KTC70HP series

How to Order
KTC 70HP
(1)

(2)
(3)

(4)

(5)

(6)

(7)
(1) Series

KTC 70HP								
Telescopic cylinder				(2) Mounting style \quad	LA	Axial angle of foot	CA	Single clevis
:---	:---:	:---:	:---:					
LT	Base mounting axial angle of foot	TA	Rod side trunnion					
FA	Rod side flange	TB	Head side trunnion					

FB Head side flange
(3) Type

Type		Bore size	
		room	2 room
10	Type 10	$\varnothing 63$	$\varnothing 45$
20	Type 20	$\varnothing 90$	$\varnothing 65$
30	Type 30	$\varnothing 110$	$\varnothing 80$
40	Type 40	$\varnothing 125$	$\varnothing 90$
50	Type 50	$\varnothing 140$	$\varnothing 100$

(4) Rod end thread length(dimension A)

Type	A	B
	(Standard)	(Semi-standard)
Type 10	25 mm	35 mm
Type 20	35 mm	45 mm
Type 30	40 mm	55 mm
Type 40	45 mm	60 mm
Type 50	52 mm	72 mm

(5) Cylinder stroke

Type	Stroke
Type 10	$50 \sim 1700$
Type 20	$50 \sim 2500$
Type 30	$50 \sim 3100$
Type 40	$50 \sim 3100$
Type 50	$50 \sim 3100$

※ Check buckling, as it varies depending on mounting style.
※ Contact us for longer stroke.
※ Max. stroke is 50 mm .
(6) Port position

Nil	C, G (Standard)
A,B,D,E,F,H	Refer to figure below according to mounting style.

(7) Air vent position

Nil	A (Standard)
B,C,D,E,F,G,H	Refer to figure below according to mounting style.

Mounting style LA, LT
The standard port positions are C and G, and the standard air vent position is A .

Mounting style FA, FB, CA, TA, TB
The standard port positions are A and E , and the standard air vent position is C .

Note) Locate the ports and air vent at a distance of 90° or 180° from one another.

Principle of Operation

Extension The hydraulic fluid flowing through port A enters chamber X and gives pushing force to piston P 1 to actuate the 1 st stage. At the same time, the fluid in chamber 1 is discharged through port B. When piston P1 reaches the end on the rod cover side, the hydraulic fluid enters chamber 2 through port A^{\prime} of piston P1 and gives force to piston P2 to actuate the 2nd stage. At the same time, the fluid in chamber 3 flows into chamber 4 through the hole in the rod connected to piston P 2 and is discharged to port B as return fluid through port B^{\prime} piston P 1 .
Retraction The hydraulic fluid flowing through port B enters chamber 4 through port B ' of piston P 1 and flows into chamber 3 through the hole in the rod connected to piston P2. The hydraulic fluid flowing into chamber 3 gives force to the rod cover side of piston P2 to actuate the 2nd stage. At the same time, the fluid in chamber 2 is discharged from port A through port A'. When piston P2 reaches the cap cover side, the hydraulic fluid enters chamber 1 and gives force to the rod cover side of piston P 1 to actuate the 1 st stage. At the same time, the fluid in the chamber X is discharged from port A .

Output Characteristic Diagrams

The diagrams below show the output at the 1st and 2nd stages on the extension side and retraction side. At the pressure point A, there is an obvious difference in output between the 1st and 2nd stages. This difference is caused by a difference in sectional area.

Extension side

It is clear that the ouput at the 1 st stage is larger on the extension side and the output at the 2nd stage is larger on the retraction side. Therefore, the cylinder operations can be confirmed. On the extension side, the 1st stage operates, and the 2nd stage operates. On the retraction side, the 2nd stage operates, and then the 1st stage operates.

Retraction side

-Cylinder force in extending direction
-1st stage: $F_{1}=A_{1} \times P \times \beta(k g f)$
$-2 n d$ stage: $F_{2}=A_{2} \times P \times \beta(k g f)$

- Cylinder force in retracting direction
-1st stage: $F_{3}=A_{3} \times P \times \beta(k g f)$
-2 nd stage: $F_{4}=A_{4} \times P \times \beta(k g f)$

A1: Effective sectional area at 1st stage in extending direction $\left(\mathrm{cm}^{2}\right)$
A2: Effective sectional area at 2nd stage in extending direction $\left(\mathrm{cm}^{2}\right)$
A3: Effective sectional area at 1st stage in retracting direction (cm^{2})
A4: Effective sectional area at 2nd stage in retracting direction (cm^{2})
P : Working pressure (kgf/cm²)
β : Load rate

The actual cylinder output should be determined in consideration of the resistance of cylinder sliding sections and the pressure loss of the piping and equipment.
The load rate refers to the ratio of the actual force applied to the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. Generally, the load rate should be in the following range.
When the inertia force is low: 60 to 80%
When the inertia force is high: 25 to 35%
(For the calculation examples shown in this catalogue, a load rate of 80% is used.)

Table of Piston Effective Sectional Area				Unit:cm 2	
Direction		Extending direction		Retracting direction	
Type	1 stage	2 stage	1 stage	2 stage	
Type 10	31.17	15.12	9.11	9.39	
Type 20	63.62	31.42	19.44	20.07	
Type 30	95.03	47.72	31.42	31.82	
Type 40	122.72	61.07	39.40	39.84	
Type 50	153.94	76.00	48.25	48.66	

<Example>

Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when type 10 double acting telescopic cylinder is used at a set pressure of $70 \mathrm{~kg} / \mathrm{cm}^{2}$.

<Answer>

Cylinder force in extending direction (kgf)
-1 st stage $=$ Set pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \times$ Piston effective sectional area at 1st stage in extending direction(cm^{2}) \times Load rate $=70 \times 31.2 \times 0.8=1.747(\mathrm{kgf})$
-2 nd stage $=$ Set pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \times$ Piston effective sectional area at 2nd stage in extending direction $\left(\mathrm{cm}^{2}\right) \times$ Load rate $=70 \times 15.1 \times 0.8=845(\mathrm{kgf})$

Cylinder force on retracting direction (kgf)
$-2 n d$ stage $=$ Set pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \times$ Piston effective sectional area at 2nd stage in retracting direction $\left(\mathrm{cm}^{2}\right) \times$ Load rate $=70 \times 9.4 \times 0.8=526(\mathrm{kgf})$
-1st stage $=$ Set pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \times$ Piston effective sectional area at 1st stage in retracting direction $\left(\mathrm{cm}^{2}\right) \times$ Load rate $=70 \times 9.1 \times 0.8=509$ (kgf)
<Example>
Select an optimum type of double acting telescopic cylinder to obtain a cylinder force of 1000 kgf at the 1 st stage in the retracting direction at a set pressure of $7 \mathrm{kgf} / \mathrm{cm}^{2}$
Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when the selected cylinder is used.
<Answer>
$\begin{aligned} \begin{array}{c}\text { Piston effective } \\ \text { sectional area }\left(\mathrm{cm}^{2}\right)\end{array} & =\frac{\text { Cylinder force }\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)}{\text { Set pressure }\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \times \text { Load rate }} \\ & =\frac{1,000}{70 \times 0.8} \fallingdotseq 17.86\end{aligned}$
When you select a cylinder bore larger than 17.86 from the rod cover side 1 st stage column in the table of piston effective sectional area, then type 20 is selected.

Cylinder Force at Each Stage
Extending direction:
Cylinder force at 1st stage $=70 \times 63.62 \times 0.8=3,562.72 \mathrm{kgf}$
Cylinder force at 2 nd stage $=70 \times 31.42 \times 0.8=1,759.52 \mathrm{kgf}$
Retracting direction:
Cylinder force at 2 nd stage $=70 \times 19.44 \times 0.8=1,088.64 \mathrm{kgf}$
Cylinder force at 1st stage $=70 \times 20.07 \times 0.8=1,123.92 \mathrm{kgf}$

How To Read Buckling Chart

How to determine the max. working load according to the telescopic cylinder type

1. Determine in which condition the telescopic cylinder is mounted among (1) to (9) shown below.
2. After determining the mounting condition, obtain the value L for the condition.
3. Determine the max. working load according to the value L and the telescopic cylinder type from the buckling chart.

How to determine the max. stroke according to the telescopic cylinder type

1. Determine in which condition the telescopic cylinder is mounted among (1) to (9) shown below.
2. Determine the value L according to the max. working load and the telescopic cylinder type from the buckling chart.
3. After the mounting condition is determined, the stroke can be obtained from the value L .

Mounting Conditions

Hydraulic
Cylinder
Reference
Data

KP70/140H

KP210H

Pin Joint at Both Ends

Fixed Telescopic Cylinder and Free Rod End(D=L/1.45)

Fixed Telescopic Cylinder and Rod End Guide($\mathrm{D}=1.6 \mathrm{~L}$)

Notes on calculation of piston rod buckling
Before calculating the piston rod buckling, it is necessary to examine the method of stopping the cylinder. There are two ways to stop a cylinder: the cylinder stopping method, where the cylinder is stopped at the cylinder stroke end, and the external stopping method, where the cylinder is stopped by an external stopper. The way of determining the load varies depending on the method.

Way of determining the load in the case of cylinder stopping method

The cylinder is stopped at the stroke end as shown in the figure.
Determine the load necessary for buckling calculation as stated below.
Case (1) Load=W
Case (2) Load $=\mu \mathrm{W}$
μ : Friction coefficien

Way of determining the load in the case of external stopping method

Case (1)
M
M

The cylinder is stopped in the middle by an external stopper as shown in the figure. In this case, the load necessary for buckling calculation is not W, but the theoretical cylinder force
[Set relief pressure(kgf/cm²) x Piston area $\left(\mathrm{mm}^{2}\right)$]

Load Weight-Speed Diagram of Each Series Based on Cushioning Characteristics

The above diagram shows the target speed on a uniform speed circuit in the extending direction.
On an ununiform speed circuit, the speed of the 2nd stage piston rod conforms to the above diagram. In the retracting direction, a load weight 1.5 times higher can be applied at the speed of the 1st stage piston rod.
-Load Weight-Speed Diagram (for horizontal transfer)

For selection of a hydraulic cylinder, the relationship between load weight and speed is a key point.
The above diagram is a speed diagram based on the characteristics of the rod cover side(ISO type:head side) cushion in the telescopic cylinder.

Calculation of Cylinder Stroke \& Most Retracted Size

The cylinder stroke and most retracted size can be calculated from the most extended size of a telescopic cylinder
<Calculation>
(Most extended size-Fixed length)/3+(Fixed length)=Most retracted size (mm)
(Most retracted size-Fixed length) $\times 2+$ Cylinder stroke (mm)

Fixed Length

Mounting style	LA, LT. FA. TA	FB	TB	CA
Type	170	180	191	222
Type 10	235	250	260	310
Type 20	275	295	305	368
Type 30	315	335	355	425
Type 40	355	377	399	475
Type 50				

※The fixed length is obtained by subtracting the stroke/2 from the maximum external size of the cylinder in a retracted state.

LA

FA

CA

For LT, FB, TA and TB styles, calculate the size in the same method.

Confirmation of Port Diameter According to Cylinder Speed

The cylinder speed depends on the amount of fluid flowing into the cylinder. Therefore, it is necessary to confirm that the standard port diameter is appropriate. The cylinder speed V is determined by the following formula.

<Example>

Ascertain whether type 20 double acting telescopic cylinder with the standard port diameter can be used when the speed in the extending direction is $100 \mathrm{~mm} / \mathrm{s}$.
Determine the pipe flow velocity (m / s). Ascertain whether the cylinder can be used when the speed in the retracting direction is $100 \mathrm{~mm} / \mathrm{s}$.
<Answer>
Draw a line parallel to the horizontal axis from the intersection of the line of cylinder speed of $100 \mathrm{~mm} / \mathrm{s}$ with the line of type 20, and connect the line with the line of port 1/2B (Type 20 double acting telescopic cylinder with standard port diameter). Since the intersection of the port diameter with the cylinder speed and type is within the usable range, the cylinder can be used. The pipe flow velocity indicated by the vertical line from the intersection of the port diameter is $4.0 \mathrm{~m} / \mathrm{s}$. In the retracting direction, the velocity is $2.0 \mathrm{~m} / \mathrm{s}$ when two ports are used.

Cylinder Speed -Required Flow Rate-Pipe Flow Velocity Diagram
Required Flow Rate

When one port is used)
(When two ports are used)

The above diagram shows the relationship between speed and required flow rate for each size of double acting telescopic cylinder and the relationship between required flow rate and pipe flow velocity for each port diameter.
(※The pressure loss can be reduced by using one size larger piping. The flow velocity was calculated with Sch80 steel pipe for piping.)

Min. Required Amount of Fluid for Cylinder		Unit: 1
Type	Min. required amount of fluid	
Type 10	$1.39 \times 10^{-3} \times$ Stroke (mm)	
Type 20	$2.78 \times 10^{-3} \times$ Stroke (mm)	
Type 30	$3.98 \times 10^{-3} \times$ Stroke (mm)	
Type 40	$5.23 \times 10^{-3} \times$ Stroke (mm)	
Type 50	$6.65 \times 10^{-3} \times$ Stroke (mm)	

Telescopic Cylinder Port Diameter

Series	Type 10	Type 20	Type 30	Type 40	Type 50
Port dia. Rc(PT)	$3 / 8$	$1 / 2$	$1 / 2$	$3 / 4$	$3 / 4$

-The minimum required amount of fluid for cylinder refers to the amount of fluid obtained by subtracting the amount of fluid on the outlet side of the cylinder from the amount of fluid on the supply side at the maximum cylinder stroke.

- In the usable range, the pipe flow velocity is less than $7 \mathrm{~m} / \mathrm{s}$. Normally, when the pipe flow velocity exceeds $7 \mathrm{~m} / \mathrm{s}$, the piping resistance and the pressure loss are increased, and, as the result of this, the output is decreased when the cylinder operates, and the speed is reduced. .When the cylinder is used at $60 \mathrm{kgf} / \mathrm{cm}^{2}$ in the retracting direction, the discharge flow rate on the cap cover side should be less than $3.5 \mathrm{~m} / \mathrm{s}$. When it is used at $140 \mathrm{~kg} / \mathrm{cm}^{2}$ in the retracting direction, the discharge flow rate should be less than $5.5 \mathrm{~m} / \mathrm{s}$.
Please select Rc(PT)3/4 head side port size for Ø30 cylinder in case of cylinder retracting speed is over $80 \mathrm{~mm} / \mathrm{s}$.

Precautions

Do not apply load to the ram tube end at the 1st stage. Doing so may cause operation failure.
Avoid applying side load to the piston rod when operating.
Doing so can cause operation failure or damage to the cylinder. If side load is applied, provide guides or protect the rod end threads.
In such case, consult KCC.
Correctly center the piston rod axis in the load moving direction. Incomplete centering can cause operation failure and damage to the cylinder.
In the case of mounting style TA, TB or CA, center the rotation axis and the mating mount.
Correctly fit the mounting bracket of mounting style TA or TB as shown below.

Ensure that the mounting block has a sufficient rigidity to prevent occurrence of deflection from the cylinder thrust force.
Use mounting bolts of strength class of JIS8.8 or more. For the tightening torque, see the following table. Incomplete tightening can cause looseness and damage of the bolts.

Tightening Torque Table						
Thread dia.	Strength class	M 8	M 10	M 12	M 14	M 16
Tightening	10.9	36	72	125	198	305
torque	8.8	25	51	89	141	216
Thread dia.	Strength class	M 18	M 20	M 22	M 24	
Tightening torque	10.9	420	590	800	1020	

Take care that eccentric load is not applied to the piston rod when connecting the rod end attachment and load.

The piston rod is made from a hollow pipe. Therefore, when fitting a rod end attachment, provide a stopper on the spigot of the thread end as shown in the figure.

Precautions for piping
When the cylinder is used by meter-out control on the rod side(ISO type: head side), the pressure resistance of the piping (rubber hose, etc.) used and the rod side(ISO type: head side) should be three times or more higher than the max. working pressure on the cap side(ISO type: cap side).
Before connecting the piping, flush the inside of the piping
When connecting with a rubber hose, do not bend the hose at an angle less than the specified radius.
Take care that air is not collected in the middle of the piping.

Applications

Pressing Machine

Platform Hoisting Machine

Building Material Hoisting Machine

Specifications

* $60 \mathrm{kgf} / \mathrm{cm}^{2}$ is standard pressure when cylinder is in reverse operation with common speed
\% Operating pressure: Max. allowable setting pressure for a relief valve while cylinder is operating
※ Max. operating pressure: Maximum allowable pressure generated in a cylinder (surge pressure, etc.)
\% Proof pressure: Test pressure a cylinder can withstand without unreliable performance when returning to operating pressure.
* Min. operating pressure: Minimum pressure for a cylinder installed horizontally and operating without load.

Mass

Type	Basic mass (SD)	Mounting mass							Additional mass for each 1 mm stroke
		LA	LT	TA	TB	FA	FB	CA	
Type 10	5.7	0.44	0.37	1.08	1.08	0.93	0.93	0.32	0.0084
Type 20	15.4	1.25	1.05	3.06	3.06	2.85	2.85	0.91	0.0169
Type 30	27.0	2.29	1.93	5.61	5.61	4.88	4.88	1.66	0.0212
Type 40	41.4	3.52	2.22	8.64	8.64	7.43	7.43	2.56	0.0313
Type 50	57.2	4.92	4.14	11.99	11.99	10.24	10.24	3.55	0.0431

Calculation:

[^0]

Part List

Part no.	Parts	Material	Quantity
1	Tube	STKM13C	1
2	Head Cover	S45C	1
3	Rod Cover	S45C	1
4	Bush	BC3	1
5	Bush Cover	S45C	1

Part no.	Parts	Material	Quantity
6	Piston \& Rod	S45C	1
7	Piston \& Rod	S45C(STPG38)	1
8	Socket Bolt	SCM440	8
9	Socket Bolt	SCM440	8

Packing List

Part no.	10	11	12	13	14	15	16	17	18
Parts	DUST SEAL	R/PACKING	O-RING	DUST SEAL	R/PACKING	O-RING	 PACKING	R/PACKING	
PACKING									
Material	N.B.R								
Quatity	1	1	1	1	1	2	1	2	1
Type									
Type 10	SDR28	SKY28	G40	SDR53	SKY53	G58/G63	P39	$16 \times 24 \times 5$	P53
Type 20	SDR40	SKY40	G60	SDR75	SKY75	G85/G90	$65 \times 49 \times 20.5$	$16 \times 24 \times 5$	$90 \times 70 \times 22.4$
Type 30	SDR45	SKY45	G75	SDR90	SKY90	G105/G110	$80 \times 60 \times 22.4$	$16 \times 24 \times 5$	$110 \times 85 \times 22.4$
Type 40	SDR53	SKY53	G85	SDR106	SKY106	G120/G115	$90 \times 70 \times 22.4$	$16 \times 24 \times 5$	$125 \times 100 \times 25.4$
Type 50	SDR60	SKY60	G95	SDR118	SKY118	G135/G140	$100 \times 75 \times 22.4$	$16 \times 24 \times 5$	$140 \times 115 \times 22.4$

Dimensions-Axial Angle of Foot (LA)

Standard port position :
 Standard air vent position: (A)

Dimensions-Base Mounting Axial Angle of Foot (LT)

	ndard p ndard air	positio vent po (a)		45°	(C)				XS		$B+1$ 2* \qquad V $1 / 25$	E +1/2S 位E	DKE			
Unit : mm																
Type	A	D	DM	E	EE	EM	FP	HK	K	KK	LE	LH	MM	NF	NT	P
Type 10	25	24	$\varnothing 73$	98	$\mathrm{Rc}(\mathrm{PT}) 3 / 8$	51	48	$\varnothing 21{ }^{\text {H9 }}$	$26{ }_{-0.1}^{0}$	M 24×2	99	$50^{ \pm 0.2}$	$\varnothing 28$	18	M12	25
Type 20	35	32	Ø105	138	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	71	67	$\varnothing 30^{\text {H9 }}$	$34{ }_{-0.1}^{0}$	M 33×2	139	$70^{ \pm 0.2}$	$\varnothing 40$	24	M16	38
Type 30	40	41	Ø125	158	$\mathrm{Rc}(\mathrm{PT})^{1 / 2}$	81	80	$\varnothing 36^{\text {H9 }}$	$42{ }_{-0.1}^{0}$	M 39×2	164	$85^{ \pm 0.2}$	$\varnothing 45$	30	M20	40
Type 40	45	46	Ø145	178	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	92	93	$\varnothing 42^{\mathrm{H9}}$	$47_{-0.1}^{0}$	M45×2	184	$95^{ \pm 0.2}$	$\varnothing 53$	36	M24	45
Type 50	52	55	Ø165	196	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	100	107	$\varnothing 49^{\text {H9 }}$	$48{ }_{-0.1}^{0}$	M52×2	203	$105^{ \pm 0.2}$	$\varnothing 60$	36	M24	50
Type	RD	SB	ST	SV	TN	TS	UA	UE	US	VD	W	WK	XS	XW	YP	ZB
Type 10	Ø59	Ø13.5	10	13	75	110	98	$\varnothing 89.5$	130	32	3	45	93	118	13	145
Type 20	$\varnothing 84$	Ø18	16	17	105	150	138	Ø129	180	43	7	60	127	162	17	200
Type 30	Ø100	Ø22	20	22	115	175	158	Ø155	210	50	20	70	150	190	20	235
Type 40	Ø112	Ø24	22	23	130	205	178	Ø177	240	57	23	80	173	218	24	270
Type 50	Ø128	Ø26	24	23	150	230	196	Ø193	270	65	25	90	197	247	25	303

Dimensions-Rod Side Flange (FA)

Dimensions-Head Side Flange (FB)

Standard port position: (A) ©
Standard air vent position: ©

Type	A	D	DM	E	EE	EF	EK	F	FB	FC	FP	HK	K	KK	MM	P	RD
Type 10	25	24	$\varnothing 73$	98	$\mathrm{Rc}(\mathrm{PT}) 3 / 8$	98	95	20	$\varnothing 9$	Ø120	48	$\varnothing 21{ }^{\text {H9 }}$	$26^{0} 0.1$	$\mathrm{M} 24 \times 2$	$\varnothing 28$	25	$\varnothing 59$
Type 20	35	32	$\varnothing 105$	138	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	138	136	30	$\varnothing 13.5$	Ø170	67	$\varnothing 30^{\text {H9 }}$	$34{ }_{-0.1}^{0}$	M 33×2	$\varnothing 40$	35	$\varnothing 84$
Type 30	40	41	Ø125	158	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	165	161	35	$\varnothing 16$	Ø195	80	$\varnothing 36{ }^{\text {H9 }}$	$42{ }_{-0.1}^{0}$	M 39×2	$\varnothing 45$	40	$\varnothing 100$
Type 40	45	46	Ø145	178	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	190	183	40	$\varnothing 18$	Ø225	93	$\varnothing 42^{\mathrm{H9}}$	$47_{-0.1}^{0}$	M45×2	$\emptyset 53$	45	Ø112
Type 50	52	55	Ø165	196	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	205	200	45	$\varnothing 20$	Ø245	107	$\varnothing 49^{\text {H9 }}$	$48{ }_{-0.1}^{0}$	M52×2	$\varnothing 60$	50	Ø128

Type	UE	UF	VA	VC	VD	VE	W	WK	YF	YP	ZB	ZF
Type 10	$\varnothing 89.5$	135	14	15	32	35	13	45	17	13	145	155
Type 20	$\varnothing 129$	195	21	20	43	50	17	60	23	17	200	215
Type 30	$\varnothing 155$	225	25	25	50	60	20	70	32	20	235	255
Type 40	$\varnothing 177$	260	28	29	57	69	23	80	32	24	270	290
Type 50	$\varnothing 193$	285	31	37	65	82	25	90	33	25	303	325

Dimensions-Rod Side Trunnion (TA)

Standard port position: © (C) Standard air vent position: (A)

※ For cylinder (stroke over 600 mm) installed in horizontal direction, please support the weight of cylinder head.

Dimensions-Head Side Trunnion (TB)

※ For cylinder (stroke over 1200 mm) installed in horizontal direction, please support the weight of rod side of cylinder.

Unit : mm																			
Type	A		BD	D	DM	E	EE	EK	FY	FP	HK	K		KK	MM	P	RD	TD	TL
Type 10	25		31	24	$\varnothing 73$	98	$\mathrm{Rc}(\mathrm{PT}) 3 / 8$	95	43	48	$\varnothing 21{ }^{\text {H9 }}$	$26^{0}{ }_{-0.1}$		$\mathrm{M} 24 \times 2$	$\varnothing 28$	25	$\varnothing 59$	$\varnothing 28{ }^{\text {e9 }}$	20
Type 20	35		38	32	Ø105	138	Rc(PT) $1 / 2$	136	55	67	$\varnothing 30{ }^{\text {H9 }}$	$34{ }_{-0.1}^{0}$		M 33×2	$\varnothing 40$	35	$\varnothing 84$	$\varnothing 35^{\text {e9 }}$	25
Type 30	40		48	41	Ø125	158	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	161	68	80	Ø $36{ }^{\text {H9 }}$	$42^{0}{ }_{-0.1}^{0}$		M 39×2	$\varnothing 45$	40	$\varnothing 100$	$\varnothing 45^{\text {e9 }}$	30
Type 40	45		58	46	$\varnothing 145$	178	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	183	81	93	$\varnothing 42^{\mathrm{H9}}$	$47^{0} 0.1$		$\mathrm{M} 45 \times 2$	$\varnothing 53$	45	$\varnothing 112$	$\varnothing 55^{\text {e9 }}$	30
Type 50	52		63	55	ס165	196	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	200	93	107	$\varnothing 49^{\text {H9 }}$	$48{ }_{-0.1}^{0}$		M52×2	$\varnothing 60$	50	Ø128	$\varnothing 60{ }^{\text {e9 }}$	35
Type	TM	M	TR	UE	UM	UW	VA	VB	VD	VE	VU	W	WK	XC	XG	YG	YP	ZB	ZD
Type 10	100		R3	$\varnothing 89.5$	5140	95	14	16	32	35	21	13	45	150	50	32	13	145	166
Type 20	145	${ }_{-0.4}^{0}$	R3	$\varnothing 129$	- 195	135	21	20	43	50	35	17	60	205	72	43	17	200	225
Type 30	175	${ }_{-0.4}^{0}$	R3	Ø155	- 235	160	25	25	50	60	37	20	70	240	82	50	20	235	265
Type 40	200	${ }_{-0.46}^{0}$	R3	$\varnothing 177$	7 260	185	28	30	57	69	39	23	80	280	92	62	24	270	310
Type 50	220	${ }_{-0.46}^{0}$	R3	$\varnothing 193$	390	205	31	32	65	82	47	25	90	315	104	68	25	303	347

Dimensions-Single Clevis (CA)

Standard port position : (A) (E) Standard air vent position: ©

※ For cylinder (stroke over 1200 mm) installed in horizontal direction, please support the weight of rod side of cylinder.

Unit : mm																	
Type	A	CD	D	DM	E	EE	EK	EW	FP	HK	K	KK	L	LR	MM	MR	P
Type 10	25	$\varnothing 25^{\mathrm{H} 10}$	24	$\varnothing 73$	98	Rc(PT)3/8	95	$28{ }_{-0.1}^{0}$	48	Ø21 ${ }^{\text {H9 }}$	$26_{-0.1}^{0}$	M24×2	30	R27	$\varnothing 28$	R22	25
Type 20	35	$\varnothing 35^{\mathrm{H} 10}$	32	Ø105	138	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	136	$40^{0}{ }_{-0.1}^{0}$	67	Ø30 ${ }^{\text {H9 }}$	$34{ }_{-0.1}^{0}$	M 33×2	45	R44	$\varnothing 40$	R30	35
Type 30	40	$\varnothing 45^{\mathrm{H} 10}$	41	Ø125	158	$\mathrm{Rc}(\mathrm{PT}) 1 / 2$	161	$50{ }_{-0.1}^{0}$	80	$\varnothing 36{ }^{\text {H9 }}$	$42{ }_{-0.1}^{0}$	M 39×2	55	R54	$\emptyset 45$	R38	40
Type 40	45	$\varnothing 55^{\mathrm{H} 10}$	46	Ø145	178	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	183	$55^{0}{ }_{-0.1}^{0}$	93	$\varnothing 42^{\text {H9 }}$	$47{ }_{-0.1}^{0}$	$\mathrm{M} 45 \times 2$	65	R64	$\varnothing 53$	R45	45
Type 50	52	$\varnothing 60^{\mathrm{H} 10}$	55	Ø165	196	$\mathrm{Rc}(\mathrm{PT}) 3 / 4$	200	$63{ }_{-0.1}^{0}$	107	$\varnothing 49^{\text {H9 }}$	$48{ }_{-0.1}^{0}$	M 52×2	70	R69	Ø60	R50	50

Type	RD	UE	VA	VD	VE	W	XC	ZC
Type 10	$\varnothing 59$	$\varnothing 89.5$	14	32	35	13	175	197
Type 20	$\varnothing 84$	$\varnothing 129$	21	43	50	17	245	275
Type 30	$\varnothing 100$	$\varnothing 155$	25	50	60	20	290	328
Type 40	$\varnothing 112$	$\varnothing 177$	28	57	69	23	335	380
Type 50	$\varnothing 128$	$\varnothing 193$	31	65	82	25	373	423

[^0]: Ex) KTC70HP-FB30-A1500
 Basic mass: 27.0 / Additional mass: 0.0212 / Cylinder stroke: $1,500 \mathrm{~mm} /$ FB type: 4.88 $27.0+(0.0212 \times 1500)+4.88=63.68 \mathrm{~kg}$

