = 'u' and [Table].name = 'SupplierCategories'

Figure 8-5. Showing T-SQL that will be transformed into JSON

When we are converting the T-SQL output, we are expecting the JSON structure
shown in Listing 8-19.

Listing 8-19. Showing JSON structure

Database : Value -> LEVEL 1
 Tables_Collection -> LEVEL 2
 {
 SchemaName : Value
 TableName : Value
 Columns_Collection -> LEVEL 3
 {
 ColumnName : Value
 }
 }

CHAPTER 8 ■ CONSTRUCTING JSON

237

The aliases in the SELECT clause build the structure demonstrated in Listing 8-19.
When converting the result to JSON, each period in the alias builds up an additional JSON
object level. For example:

"Database": "WideWorldImporters", -> top LEVEL with alias 'Database'
"Tables": { -> Database key element child LEVEL with alias 'Tables.___'
 "SchemaName": "Purchasing", -> details 'Tables.

SchemaName'
 "TableName": "SupplierCategories", -> details 'Tables.TableName'
 "Columns": -> Tables child LEVEL with alias 'Tables.

Columns.___'
 {
 "ColumnName": "SupplierCategoryID" -> details 'Tables.Columns.

ColumnName'
 }
 }

This way, the query from Listing 8-19 returns a valid JSON result set. However, there
is one problem with the resulting output. The JSON object Tables{} is repeated for each
column and makes the output bigger than we expected. Ideally, it would be more
efficient to return the Columns section as an array instead of an object and list
all columns inside the array. This way, the JSON structure will look slightly different.
Listing 8-20 demonstrates JSON structure with the Columns section as an array, where
the ColumnName key element and values are surrounded by square brackets [].

Listing 8-20. Showing JSON structure with Columns section as an array

Database : Value -> LEVEL 1
 Tables_Collection -> LEVEL 2
 {
 SchemaName : Value
 TableName : Value
 Columns_Collection -> LEVEL 3
 [
 {ColumnName : Value},{ColumnName : Value}, ...
]
 }

To accomplish such a task, we need to encapsulate the column name list into an
inline subquery with the FOR JSON clause and AUTO mode as shown in Listing 8-21.
However, for an inline subquery, both AUTO and PATH modes return the same result.
The JSON output is demonstrated in Listing 8-22.

CHAPTER 8 ■ CONSTRUCTING JSON

238

Listing 8-21. Encapsulating the column names within array

SELECT db_name() as 'Database',
 [Schema].name as 'Tables.SchemaName',
 [Table].name as 'Tables.TableName',
 (SELECT [Column].name as ColumnName FROM sys.columns [Column]
 WHERE [Column].object_id = [Table].object_id FOR JSON AUTO
) as 'Tables.Columns'
FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
WHERE type = 'u' and [Table].name = 'SupplierCategories'
FOR JSON PATH;

Listing 8-22. Showing JSON output with Columns array

[
 {
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Purchasing",
 "TableName": "SupplierCategories",
 "Columns": [
 {
 "ColumnName": "SupplierCategoryID"
 },
 {
 "ColumnName": "SupplierCategoryName"
 },
 {
 "ColumnName": "LastEditedBy"
 },
 {
 "ColumnName": "ValidFrom"
 },
 {
 "ColumnName": "ValidTo"
 }
]
 }
 }
]

As you can see, the JSON output in Listing 8-22 is much smaller than the JSON in
Listing 8-17, which was provided in the Solution section. I intentionally demonstrated
two ways to create a JSON output. In some cases, you need object-oriented JSON as it is
demonstrated in Listings 8-16 and 8-17, and in another case you need to create compact
JSON with an array of values as demonstrated in Listings 8-21 and 8-22.

CHAPTER 8 ■ CONSTRUCTING JSON

239

8-6. Handling Escape Characters
Problem
You do not want to return an escape character “\” in the JSON output.

Solution
A JSON_QUERY() function eliminates escape characters in JSON output. Listing 8-23
demonstrates how a JSON_QUERY() function “fixes” the JSON output for the column
InvoiceDate, which holds JSON data. Listing 8-24 demonstrates the JSON output. To
create table CustomerInvoice, run Listing 8-25 first.

Listing 8-23. Showing JSON_QUERY() function with combination FOR JSON clause and
PATH mode

SELECT [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
 ,JSON_QUERY(InvoiceDate) InvoiceDate
FROM CustomerInvoice
FOR JSON PATH;

Listing 8-24. Showing fixed JSON output

[{
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100",
 "InvoiceDate":{ "InvoiceDate":"03/04/2013"}
 },
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100",
 "InvoiceDate":{"InvoiceDate":"03/12/2013"}
 }]

CHAPTER 8 ■ CONSTRUCTING JSON

240

How It Works
To demonstrate how to implement a JSON_QUERY() function to eliminate escape
characters from JSON output, we need to create a table with a JSON data column.
Listing 8-8 demonstrates a query to create the table CustomerInvoice where the column
InvoiceDate holds JSON data. Figure 8-6 demonstrates the result set from the table
CustomerInvoice.

Listing 8-25. Creating table CustomerInvoice with JSON data in column InvoiceDate

SELECT TOP (2)
 [CustomerName]
 ,[PrimaryContact]
 ,[AlternateContact]
 ,[PhoneNumber]
 ,CAST((QUOTENAME('"InvoiceDate":' + QUOTENAME(CONVERT(varchar(20),In

voiceDate, 101) , '"'), '{')) AS VARCHAR(MAX)) InvoiceDate
 INTO CustomerInvoice
FROM [Website].[Customers] Customers JOIN [Sales].[Invoices] Invoices
 ON Invoices.CustomerID = Customers.CustomerID;

The JSON data in the column InvoiceDate has forward slashes, for example:
{“InvoiceDate”:“03/04/2013”}, which is an invalid character for JSON. Table 8-4 lists the

invalid JSON characters.

Figure 8-6. Showing the table CustomerInvoice result set

Table 8-4. The JSON invalid characters

Character Description

” Double quote

\ Backslash

/ Forward slash

The characters that less likely

could be SQL Server data

\r Carriage return ASCII Code 13

\n Line feed ASCII Code 10

\t Horizontal Tab ASCII Code 9

\b Backspace ASCII Code 8

\f Form feed ASCII Code 12

CHAPTER 8 ■ CONSTRUCTING JSON

241

If the query in Listing 8-26 executes without a JSON_QUERY() function, then JSON
output will include escape character “\” in the output as shown in Listing 8-27.

Listing 8-26. Building JSON without JSON_QUERY()

SELECT CustomerName, PrimaryContact, AlternateContact, PhoneNumber,
InvoiceDate
FROM CustomerInvoice
FOR JSON PATH;

Listing 8-27. Showing JSON output built in Listing 8-26

 [
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100",
 "InvoiceDate":"{\"InvoiceDate\":\"03\/04\/2013\"}"
 },
 {
 "CustomerName":"Tailspin Toys (Head Office)",
 "PrimaryContact":"Waldemar Fisar",
 "AlternateContact":"Laimonis Berzins",
 "PhoneNumber":"(308) 555-0100",
 "InvoiceDate":"{\"InvoiceDate\":\"03\/12\/2013\"}"
 }
]

Initially, the JSON_QUERY() function is very similar to the XML query() function that
returns the JSON subset based on a provided path. (The Chapter 9 “Converting JSON to
Row Sets” will cover the JSON_QUERY() function in greater detail.) The JSON_QUERY()
function has the following two parameters:

 1. JSON Expression, required.

 2. JSON Path, optional.

When a column that stores JSON is sent to the JSON_QUERY(), then the FOR JSON
clause trusts the JSON_QUERY(), because the function always returns a valid JSON, so the
output does not require escape characters.

8-7. Dealing with CLR Data Types
Problem
You want to include a CLR data type in JSON output.

http://dx.doi.org/10.1007/978-1-4842-3117-3_9

CHAPTER 8 ■ CONSTRUCTING JSON

242

Solution
A ToString() function converts a CLR data type value into an nvarchar data type.
Listing 8-28 demonstrates a query where the Customers.DeliveryLocation geography data
type column is part of JSON output. Listing 8-29 shows the JSON output.

Listing 8-28. Converting CLR values into a string

SELECT TOP (2) Customers.CustomerName,
 People.FullName AS PrimaryContact,
 ap.FullName AS AlternateContact,
 Customers.PhoneNumber,
 Cities.CityName AS CityName,
 Customers.DeliveryLocation.ToString() AS DeliveryLocation
FROM Sales.Customers AS Customers
 JOIN [Application].People AS People
 ON Customers.PrimaryContactPersonID = People.PersonID
 JOIN [Application].People AS ap
 ON Customers.AlternateContactPersonID = ap.PersonID
 JOIN [Application].Cities AS Cities
 ON Customers.DeliveryCityID = Cities.CityID
FOR JSON PATH, ROOT('Customers');

Listing 8-29. Show in JSON output

{"Customers": [
 {
 "CustomerName": "Tailspin Toys (Head Office)",
 "PrimaryContact": "Waldemar Fisar",
 "AlternateContact": "Laimonis Berzins",
 "PhoneNumber": "(308) 555-0100",
 "CityName": "Lisco",
 "DeliveryLocation": "POINT (-102.6201979 41.4972022)"
 },
 {
 "CustomerName": "Tailspin Toys (Sylvanite, MT)",
 "PrimaryContact": "Lorena Cindric",
 "AlternateContact": "Hung Van Groesen",
 "PhoneNumber": "(406) 555-0100",
 "CityName": "Sylvanite",
 "DeliveryLocation": "POINT (-115.8743507 48.7163356)"
 }
]
}

CHAPTER 8 ■ CONSTRUCTING JSON

243

How It Works
The ToString() function implicitly converts CLR data types geography, geometry, and
hierarchyid into an nvarchar data type. The ToString() function default output is shown in

Table 8-5.

 ■ Note The hierarchyid data type is an exception for this limitation. The FOR JSON clause

does not raise an error when a column with a hierarchyid data type is part of the JSON

output.

When the FOR JSON clause references unconverted geography and geometry data
types, SQL Server raises the error shown in Listing 8-30.

Listing 8-30. Showing error for unconverted CLR

Msg 13604, Level 16, State 1, Line 1
FOR JSON cannot serialize CLR objects. Cast CLR types explicitly into one of
the supported types in FOR JSON queries.

The ToString() function is case sensitive, which is not typical for most SQL Server
built-in functions. Therefore, any other spelling than a properly cased ToString() function
will raise an error. For example, SQL Server raises an error when the function is spelled
tostring(). Listing 8-31 demonstrates the error message.

Listing 8-31. Showing the error message when the ToString() function is incorrectly
spelled

Msg 6506, Level 16, State 10, Line 5 Could not find method 'tostring' for
type 'Microsoft.SqlServer.Types.SqlGeography' in assembly 'Microsoft.
SqlServer.Types'

As an alternative, the CAST() and CONVERT() functions can explicitly convert
geography and geometry into nvarchar and varchar data types. Listing 8-32 demonstrates
a query where the column Customers.DeliveryLocation with the geography data type is
explicitly converted to nvarchar(1000) using the CAST() function.

Table 8-5. Showing ToString() function conversion output

Data Type Converts to Data Type

hierarchyid nvarchar(4000)

geography nvarchar(max)

geometry nvarchar(max)

CHAPTER 8 ■ CONSTRUCTING JSON

244

Listing 8-32. Using CAST() function column with geography data type

SELECT TOP (2) Customers.CustomerName,
 People.FullName AS PrimaryContact,
 ap.FullName AS AlternateContact,
 Customers.PhoneNumber,
 Cities.CityName AS CityName,
 CAST(Customers.DeliveryLocation as nvarchar(1000)) AS Delivery

Location
FROM Sales.Customers AS Customers
 JOIN Application.People AS People
 ON Customers.PrimaryContactPersonID = People.PersonID
 JOIN Application.People AS ap
 ON Customers.AlternateContactPersonID = ap.PersonID
 JOIN Application.Cities AS Cities
 ON Customers.DeliveryCityID = Cities.CityID
FOR JSON PATH, ROOT('Customers');

Summary
SQL Server 2016 was introduced with JSON integration. This chapter covered how to
build efficient and effective JSON output. This is the first chapter dedicated to JSON, and
you can see that the FOR JSON clause has many similarities to the FOR XML clause. Both
have AUTO and PATH modes. The ROOT option in the FOR JSON clause is the same as
the FOR XML clause. As a rule of thumb, if you are familiar with XML, then JSON should
be simple to learn.

The next chapter will cover the conversion of JSON values into rows and columns.

245© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_9

CHAPTER 9

Converting JSON
to Row Sets

In this chapter, we will discuss recipes demonstrating how to detect a JSON document,
different ways to shred JSON, and how to improve performance when you want to filter
a JSON document. SQL Server JSON integration provides comprehensive coverage to
convert a JSON document into a scalar value and rows-columns set. You will find a variety
of tested samples and possible scenarios to help you find the most appropriate solution
for your task.

9-1. Detecting the Columns with JSON
Problem
You want to detect all columns with JSON data in a database.

Solution
An ISJSON() function detects when data is valid JSON. Listing 9-1 demonstrates the
process on how to detect JSON document within a database. Figure 9-1 demonstrates the
SQL script result.

Listing 9-1. Detecting JSON data

SET NOCOUNT ON;

DECLARE @SQL nvarchar(1000)

IF (OBJECT_ID('tempdb.dbo.#Result')) IS NOT NULL
 DROP TABLE #Result

CREATE TABLE #Result (tblName nvarchar(200),
 clmnName nvarchar(100),
 DateType nvarchar(100),

https://doi.org/10.1007/978-1-4842-3117-3_9

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

246

 JSONDoc nvarchar(MAX),)

DECLARE cur CURSOR
 FOR
SELECT 'SELECT TOP (1) ''' + QUOTENAME(s.name) +'.' + QUOTENAME(o.name) +
''' as TblName, '''
+ QUOTENAME(c.name) + ''' as ClmName, '''
+ t.name + QUOTENAME(case c.max_length when -1 then 'MAX' ELSE cast
(c.max_length as varchar(5)) END , ')') + ''' as DataType, '
+ QUOTENAME(c.name) + ' FROM '
 + QUOTENAME(s.name) +'.' + QUOTENAME(o.name) +
 ' WHERE ISJSON(' + QUOTENAME(c.name) + ') = 1;'
FROM sys.columns c
JOIN sys.types t on c.system_type_id = t.system_type_id
 JOIN sys.objects o ON c.object_id = o.object_id AND o.type = 'u'
 JOIN sys.schemas s ON s.schema_id = o.schema_id
WHERE t.name IN('varchar', 'nvarchar')
 AND (c.max_length = -1 OR c.max_length > 100)

OPEN cur

FETCH NEXT FROM cur INTO @SQL

WHILE @@FETCH_STATUS = 0
BEGIN

 print @SQL
 INSERT #Result
 EXEC(@SQL)

 FETCH NEXT FROM cur INTO @SQL
END

DEALLOCATE cur;

SELECT JSONDoc,tblName,clmnName,DateType
FROM #Result
ORDER BY tblName, clmnName

DROP TABLE #Result

SET NOCOUNT OFF;

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

247

How It Works
An ISJSON() function verifies whether a string type value is valid JSON. The ISJSON()
function returns:

• 1 when the string is valid JSON document.

• 0 when the string is invalid JSON document.

• NULL when an expression is a NULL value.

Empty curly brackets {} and empty square brackets [] are considered to be valid
JSON, therefore, the ISJSON() function returns 1 on those values. The ISJSON() function
will detect the JSON document, and a cursor is established to build dynamic SQL, as
shown in Listing 9-2.

Listing 9-2. Building dynamic SQL to detect JSON documents

DECLARE cur CURSOR
 FOR
SELECT 'SELECT TOP (1) ''' + QUOTENAME(s.name) +'.' + QUOTENAME(o.name) +
''' as TblName, '''
+ QUOTENAME(c.name) + ''' as ClmName, '''
+ t.name + QUOTENAME(case c.max_length when -1 then 'MAX'
ELSE cast(c.max_length as varchar(5)) END , ')') + ''' as DataType, '
+ QUOTENAME(c.name) + ' FROM '
 + QUOTENAME(s.name) +'.' + QUOTENAME(o.name) +
 ' WHERE ISJSON(' + QUOTENAME(c.name) + ') = 1;'
FROM sys.columns c
 JOIN sys.types t on c.system_type_id = t.system_type_id
 JOIN sys.objects o ON c.object_id = o.object_id AND o.type = 'u'
 JOIN sys.schemas s ON s.schema_id = o.schema_id
WHERE t.name IN('varchar', 'nvarchar')
 AND (c.max_length = -1 OR c.max_length > 100);

Figure 9-1. Showing detected tables and columns with JSON data

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

248

The columns that store JSON have nvarchar and varchar data types. Theoretically,
the columns with nchar and char data types could store the JSON as well; however, a fixed
length data type is not appropriate for JSON. The wrong design consideration could be
implemented in binary data types, such as varbinary and image for JSON documents.

 ■ Note Microsoft recommends nvarchar(max) as a standard data type to store the JSON

documents, as it is implemented in the WideWorldImporters sample database (Figure 9-1).

All columns that store JSON have the nvarchar(max) data type.

Therefore, the dynamic SQL (Listing 9-1) for the cursor filters the table sys.types
and column name by ‘varchar’, ‘nvarchar’. In Chapter 4, Recipe 4-7 demonstrated how
to detect an XML column when the data type filter is included in four more data types:
varbinary, image, text, and ntext. Also, it is less likely to store JSON where the column
length is less than 100. Therefore, the column max_length from the table sys.columns is
filtered by -1, which is MAX OR greater than 100.

The SELECT statement for a cursor produces dynamic SQL output of:

 1. Schema.TableName – defines schema and table

 2. ColumnName – defines column name

 3. DataType(data length) – defines data type

 4. Column name – defines returned JSON document

The WHERE clause implements ISJSON() with a column name as an argument.
The output for a dynamic SQL row is demonstrated in Listing 9-3. The result from the
dynamic SQL is shown in Figure 9-2.

Listing 9-3. Resulting code for dynamic SQL

SELECT TOP (1) '[Application].[People]' as TblName,
'[CustomFields]' as ClmName,
'nvarchar(MAX)' as DataType,
[CustomFields]
FROM [Application].[People]
WHERE ISJSON([CustomFields]) = 1;

Figure 9-2. Showing the output from Listing 9-3

http://dx.doi.org/10.1007/978-1-4842-3117-3_4

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

249

A loop is iterating over each line of dynamic SQL and inspects it for potential JSON
document in each column. When ISJSON() returns a value of 1, which means TRUE, then
the output from that SQL is logged into a temporary table #Result, which is created before
the cursor declaration. When the cursor is exhausted then the temporary table #Result
returns all logged rows.

9-2. Returning a Subset of a JSON Document
Problem
You want to return an object or array from a JSON document.

Solution
The JSON_QUERY() function returns a subset (object or array) from a variable or column
that contains a JSON document. Listing 9-4 demonstrates the query that returns the
Events array objects (two of those) out of a JSON document stored in the Sales.Invoices
table and ReturnedDeliveryData column. The result is shown in Listing 9-5.

Listing 9-4. Returning Events arrays

SELECT TOP (1) JSON_QUERY([ReturnedDeliveryData], '$.Events')
FROM [Sales].[Invoices];

Listing 9-5. Resulting from Listing 9-5

[
 {
 "Event":"Ready for collection",
 "EventTime":"2013-01-01T12:00:00",
 "ConNote":"EAN-125-1051"
 },
 {
 "Event":"DeliveryAttempt",
 "EventTime":"2013-01-02T07:05:00",
 "ConNote":"EAN-125-1051",
 "DriverID":15,
 "Latitude":41.3617214,
 "Longitude":-81.4695602,
 "Status":"Delivered"
 }
]

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

250

How It Works
A JSON_QUERY() function has two arguments:

 1. Expression – a required argument, expecting a JSON
document from a column name or variable.

 2. Path – an optional argument, providing a JSON document
path to an object part.

 ■ Note The dollar sign ($) in the path argument represents JSON context, and it could be

considered as a top object.

The recipe solution demonstrated in a JSON document is stored in the Sales.Invoices
table and ReturnedDeliveryData column. For example, the complete JSON document
shown in Listing 9-6 has two extra key elements DeliveredWhen and ReceivedBy that are
not part of the JSON_QUERY() result, because the path argument was set to the object
Events, which has two child arrays.

Listing 9-6. Showing a complete JSON document

{
 "Events":[
 {
 "Event":"Ready for collection",
 "EventTime":"2013-01-01T12:00:00",
 "ConNote":"EAN-125-1051"
 },
 {
 "Event":"DeliveryAttempt",
 "EventTime":"2013-01-02T07:05:00",
 "ConNote":"EAN-125-1051",
 "DriverID":15,
 "Latitude":41.3617214,
 "Longitude":-81.4695602,
 "Status":"Delivered"
 }
],
 "DeliveredWhen":"2013-01-02T07:05:00",
 "ReceivedBy":"Aakriti Byrraju"
}

To return the single array object, the path argument needs to specify an array index
on how it is demonstrated in Listing 9-7. Listing 9-8 demonstrates JSON output for a
single array object.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

251

Listing 9-7. Referencing a single JSON array object

SELECT TOP (1) JSON_QUERY([ReturnedDeliveryData], '$.Events[0]')
FROM [Sales].[Invoices];

Listing 9-8. Showing array output

{
 "Event":"Ready for collection",
 "EventTime":"2013-01-01T12:00:00",
 "ConNote":"EAN-125-1051"
}

 ■ Caution Unlike an XML singleton that is a 1-based starting index, JSON arrays are

0-based. Therefore, to reference the first array object or array value, the index must be 0,

not 1.

When the path argument is not set for a JSON_QUERY() function, the function
returns a complete JSON document.

9-3. Returning a Scalar Value from JSON
Problem
You want to return a scalar value from a JSON document.

Solution
A JSON_VALUE() function extracts a scalar value from a JSON document, shown in
Listing 9-9. The query result is demonstrated in Figure 9-3.

Listing 9-9. Returning scalar values

SELECT TOP (1) JSON_value([ReturnedDeliveryData], '$.ReceivedBy') ReceivedBy
 ,JSON_value([ReturnedDeliveryData], '$.Events[0].Event') FirstEvent
 ,JSON_value([ReturnedDeliveryData], '$.Events[0].EventTime')

EventTime
 ,JSON_value([ReturnedDeliveryData], '$.Events[1].Event') LastEvent
 ,JSON_value([ReturnedDeliveryData], '$.Events[1].Status') [Status]
FROM [Sales].[Invoices];

Figure 9-3. Showing the query result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

252

How It Works
A JSON_VALUE() function has two required arguments:

 1. Expression – expects a JSON document from a column name
or variable.

 2. Path – a JSON document path to a JSON scalar value.

Unlike a JSON_QUERY() function that returns objects and arrays, the JSON_VALUE()
function returns a JSON scalar value. If you attempt to return a scalar value using the JSON_
QUERY() function, NULL will be returned. The JSON_VALUE() function is the opposite – it
returns NULL when the path references an object or array instead of a key. For example, the
query in Listing 9-10 demonstrates flipping an object and value reference between a JSON_
VALUE() and JSON_QUERY() functions. Figure 9-4 shows the result when a JSON_VALUE()
referencing a scalar value returns a ReceivedBy value and a JSON_QUERY() referencing a
scalar value returns NULL. In the next two columns, the JSON_VALUE() referencing an array
returns a NULL value and JSON_QUERY() referencing and array returns a JSON segment.

Listing 9-10. Demonstrating JSON_VALUE() and JSON_QUERY() functions

SELECT TOP (1) JSON_VALUE([ReturnedDeliveryData], '$.ReceivedBy')
ScalarValue
 ,JSON_QUERY([ReturnedDeliveryData], '$.ReceivedBy')

ScalarQuery
 ,JSON_VALUE([ReturnedDeliveryData], '$.Events[0]')

ObjectValue
 ,JSON_QUERY([ReturnedDeliveryData], '$.Events[0]')

ObjectQuery
FROM [Sales].[Invoices];

The JSON_VALUE() function returns an nvarchar(4000) data type for a scalar value.
Listing 9-11 demonstrates how to verify a data type that is returned by a JSON_VALUE()
function. Figure 9-5 shows the returned result.

Listing 9-11. Verifying the returned data type by JSON_VALUE() function

DECLARE @Value sql_variant

SELECT @Value =
(
 SELECT TOP (1) JSON_value([ReturnedDeliveryData], '$."ReceivedBy"')
 FROM [Sales].[Invoices]
);

Figure 9-4. Showing the query result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

253

SELECT SQL_VARIANT_PROPERTY(@Value,'BaseType') BaseType,
CAST(SQL_VARIANT_PROPERTY(@Value, 'MaxLength')as int) /
 CASE SQL_VARIANT_PROPERTY(@Value,'BaseType') WHEN 'nvarchar'
 THEN 2 ELSE 1 END
TypeLength,
SQL_VARIANT_PROPERTY(@Value,'TotalBytes') TotalBytes;

When the scalar value is greater than 4000 characters, the function returns a NULL.
Listing 9-12 demonstrates the JSON document when the scalar value LongText contains
5,009 characters processed by a JSON_VALUE() function. The query result is shown in
Figure 9-6.

Listing 9-12. Demonstrating how text that exceeds the character limit affects the JSON_
VALUE() function output

declare @json nvarchar(max) = '
{
"RegularText":"Regular Text",

"LongText":"Long Text' + REPLICATE(' too long ', 500) + '"
}'
SELECT JSON_VALUE(@json, '$.RegularText') RegularText ,
 JSON_VALUE(@json, '$.LongText') LongText

 ■ Note When a JSON key has an invalid character, such as a space, the key must be

surrounded by double quotes (“”). For example, when key is Last Name the path argument

will be:

SELECT JSON_VALUE(@json, '$."Last Name"')

Figure 9-5. Resulting output from the verification code

Figure 9-6. Showing query result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

254

9-4. Troubleshooting a Returned NULL
Problem
You want to troubleshoot why a JSON a scalar value is NULL.

Solution
Implementing the strict mode within JSON functions raises an error when a NULL is
returned. Listing 9-13 demonstrates a query in strict mode. The error message is shown in
Listing 9-14.

Listing 9-13. Forcing a JSON_VALUE() function to raise an error

SELECT JSON_VALUE([ReturnedDeliveryData], 'strict $.receivedby') ReceivedBy
FROM [Sales].[Invoices];

Listing 9-14. Showing the error message

Msg 13608, Level 16, State 5, Line 1
Property cannot be found on the specified JSON path.

How It Works
The JSON functions that support the path argument can implement strict mode to force
an error when a retuned scalar value is NULL. These functions are:

• JSON_VALUE()

• JSON_QUERY()

• JSON_MODIFY()

• OPENJSON()

The path argument for functions supporting the path argument can run in two
modes:

• lax mode (default), JSON function returns a scalar NULL value

• strict mode, JSON function returns an error instead of a NULL
value

 ■ Caution Both lax and strict keywords are case sensitive; therefore, implementation is

required to be in lowercase only.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

255

Listing 9-15 demonstrates how to detect a problem for a JSON_VALUE() function
scalar output when executing the code in strict mode. Listing 9-16 demonstrates the error
message.

Listing 9-15. Implementing strict mode

declare @json nvarchar(max) = '
{
"RegularText":"Regular Text",

"LongText":"Long Text' + REPLICATE(' too long ', 500) + '"
}'
SELECT JSON_VALUE(@json, 'strict $.LongText') LongText

Listing 9-16. Showing the error message

Msg 13625, Level 16, State 1, Line 7
String value in the specified JSON path would be truncated.

The error message in Listing 9-16 notifies that the text exceeded the maximum 4,000
characters. However, the OPENJSON() function, which we’ll cover in the next recipe, can
fix this problem.

9-5. Converting JSON into a Table
Problem
You want to convert a JSON document into columns and rows.

Solution
The OPENJSON() table-valued function shreds the JSON document and returns a
resultset in columns-rows format. Listing 9-17 shreds the JSON document from table
[Application].[People], column [UserPreferences]. Figure 9-7 shows the query result.

Listing 9-17. Converting JSON into table structure

SELECT UserPref.theme,
 UserPref.[dateFormat],
 UserPref.timeZone,
 UserPref.pagingType,
 UserPref.pageLength,
 UserPref.favoritesOnDashboard
FROM [Application].[People]
 CROSS APPLY OPENJSON([UserPreferences])
 WITH

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

256

 (
 theme varchar(20) '$.theme',
 [dateFormat] varchar(20) '$.dateFormat',
 timeZone varchar(10) '$.timeZone',
 pagingType varchar(20) '$.table.pagingType',
 pageLength int '$.table.pageLength',
 favoritesOnDashboard bit '$.favoritesOnDashboard'
) AS UserPref;

How It Works
The OPENJSON() table-valued function shreds and converts a JSON document into a
rowset. Since the OPENJSON() function returns a rowset, the function can be used in the
FROM clause using the CROSS APPLY and OUTER APPLY operators.

The OPENJSON() function consists of two arguments and a WITH clause:

• jsonExpression (required) – JSON valid column or variable

• path (optional) – JSON object or array path

• WITH clause (optional) – explicitly defines the output table;
therefore, the name and data type is required for each column.
Optionally, the WITH clause could reference an object or array, as
shown in Listing 9-18.

Before we review the query details from Listing 9-17, we’ll discuss one JSON
document from the [Application].[People] table, column [UserPreferences], as shown in
Listing 9-18.

Figure 9-7. Showing the query result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

257

Listing 9-18. Showing JSON document

{
 "theme": "blitzer",
 "dateFormat": "yy-mm-dd",
 "timeZone": "PST",
 "table": {
 "pagingType": "full_numbers",
 "pageLength": 25
 },
 "favoritesOnDashboard": true
}

The document has four key-value elements that are considered to be first level:

• theme

• dateFormat

• timeZone

• favoritesOnDashboard

Additionally, the sub-objects table contains two more key-value elements:

• pagingType

• pageLength

The OPENJSON() function in the Solution section (Listing 9-17) is implemented
with the required argument only, which is the UserPreferences column, for example:
OPENJSON([UserPreferences]). For the provided Solution, there is no need to specify
the path argument, because all JSON keys are explicitly defined in the WITH clause, for
example:

CROSS APPLY OPENJSON([UserPreferences])
 WITH
 (
 theme varchar(20) '$.theme',
 [dateFormat] varchar(20) '$.dateFormat',
 timeZone varchar(10) '$.timeZone',
 pagingType varchar(20) '$.table.pagingType',
 pageLength int '$.table.pageLength',
 favoritesOnDashboard bit '$.favoritesOnDashboard'
) AS UserPref

The OPENJSON() function could be defined for all first-level keys by default. For
example, the same output is returned for the OPENJSON() function when the WITH clause
does not have an explicit path for the first-level keys, as demonstrated in Listing 9-19.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

258

Listing 9-19. Shredding a JSON document with default first level keys

SELECT UserPref.theme,
 UserPref.[dateFormat],
 UserPref.timeZone,
 UserPref.pagingType,
 UserPref.pageLength,
 UserPref.favoritesOnDashboard
FROM [Application].[People]
 CROSS APPLY OPENJSON([UserPreferences])
 WITH
 (
 theme varchar(20),
 [dateFormat] varchar(20),
 timeZone varchar(10),
 pagingType varchar(20) '$.table.pagingType',
 pageLength int '$.table.pageLength',
 favoritesOnDashboard bit
) AS UserPref;

There is one caveat with such an implementation; all first level keys in the WITH
clause must match the JSON document name and the name is case sensitive. The sub-
object table is still a required path specification, due to the second JSON level.

When the OPENJSON() function is used with all defaults, that is, no path argument
and no WITH clause, the function returns three columns:

• Key – nvarchar(4000), returns a JSON key, object or array name.

• Value – nvarchar(max), returns a JSON property value.

• Type – int, returns a type of the JSON property value. The type
descriptions are demonstrated in Table 9-1.

Type column value JSON data type decription

0 NULL

1 string

2 int

3 boolean (true/false)

4 array

5 object

Listing 9-20 uses the JSON data from Listing 9-18, denoting the JSON document from
a variable into a table structure. Figure 9-8 demonstrates the result from a JSON variable.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

259

Listing 9-20. Running the OPENJSON() function without an optional argument or
WITH clause

declare @json varchar(max) =
'{
 "theme": "blitzer",
 "dateFormat": "yy-mm-dd",
 "timeZone": "PST",
 "table": {
 "pagingType": "full_numbers",
 "pageLength": 25
 },
 "favoritesOnDashboard": true
}'

SELECT [key], [value], [type]
FROM OPENJSON(@json);

9-6. Processing JSON Nested Sub-Objects
Problem
You want to shred JSON with several nested levels.

Solution
To shred a sub-object you need to set the reference to the sub-object in a parent
OPENJSON(…) WITH(…) block. The new JSON instance will stand along a sub-object
JSON. The solution demonstrated is a database independent process that can run on
any database with COMPATIBILITY_LEVEL = 130 or higher. The complete solution is
demonstrated in Listing 9-21. The final query result is shown in Figure 9-9.

Figure 9-8. Showing the OPENJSON() function result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

260

Listing 9-21. Shredding multiple JSON sub-object solution

SET NOCOUNT ON;

DECLARE @JSON nvarchar(MAX),
 @schema nvarchar(30),
 @tbl nvarchar(128),
 @objID int

DROP TABLE IF EXISTS dbo.Table_Info_JSON;

CREATE TABLE Table_Info_JSON (
 TableID int PRIMARY KEY,
 DBName nvarchar(128),
 [SchemaName] nvarchar(30),
 tblName nvarchar(128),
 JSONDoc nvarchar(MAX)
);

DECLARE cur CURSOR FOR
 SELECT object_id, [Schema].name, [Table].name
 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].

schema_id
 WHERE type = 'u';

OPEN cur;

FETCH NEXT FROM cur INTO @objID, @schema, @tbl;

WHILE @@FETCH_STATUS = 0
BEGIN

 SELECT @JSON = (
 SELECT db_name() as 'Database',
 [Schema].name as 'Tables.SchemaName',
 [Table].name as 'Tables.TableName',
 (SELECT [Column].name ColumnName FROM sys.columns [Column]
 WHERE [Column].object_id = [Table].object_id FOR JSON AUTO
) AS 'Tables.Columns'
 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].

schema_id
 WHERE [Table].object_id = @objID
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER
);

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

261

 INSERT Table_Info_JSON
 SELECT @objID, DB_NAME(), @schema, @tbl, @JSON;

 FETCH NEXT FROM cur INTO @objID, @schema, @tbl;
END;

DEALLOCATE cur;

SET NOCOUNT OFF;

SELECT db.[Database] -- first level
 , tbl.SchemaName -- second level
 , tbl.TableName -- second level
 , clmn.ColumnName -- third level
FROM dbo.Table_Info_JSON
 CROSS APPLY OPENJSON (JSONDoc)
 WITH
 (
 [Database] varchar(30),
 [Tables] nvarchar(MAX) AS JSON
) as db
 CROSS APPLY OPENJSON ([Tables])
 WITH
 (
 TableName varchar(30),
 SchemaName varchar(30),
 [Columns] nvarchar(MAX) AS JSON
) as tbl
 CROSS APPLY OPENJSON ([Columns])
 WITH
 (
 ColumnName varchar(30)
) as clmn;

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

262

How It Works
The mechanism to shred multi sub-object JSON data is based on a parent-child object
reference set. To understand how it works, we need to take a closer look at the JSON
document from the Table_Info_JSON table in Listing 9-22.

Listing 9-22. Showing the JSON document

{
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Warehouse",
 "TableName": "Colors",
 "Columns": [
 { "ColumnName": "ColorID" },
 { "ColumnName": "ColorName" },
 { "ColumnName": "LastEditedBy" },
 { "ColumnName": "ValidFrom" },
 { "ColumnName": "ValidTo" }
]
 }
}

The JSON document shown in Sample 9-9 has three levels:

• Top Level 1 – key "Database"

• Sub-Level 2 – object "Tables"

• Sub-Level 3 – array "Columns"

Figure 9-9. Showing final result

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

263

Therefore, the JSON structure reflected in the FROM clause is demonstrated in
Listing 9-23:

Listing 9-23. Showing FROM clause

FROM dbo.Table_Info_JSON
 CROSS APPLY OPENJSON (JSONDoc) <- reference to the table column
 WITH
 (
 [Database] varchar(30),
 [Tables] nvarchar(MAX) AS JSON
) as db
 CROSS APPLY OPENJSON ([Tables]) <- reference to [Tables] JSON object
 WITH
 (
 TableName varchar(30),
 SchemaName varchar(30),
 [Columns] nvarchar(MAX) AS JSON
) as tbl
 CROSS APPLY OPENJSON ([Columns]) <- reference to [Columns] JSON array
 WITH
 (
 ColumnName varchar(30)
) as clmn

Reference to child-level sets in OPENJSON function WITH clause. The child object
name must be in nvarchar(MAX) data type and set AS JSON object. For example: [Tables]
nvarchar(MAX) AS JSON.

The SELECT clause delivered a result using created aliases in the FROM clause:

SELECT db.[Database] -- first level
 , tbl.SchemaName -- second level
 , tbl.TableName -- second level
 , clmn.ColumnName -- third level

9-7. Indexing JSON
Problem
You want to improve JSON filtering with an index.

Solution
To create an index for a JSON document, you need to add a computed column for a JSON
scalar value, then create an index on this column. Listing 9-24 demonstrates how to add
the index for a JSON value to an existing table. The index is created for a JSON value
shown in Figure 9-10.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

264

Listing 9-24. Creating an index for JSON key-value ConNote

USE [WideWorldImporters];

SET ANSI_NULLS ON;

ALTER TABLE [Sales].[Invoices] ADD ConNote AS
 CAST(JSON_VALUE([ReturnedDeliveryData], '$.Events[0].ConNote') AS
varchar(20)) PERSISTED

CREATE INDEX IX_Sales_Invoices_ConNote
ON [Sales].[Invoices]
 (
 [ConNote]
)INCLUDE(
 [InvoiceDate]
 ,[DeliveryInstructions]
 ,[TotalDryItems]
 ,[TotalChillerItems]
 ,[ConfirmedDeliveryTime]
 ,[ConfirmedReceivedBy]
);

How It Works
JSON is not treated as a data type in SQL Server, like XML. It is more comparable to a
structured string that has multiple values and stores a table as an nvarchar(max) data
type (if you follow Microsoft recommendations). Therefore, a column that stores a JSON
document cannot have a traditional index as a scalar value table column. However, a
scalar JSON value can be obtained by a JSON_VALUE() scalar function, and this is the key
to create an index for a JSON document.

Figure 9-10. Showing JSON index

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

265

Creating an index mechanism for a JSON document has two steps:

 1. Add a computed column to a table with a JSON_VALUE()
function that returns a scalar value from your JSON
document. The computed column must use the PERSISTED
option. Also, you need to keep in mind that the JSON_
VALUE() function returns the nvarchar(4000) data type.
Therefore, I recommend converting the returned data length
from a JSON_VALUE() function closer to the original data
length. For example:

CAST(JSON_VALUE([ReturnedDeliveryData], '$.Events[0].
ConNote') AS varchar(20)) PERSISTED.

 2. Create an index on your computed column. When needed,
the index can have an INCLUDE clause to create a fully
covering index.

An index for a JSON document can greatly improve performance. Listing 9-25
demonstrates a query with a filter for computed columns over the JSON key element
ConNote.

Listing 9-25. Filtering the ConNote column

SET STATISTICS IO,TIME ON;

SELECT [InvoiceDate]
 ,[DeliveryInstructions]
 ,[TotalDryItems]
 ,[TotalChillerItems]
 ,[ConfirmedDeliveryTime]
 ,[ConfirmedReceivedBy]
 ,[ConNote]
FROM [Sales].[Invoices]
WHERE [ConNote] = 'EAN-125-1051';

SET STATISTICS IO,TIME OFF;

Figure 9-11 demonstrates “STATISTICS IO, TIME” results and the execution plans for
the query. Listing 9-26 is a comparison of this query before and after index creation.

Listing 9-26. Comparing a query before and after the index

---- WITHOUT INDEX
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

266

(1 row(s) affected)
Table 'Invoices'. Scan count 9, logical reads 8843, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.

(1 row(s) affected)

 SQL Server Execution Times:
 CPU time = 94 ms, elapsed time = 60 ms.

---- WITHOUT INDEX
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

(1 row(s) affected)
Table 'Invoices'. Scan count 9, logical reads 8843, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.

(1 row(s) affected)

 SQL Server Execution Times:
 CPU time = 94 ms, elapsed time = 60 ms.

---- WITH INDEX
SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

(1 row(s) affected)
Table 'Invoices'. Scan count 1, logical reads 3, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.

CHAPTER 9 ■ CONVERTING JSON TO ROW SETS

267

(1 row(s) affected)

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 33 ms.

As you can see, performance is improved dramatically with index filtering.

Summary
SQL Server 2016 introduced JSON integration that pairs well with the latest technologies.
Chapter 9, “Converting JSON to Row Sets” covered the complete set of SQL Server
functions and plenty of examples to shred and deliver the results from a JSON document.

The next chapter will demonstrate how to modify the JSON document and as a final
point will compare JSON and XML performance.

Figure 9-11. Comparing the execution plans and STATISTICS results before and after the
index is created

http://dx.doi.org/10.1007/978-1-4842-3117-3_9

269© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3_10

CHAPTER 10

Modifying JSON

To insert, delete, and update data in a JSON document, SQL Server 2016 introduced the
JSON_MODIFY() function that updates a JSON string value. This function, compared
to XML modify() method, only has an append mode, as opposed to the insert, delete,
and instead of modes provided by the XML method. Chapter 10 “Modifying JSON” will
demonstrate many recipes explaining how to update a JSON document. In the final
section of this chapter, I will compare the performance between XML and JSON.

10-1. Adding a New Key-Value Pair to JSON
Problem
You want to add a new key-value pair to a JSON document.

Solution
A JSON_MODIFY() function adds a new key-value pair when a second argument path
value does not exist in a JSON document. Listing 10-1 demonstrates the query when
the column InvoiceDate is modified by the JSON_MODIFY() function, adding a new
key “SentBy” with the value “John Smith” to a JSON document. The result with both
original (InvoiceDate) and modified JSON document (NewInvoice) columns is shown in
Figure 10-1.

Listing 10-1. Adding a new key-value pair to a JSON document

SELECT CustomerName
 , PrimaryContact
 , AlternateContact
 , PhoneNumber
 , InvoiceDate
 , JSON_MODIFY(InvoiceDate,'$.SentBy', 'John Smith') NewInvoice
FROM [dbo].[CustomerInvoice];

https://doi.org/10.1007/978-1-4842-3117-3_10
http://dx.doi.org/10.1007/978-1-4842-3117-3_10

CHAPTER 10 ■ MODIFYING JSON

270

How It Works
A JSON_MODIFY() function returns an updated JSON document. There are three
required arguments:

 1. Expression – name of a column, variable, or valid hard-coded
JSON.

 2. Path – key path to a value. Supports the append mode only.
For other actions, such as insert and update, the function
works in self-defined mode.

 3. NewValue – the value that replaces existing or added as new
to JSON.

To add a new key-value pair, you do not need to specify a special mode. For example,
to insert a new value, you can use the JSON_MODIFY() function, which is self-defined,
meaning if a path contains an existing key, then the value is updated. When a key does
not exist, a new key-value pair is added to the JSON string.

In the Solution section, in Listing 10-1, the column InvoiceDate is first checked by
the JSON_MODIFY() function for existence of the key “SentBy.” For example: JSON_
MODIFY(InvoiceDate,‘$.SentBy’, ‘John Smith’). In the column this key was not found.
Therefore, the function added a new key “SentBy” with the value “John Smith.”

10-2. Updating Existing JSON
Problem
You want to change the value for an existing key.

Solution
A Path argument for the JSON_MODIFY() function must exist within a JSON document.
Listing 10-2 demonstrates the query when the key “Title” and value “Team Member” are
modified to “Manager.” Figure 10-2 shows the original and modified JSON documents.

Listing 10-2. Modifying a JSON document

SELECT CustomFields
 ,JSON_MODIFY(CustomFields,'$.Title', 'Manager') NewCustomFields
FROM [Application].[People]
WHERE FullName = 'Hudson Onslow';

Figure 10-1. Showing the query result

CHAPTER 10 ■ MODIFYING JSON

271

How It Works
The JSON_MODIFY() function is self-defined, as explained in the previous Recipe 10-1.
JSON documents in the CustomFields column contain the key “Title.” Therefore, when
the key path is detected with a JSON string the JSON_MODIFY() function updates the
value property. This concept will be demonstrated in the Solution section, Listing 10-2.

10-3. Deleting from JSON
Problem
You want to delete a key-value pair from a JSON document.

Solution
Set the NewValue(third) argument to NULL within the JSON_MODIFY() function if you
need to delete the key-value pair, as demonstrated in Listing 10-3. Figure 10-3 shows the
original and modified JSON.

Listing 10-3. Deleting key “Title” with value

SELECT CustomFields
,JSON_MODIFY(CustomFields,'$.Title', NULL) NewCustomFields
FROM [Application].[People]
WHERE FullName = 'Hudson Onslow';

How It Works
When the JSON_MODIFY() function has a NULL listed as the third argument (NewValue),
then the key-value pair is deleted from JSON. This concept applies to the key, object, and
array. Listing 10-4 demonstrates how to delete the array “OtherLanguages” from the JSON
variable @j. Table 10-1 demonstrates a side-by-side comparison between the original
JSON and the JSON processed by the JSON_MODIFY() function.

Figure 10-2. Comparing query output

Figure 10-3. Comparing query output with deleted key “Title”

CHAPTER 10 ■ MODIFYING JSON

272

Listing 10-4. Deleting an array

declare @j as nvarchar(MAX) =
N'{
 "OtherLanguages": [
 "Polish",
 "Chinese",
 "Japanese"
],
 "HireDate": "2008-04-19T00:00:00",
 "Title": "Team Member",
 "PrimarySalesTerritory": "Plains",
 "CommissionRate": "0.98"
}';

SELECT JSON_MODIFY(@j,'$.OtherLanguages', NULL) DeletedOtherLanguages;

Another example demonstrates when the object “table” is deleted from the JSON
document assigned to the variable @j, shown in Listing 10-5. Table 10-2 demonstrates
a side-by-side comparison between the original JSON and the JSON processed by the
JSON_MODIFY() function.

Listing 10-5. Deleting object “table” from JSON document

declare @j nvarchar(MAX) =
N'{
 "theme": "humanity",
 "dateFormat": "dd/mm/yy",
 "timeZone": "PST",
 "table": {
 "pagingType": "full",
 "pageLength": 50
 },

Table 10-1. Comparing the result side by side

Original JSON JSON Array OtherLanguages Deleted

{
 "OtherLanguages": [
 "Polish",
 "Chinese",
 "Japanese"
],
 "HireDate": "2008-04-19T00:00:00",
 "Title": "Team Member",
 "PrimarySalesTerritory": "Plains",
 "CommissionRate": "0.98"
}

{
 "HireDate": "2008-04-19T00:00:00",
 "Title": "Team Member",
 "PrimarySalesTerritory": "Plains",
 "CommissionRate": "0.98"
}

CHAPTER 10 ■ MODIFYING JSON

273

 "favoritesOnDashboard": true
}';
SELECT JSON_MODIFY(@j,'$.table', NULL) Delete_table;

All examples demonstrate how easy it is to delete a key, object, and array from a
JSON string using the JSON_MODIFY() function.

10-4. Appending a JSON Property
Problem
You want to add a new value to an existing array.

Solution
The append mode of the JSON_MODIFY() function specifies that the new value needs
to be added to the existing list of arrays. Listing 10-6 demonstrates how to add a new
language to the “OtherLanguages” array. A before-and-after comparison of the returned
result with JSON output is shown in Figure 10-4.

Listing 10-6. Appending Greek language to a JSON array

SELECT CustomFields
 ,JSON_MODIFY(CustomFields,'append $.OtherLanguages', 'Greek') AS
 AppendOtherLanguagesArray
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

Table 10-2. Comparing the results side by side

Original JSON JSON Object table Deleted

{
 "theme": "humanity",
 "dateFormat": "dd/mm/yy",
 "timeZone": "PST",
 "table": {
 "pagingType": "full",
 "pageLength": 50
 },
 "favoritesOnDashboard": true
}

{
 "theme": "humanity",
 "dateFormat": "dd/mm/yy",
 "timeZone": "PST",
 "favoritesOnDashboard": true
}

Figure 10-4. Showing new language appended to a JSON array

CHAPTER 10 ■ MODIFYING JSON

274

How It Works
The JSON_MODIFY() function provides an optional append mode. The append mode
specifies the path argument and directs the JSON_MODIFY() function to add a new value
to an existing list. When the append mode is specified, but the key path does not exist, the
JSON_MODIFY() function creates a new key-value pair. For example, the solution query
in Listing 10-6 is executed when the “OtherLanguages” array is spelled in lowercase as
shown in Listing 10-7. At this point, a new “otherlanguages” array is created by the
JSON_MODIFY() function. The result is shown in Figure 10-5.

Listing 10-7. Appending a nonexisting array

SELECT CustomFields
 ,JSON_MODIFY(CustomFields,'append $.otherlanguages', 'Greek') AS
 AppendOtherLanguagesArray
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

To avoid such a mistake, make sure that the JSON_MODIFY() function path
argument is provided with the correct JSON path.

10-5. Modifying with Multiple Actions
Problem
You want to apply several value changes to a JSON string.

Solution
Create several inline references with supplied arguments to the JSON_MODIFY()
function. Listing 10-8 demonstrates multiple JSON_MODIFY() function calls.
The following is subsequently changed:

 1. Append the value “Greek” to the “OtherLanguages” array.

 2. Update “Title”:“Team Member” to “Title”:“Manager.”

 3. Insert the “CommissionRate”:“1.19” key-value pair.

Table 10-3 demonstrates a side-by-side comparison of the original JSON and JSON
processed by the JSON_MODIFY() function.

Figure 10-5. Showing JSON with a duplicated array

CHAPTER 10 ■ MODIFYING JSON

275

Listing 10-8. Demonstrating multiple JSON_MODIFY() function calls

SELECT CustomFields
,JSON_MODIFY(
 JSON_MODIFY(
 JSON_MODIFY(CustomFields,'append $.OtherLanguages', 'Greek')
 , '$.Title', 'Manager')
 ,'$.CommissionRate', '1.19') AS Multi_Changes
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

How It Works
The JSON_MODIFY() function has the ability for continuous inline calls with multiple
modifications. The JSON_MODIFY() function returns modified JSON. Therefore, each
returned JSON string could be continuously processed for another modification.

10-6. Renaming a JSON Key
Problem
You want to rename a JSON key.

Solution
You need to create a new object or key then delete the old name. Listing 10-9
demonstrates how to rename the array OtherLanguages to SpokenLanguages with
preserved original values. The renamed array in JSON is shown in Figure 10-6.

Table 10-3. Comparing result side by side

Original JSON Modified JSON

{
 "OtherLanguages": [
 "Turkish",
 "Slovenian"
],
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Team Member"
}

{ "OtherLanguages": [
 "Turkish",
 "Slovenian",
 "Greek"
],
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Manager",
 "CommissionRate": "1.19"
}

CHAPTER 10 ■ MODIFYING JSON

276

Listing 10-9. Renaming the OtherLanguages array

SELECT
 JSON_MODIFY(
 JSON_MODIFY(CustomFields,'$.SpokenLanguages', JSON_
QUERY(JSON_QUERY(CustomFields, '$.OtherLanguages')))
 , '$.OtherLanguages', NULL) Rename_OtherLanguages_
Array
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

How It Works
SQL Server does not have a function to rename a key or object directly. Therefore, the
rename mechanism has two steps:

 1. Create a new object with original values, as shown in
Listing 10-9.

 2. Delete the old object from the JSON document.

The Solution section demonstrates that renaming the OtherLanguages array name
to SpokenLanguages is a bit more complex than simply renaming a key. As you could
see, the solution code calls the JSON_QUERY() function twice. This is because at first, the
JSON_QUERY() function calls with a path to the OtherLanguages array to obtain original
values. However, the returned values have an escape character, and to hide the escape
character(s), a JSON_QUERY() function is called to fix the returned array. Table 10-4
demonstrates a side-by-side comparison between the JSON with a single JSON_QUERY()
function call and the JSON with a double JSON_QUERY() function call.

Table 10-4. Comparing JSON side by side

Not Corrected JSON Corrected JSON

{
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Team Member",
 "SpokenLanguages":
"[\"Turkish\",\"Slovenian\"]"
}

{
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Team Member",
 "SpokenLanguages": [
 "Turkish", "Slovenian"
]
}

Figure 10-6. Showing renamed array

CHAPTER 10 ■ MODIFYING JSON

277

When the first JSON_MODIFY() function call returns a desirable JSON result, the
second JSON_MODIFY() call deletes the old name with the provided path arguments as
‘$.OtherLanguages’ and newValue argument as NULL.

10-7. Modifying a JSON Object
Problem
You want to replace all values in a JSON array object.

Solution
A JSON_MODIFY() function replaces all values in a JSON array by specified Path and
NewValue arguments. Listing 10-10 demonstrates a Solution section to replace the JSON
array. Table 10-5 demonstrates a side-by-side comparison between the original and
modified JSON arrays.

Listing 10-10. Replacing a JSON array

SELECT CustomFields, JSON_MODIFY(CustomFields, '$.OtherLanguages',
 JSON_QUERY('["Dutch","Latvian","Lithuanian"]'))
OtherLanguages
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

How It Works
To replace a JSON array, the JSON_MODIFY() function detects and validates an argument
path and then applies the newValue argument to JSON. The NewValue argument must
have a valid JSON array or objects part. For example, [“Dutch”, “Latvian”, “Lithuanian”] is
a valid array part for the NewValue argument used in Listing 10-10.

The Nature of the behavior for the JSON_MODIFY() function is that the value in the
newValue argument is treated as a string. Therefore, all special characters (for example:
double quotes, forward slashes, and backslashes) escape with backslash “\”. That why
the NewValue argument is surrounded by the JSON_QUERY() function to remove escape
characters.

Table 10-5. Comparing the JSON result side by side

Original JSON Modified JSON

{
 "OtherLanguages": [
 "Turkish", "Slovenian"
],
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Team Member"
}

{
 "OtherLanguages": [
 "Dutch", "Latvian", "Lithuanian"
],
 "HireDate": "2010-08-24T00:00:00",
 "Title": "Team Member"
}

CHAPTER 10 ■ MODIFYING JSON

278

The Solution section provides a query for creating a JSON array. However, a similar
solution is demonstrated in Listing 10-11 for replacing a JSON object. As a reminder: an
array is surrounded by square brackets and contains a list of values for the same property
and type. When an object is surrounded by curly braces {}, it could have a list of key-
value pairs with different properties and types. Table 10-6 demonstrates a side-by-side
comparison of an original and modified JSON object.

Listing 10-11. Replacing a JSON object

SELECT [UserPreferences],
JSON_MODIFY([UserPreferences], '$.table',
 JSON_QUERY('{"pagingType":"full","pageLength":25,"pageScope":

"private"}')) AS ModifiedUserPreferences
FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

And alternate solution could be:

 1. delete the OtherLanguages array.

 2. reinsert the OtherLanguages array with the new part.

The code for this technique is demonstrated in Listing 10-12. The result from the
code is shown in Figure 10-7.

Listing 10-12. Demonstrating the delete and re-insert query

SELECT CustomFields,
 JSON_MODIFY(
 JSON_MODIFY(CustomFields, '$.OtherLanguages', NULL),

'$.OtherLanguages', JSON_QUERY('["Dutch","Latvian",
"Lithuanian"]')) OtherLanguages

FROM [Application].[People]
WHERE FullName = 'Isabella Rupp';

Table 10-6. Comparing the JSON results side by side

Original JSON Modified JSON

{
 "theme": "ui-darkness",
 "dateFormat": "dd/mm/yy",
 "timeZone": "PST",
 "table": {
 "pagingType": "simple",
 "pageLength": 10
 },
 "favoritesOnDashboard": true
}

{
 "theme": "ui-darkness",
 "dateFormat": "dd/mm/yy",
 "timeZone": "PST",
 "table": {
 "pagingType": "full",
 "pageLength": 25,
 "pageScope": "private"
 },
 "favoritesOnDashboard": true
}

CHAPTER 10 ■ MODIFYING JSON

279

Inefficiency (I prefer not to use word “problematic” because the code returns a
correct result) for such a technique is that:

• The OtherLanguages array moves to last the JSON position, so the
array loses its original place within the JSON document.

• You are required to implement an additional JSON_MODIFY()
function.

I would not recommend this technique to replace an object or array.

10-8. Comparing XML vs. JSON
Problem
You want to compare XML and JSON performance.

Solution
The solution is implemented in several steps. Listing 10-13 demonstrates the T-SQL code for
the process. Table 10-7 demonstrates a side-by-side comparison between JSON and XML.

The comparison steps:

 1. Create two tables, one for JSON strings, another for XML
instances.

 2. Create an insert process to convert the same data into JSON
and XML.

 3. Run XML shredding.

 4. Run JSON shredding.

 5. Compare results (will review in “How It Works” section)

Listing 10-13. Demonstrating T-SQL code

/************************* XML INSERT *************************/
SET NOCOUNT ON;

DECLARE @XML XML,
 @schema nvarchar(30),
 @tbl nvarchar(128),

Figure 10-7. Showing the query output

CHAPTER 10 ■ MODIFYING JSON

280

 @objID int,
 @time datetime2;

DROP TABLE IF EXISTS dbo.Table_Info_XML;

CREATE TABLE Table_Info_XML (
 TableID int PRIMARY KEY,
 DBName nvarchar(128),
 [SchemaName] nvarchar(30),
 tblName nvarchar(128),
 XMLDoc XML
);

DECLARE cur CURSOR FOR
 SELECT object_id, [Schema].name, [Table].name
 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
 WHERE type = 'u';

OPEN cur;

FETCH NEXT FROM cur INTO @objID, @schema, @tbl;
SET @time = GETDATE();
WHILE @@FETCH_STATUS = 0
BEGIN

 SELECT @XML = (
 SELECT db_name() as 'Database',
 [Schema].name as 'Tables/SchemaName',
 [Table].name as 'Tables/TableName',
 (SELECT name as ColumnName FROM sys.columns [Column]
 WHERE [Column].object_id = [Table].object_id FOR XML AUTO,
TYPE
) AS 'Tables/Columns'
 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].

schema_id
 WHERE [Table].object_id = @objID
 FOR XML PATH('TableInfo')
);

 INSERT Table_Info_XML
 SELECT @objID, DB_NAME(), @schema, @tbl, @XML;

 FETCH NEXT FROM cur INTO @objID, @schema, @tbl;
END;

CHAPTER 10 ■ MODIFYING JSON

281

DEALLOCATE cur;

SELECT DATEDIFF(MILLISECOND, @time, GETDATE()) as XML_TIME;

SET NOCOUNT OFF;

GO

/************************* JSON INSERT *************************/

SET NOCOUNT ON;

DECLARE @JSON nvarchar(MAX),
 @schema nvarchar(30),
 @tbl nvarchar(128),
 @objID int,
 @time datetime2

DROP TABLE IF EXISTS dbo. Table_Info_JSON;

CREATE TABLE Table_Info_JSON (
 TableID int PRIMARY KEY,
 DBName nvarchar(128),
 [SchemaName] nvarchar(30),
 tblName nvarchar(128),
 JSONDoc nvarchar(MAX)
);

DECLARE cur CURSOR FOR
 SELECT object_id, [Schema].name, [Table].name
 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].schema_id
 WHERE type = 'u';

OPEN cur;

FETCH NEXT FROM cur INTO @objID, @schema, @tbl;
SET @time = GETDATE();
WHILE @@FETCH_STATUS = 0
BEGIN

 SELECT @JSON = (
 SELECT db_name() as 'Database',
 [Schema].name as 'Tables.SchemaName',
 [Table].name as 'Tables.TableName',
 (SELECT [Column].name ColumnName FROM sys.columns [Column]
 WHERE [Column].object_id = [Table].object_id FOR JSON AUTO
) AS 'Tables.Columns'

CHAPTER 10 ■ MODIFYING JSON

282

 FROM sys.objects [Table]
 JOIN sys.schemas [Schema] on [Table].schema_id = [Schema].

schema_id
 WHERE [Table].object_id = @objID
 FOR JSON PATH, WITHOUT_ARRAY_WRAPPER
);

 INSERT Table_Info_JSON
 SELECT @objID, DB_NAME(), @schema, @tbl, @JSON;

 FETCH NEXT FROM cur INTO @objID, @schema, @tbl;
END;

DEALLOCATE cur;

SELECT DATEDIFF(MILLISECOND, @time, GETDATE()) as JSON_TIME;

SET NOCOUNT OFF;

GO

--- Shredding XML
SET STATISTICS TIME ON;

SELECT clm.value('../../../Database[1]', 'varchar(50)') as [Database]
 ,clm.value('../../SchemaName[1]', 'varchar(50)') as SchemaName
 ,clm.value('../../TableName[1]', 'varchar(50)') as TableName
 ,clm.value('@ColumnName', 'varchar(50)') as ColumnName
FROM dbo.Table_Info_XML
 CROSS APPLY XMLDoc.nodes('TableInfo/Tables/Columns/Column') as
tbl(clm);

SET STATISTICS TIME OFF;

--- Shredding JSON
SET STATISTICS TIME ON;

SELECT db.[Database]
 , tbl.SchemaName
 , tbl.TableName
 , clmn.ColumnName
FROM dbo.Table_Info_JSON
 CROSS APPLY OPENJSON (JSONDoc)
 WITH
 (
 [Database] varchar(30),
 [Tables] nvarchar(MAX) AS JSON
) as db

CHAPTER 10 ■ MODIFYING JSON

283

 CROSS APPLY OPENJSON ([Tables])
 WITH
 (
 TableName varchar(30),
 SchemaName varchar(30),
 [Columns] nvarchar(MAX) AS JSON
) as tbl
 CROSS APPLY OPENJSON ([Columns])
 WITH
 (
 ColumnName varchar(30)
) as clmn

SET STATISTICS TIME OFF;

How It Works
The five-step mechanism to compare XML and JSON is listed in the Solution section as
well as T-SQL code (Listing 10-13) to create the tables, establish, and run the cursors to
load the table with XML using the FOR XML clause and JSON using the FOR JSON clause;
and as a last step, shred both XML and JSON columns into row sets. This code should
be familiar to you by now, because the code for this case is very similar to several of the
previous recipes.

The comparison ran on the WideWorldImporters database. However, the code is
database independent and could run on any database with a Compatibility Level of
130 or higher. In the “How It Works” section, I would like to compare the performance
numbers between two processes. The insert runtime numbers in milliseconds are shown
in Table 10-8. In both the Table_Info_JSON and Table_Info_XML tables, 573 rows were

Table 10-7. Comparing a JSON document and an XML instance side by side

JSON Document XML Instance

{
 "Database": "WideWorldImporters",
 "Tables": {
 "SchemaName": "Warehouse",
 "TableName": "Colors",
 "Columns": [
 {"ColumnName": "ColorID"},
 {"ColumnName": "ColorName"},
 {"ColumnName": "LastEditedBy"},
 {"ColumnName": "ValidFrom"},
 {"ColumnName": "ValidTo"}
]
 }
}

<TableInfo>
 <Database>WideWorldImporters</Database>
 <Tables>
 <SchemaName>Warehouse</SchemaName>
 <TableName>Colors</TableName>
 <Columns>
 <Column ColumnName="ColorID" />
 <Column ColumnName="ColorName" />
 <Column ColumnName="LastEditedBy" />
 <Column ColumnName="ValidFrom" />
 <Column ColumnName="ValidTo" />
 </Columns>
 </Tables>
</TableInfo>

CHAPTER 10 ■ MODIFYING JSON

284

inserted. The measurement was taken by the DATEDIFF() function for both JSON and
XML inserts. The start time was assigned to a variable before the cursor started, and the

function call was executed after the cursor deallocation.

The shredding was measured by enabling STATISTICS TIME. Each shredding
process ran separately, with the SSMS option Result To Text (Result To Grid returns
slightly higher numbers).

JSON shredding record:

(573 row(s) affected)

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 14 ms.

XML shredding record:

(573 row(s) affected)

 SQL Server Execution Times:
 CPU time = 15 ms, elapsed time = 21 ms.

 ■ Note The output on your PC could return different performance numbers.

To summarize both, in the inserting and shredding processes, JSON clearly has
slightly better performance than XML. However, it does not mean that you need to
implement JSON immediately! Each technology has its pros and cons. For example,
JSON is lighter than XML and processes faster, so it could be a good fit for a relatively
small document without a deep parent-child structure. However, as of today, JSON is in
string data format and cannot compete with a solid XML data type, which is practically a
language. There are many options that make XML irreplaceable: XML Schema, Attributes,
and Namespaces, to name a few. I would advise against taking extreme courses of action.
Any technology should be used with the best practical performance, that is, what is better
for each case.

Table 10-8. Comparing the insert time side by side

JSON Insert XML Insert

20 milliseconds 26 milliseconds

CHAPTER 10 ■ MODIFYING JSON

285

Wrapping Up
This is it! I have shared my knowledge with you, my dear reader. The recipes throughout
this book came from production solutions that I faced and resolved for various clients
and companies. I did my best to cover, as thoroughly as possible, recipes for XML and
JSON in an SQL Server environment, and I hope that you were able to find the exact
solution, or at least the knowledge and guidance to solve your XML and JSON situation.

At this point, I would like to thank you for reading this book. I hope that the content
will bring useful solutions to your issues and add additional knowledge to your
SQL Server skills.

287© Alex Grinberg 2018

A. Grinberg, XML and JSON Recipes for SQL Server,

https://doi.org/10.1007/978-1-4842-3117-3

��������� A
AUTO mode, JSON

formatted result, 225–226
JSONFormatter interface, 227
table and column, 228–229
XML Editor, 226

��������� B
Binary data, 35–36

��������� C, D
Common Language Runtime (CLR)

command-line, 94
creation, 95
data type

CAST() function, 244
string, 242
ToString() function, 243

PERMISSION_SET, 98
WriteXMLFile and ReadXMLFile,

92–94, 96–99
Custom XML generation

code snippet, 43–45
EXPLICIT mode, 39–41, 45
logical structure, 41–42
PATH mode, 46–48

��������� E
Element-centric XML, 31–32
exist() function, implementing, 159–160
EXtensible Markup Language (XML)

attribute-centric, 5–6
binary data, 35–36

characters, 6
clause modes, 23–24
data settings, 25
data type, 7–8
element-centric, 4–5
vs. HTML, 3
NULL values, 33–34
root element, 32–33
Schema Collection, 18–20
SSMS, 14–18
table names, 28–30
typed, 20–22
untyped, 8–10
Visual Studio, 11–14

��������� F, G, H
Filtering XML

empty values, 178–181
execution, 182–183
exist(), XQuery processes, 160–164
multiple conditions, 175–176
negative operator, 177–178
range of values, 174–175
sequence of values, 170–171
single value, 167–168
stored procedure, 165
string pattern, 171–174
Tel.Number element, 166
T-SQL, 168–170

��������� I
Internal ENTITY declarations

@lags parameter, 105
namespace declaration, 104
@ns variable, 104

Index

https://doi.org/10.1007/978-1-4842-3117-3

■ INDEX

288

OPEXML function, 101–102
product model, 103
result data, 103
sp_xml:preparedocument, 104–105
WITH clause, 107
XPath, 106

ISJSON() function
database, 245–247
SELECT, 248
string, 247
WHERE, 248

��������� J, K, L
JavaScript Object Notation (JSON)

AUTO mode, 225
beneits, 221
blocks, 221
brackets, 232
built-in functions, 225
CLR data type, 241–244
Columns, 237–238
escape characters, 239–241
index

ConNote, 264–265
STATISTICS, 265, 267

NULL, 230–231, 254–255
PATH mode, 234–235
query, 236
ROOT key element, 233
SELECT clause, 237
SQL Server, 223
sub-object, 260, 262–263
XML, 224

JSON_MODIFY() function
key-value pair

add, 269–270
append mode, 273–274
delete, 271–273
multiple modiications, 274–275
object, 277–279
rename, 275–277
update, 270

XML vs. JSON, 279–284
JSON_QUERY() function

DeliveredWhen and ReceivedBy, 250
returning events, 249
single array object, 250–251

JSON_VALUE() function
JSON_QUERY() function, 252
LongText, 253
returned data type, 252
scalar values, 251

��������� M
modify() method, XML

delete
attribute value, 151–153
XML element, 153–156

insert element
attributes, 140–142
if-then-else, 143
multiple elements, 146–148
namespace, 137–140
position sequence, 144–146
XML DML, 135–137

update
attribute value, 150–151
element value, 148–149

Multiple CROSS APPLY
operators, 132–133

��������� N
Nested XML elements, 37–38
Node test, 49, 51
NULL value, 33–34, 230–231

JSON_VALUE()
function, 254

strict mode, 255

��������� O
OPENJSON() function

key-value elements, 257
tables, 255–256
WITH clause, 257–259

OPENXML function
CONVERT and CAST

functions, 109
data types, 109
DEFAULT, 111
nodes() method, 111
value() method, 112–113
WITH() method, 112
XQuery, 109

Internal ENTITY declarations (cont.)

■ INDEX

289

��������� P, Q
PATH type index

creation, 194–195
secondary path, 195–196

Primary XML index
creation, 185–186
PersonXML, 185, 187, 189–191
rules, 192

��������� R
Relational data, XML, 26–27
ROOT key element, 233

��������� S
Secondary property type XML index, 200–202
Secondary selective XML index, 213–214
Secondary value type XML

index, 196–199
Selective XML index

creation
execution plan, 209
nested element nodes, 205–206
query, 206–207
statistics, 207
tables and column, 203–205
XMLNAMESPACE, 209

modifying, 215–218
optimizing, 210–213

Shredding XML
column demographics, 113–115
internal ENTITY (see Internal ENTITY

declarations)
legacy databases, 117–119
multiple CROSS APPLY (see Multiple

CROSS APPLY operators)
OPENXML function (see OPENXML

function)
subset, 123–126
tables and columns

database, 127–129
IMAGE data type, 130
logical processes, 129–130
SELECT clause, 131

typed XML column, 120–123
SQL Server Management

Studio (SSMS), 14–18
SSIS package

BCP utility, 59
Collection menu, 84–85
conigurations, 64, 66
control low, 60
DelayValidation, 89
Evaluate Expression, 67
Execute SQL Task Editor, 83
Expression Property Editor, 84
File System Task property, 89
lexibility and functionality, 79
LoadXMLFromFile, 78–79
Main() function, 70–71
Mapping menu, FileName, 85–86
OLE DB Connection, 63
Parameter Mapping menu, 87–88
Precedence Constraint

Editor, 68–69, 82–83
Script Task, 91

Manager, 69
variables, 81

stored procedure, 92
testing, 71
Tool Box, 60
variable list, 80
variables, 61–62

Storing XML result
BCP utility, 58
ile path, 53–55
ile-writing process, 55–58
T-SQL, 72–77

��������� T
T-SQL, variable values, 168–170
Typed XML columns

creating, 20–22
shredding

fn, 121, 123
query(), 122
text(), 123
XPath, 120–121

��������� U, V, W
Untyped XML, 8, 10–11

��������� X, Y, Z
XML Data Modiication Language

(XML DML), 135–137

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments

