

KTC70HP series

distance of 90° or 180° from one another.

KTC70HP series

Telescopic Cylinder Reference Data

Extension

The hydraulic fluid flowing through port A enters chamber X and gives pushing force to piston P1 to actuate the 1st stage. At the same time, the fluid in chamber 1 is discharged through port B.

When piston P1 reaches the end on the rod cover side, the hydraulic fluid enters chamber 2 through port A' of piston P1 and gives force to piston P2 to actuate the 2nd stage. At the same time, the fluid in chamber 3 flows into chamber 4 through the hole in the rod connected to piston P2 and is discharged to port B as return fluid through port B' piston P1.

Retraction

The hydraulic fluid flowing through port B enters chamber 4 through port B' of piston P1 and flows into chamber 3 through the hole in the rod connected to piston P2. The hydraulic fluid flowing into chamber 3 gives force to the rod cover side of piston P2 to actuate the 2nd stage. At the same time, the fluid in chamber 2 is discharged from port A through port A'. When piston P2 reaches the cap cover side, the hydraulic fluid enters chamber 1 and gives force to the rod cover side of piston P1 to actuate the 1st stage. At the same time, the fluid in the chamber X is discharged from port A.

Output Characteristic Diagrams

The diagrams below show the output at the 1st and 2nd stages on the extension side and retraction side. At the pressure point A, there is an obvious difference in output between the 1st and 2nd stages. This difference is caused by a difference in sectional area.

It is clear that the ouput at the 1st stage is larger on the extension side and the output at the 2nd stage is larger on the retraction side. Therefore, the cylinder operations can be confirmed. On the extension side, the 1st stage operates, and the 2nd stage operates. On the retraction side, the 2nd stage operates, and then the 1st stage operates.

KH

Telescopic Cylinder Reference Data

Calculation of Cylinder Force

•Cylinder force in extending direction -1st stage: F₁=A₁ x P x β(kgf) -2nd stage: F₂=A₂ x P x β(kgf)

 Cylinder force in retracting direction -1st stage: F₃=A₃ x P x β(kgf) -2nd stage: F₄=A₄ x P x β(kgf)

- A1: Effective sectional area at 1st stage in extending direction (cm²)
- A2: Effective sectional area at 2nd stage in extending direction (cm²)
- A3: Effective sectional area at 1st stage in retracting direction (cm²)
- A4: Effective sectional area at 2nd stage in retracting direction (cm²)
- P : Working pressure (kgf/cm²) β : Load rate

The actual cylinder output should be determined in consideration of the resistance of cylinder sliding sections and the pressure loss of the piping and equipment.

The load rate refers to the ratio of the actual force applied to the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. Generally, the load rate should be in the following range When the inertia force is low: 60 to 80%

When the inertia force is high: 25 to 35%

(For the calculation examples shown in this catalogue, a load rate of 80% is used.)

Table of Piston	Table of Piston Effective Sectional Area Unit:cm ²											
Direction	Extending	direction	Retracting direction									
Туре	1 stage	2 stage	1 stage	2 stage								
Type 10	31.17	15.12	9.11	9.39								
Type 20	63.62	31.42	19.44	20.07								
Type 30	95.03	47.72	31.42	31.82								
Type 40	122.72	61.07	39.40	39.84								
Type 50	153.94	76.00	48.25	48.66								

<Example>

Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when type 10 double acting telescopic cylinder is used at a set pressure of 70kgf/cm².

<Answer>

Cylinder force in extending direction (kgf)

- -1st stage = Set pressure(kgf/cm²) x Piston effective sectional area at
 - 1st stage in extending direction(cm²) x Load rate
- -2nd stage = Set pressure(kgf/cm²) x Piston effective sectional area at 2nd stage in extending direction(cm²) x Load rate = 70 x 15.1 x 0.8 = 845(kgf)

Cylinder force on retracting direction (kgf)

- -2nd stage = Set pressure(kgf/cm²) x Piston effective sectional

area at 2nd stage in retracting direction(cm²) x Load rate = 70 x 9.4 x 0.8 = 526(kgf) -1st stage = Set pressure(kgf/cm²) x Piston effective sectional area at 1st stage in retracting direction(cm²) x Load rate $= 70 \times 9.1 \times 0.8 = 509$ (kgf)

<Example>

Select an optimum type of double acting telescopic cylinder to obtain a cylinder force of 1000kgf at the 1st stage in the retracting direction at a set pressure of 7 kgf/cm².

Determine the cylinder force at the 1st and 2nd stages in the extending and retracting directions when the selected cylinder is used.

<Answer>

When you select a cylinder bore larger than 17.86 from the rod cover side 1st stage column in the table of piston effective sectional area, then type 20 is selected.

Cylinder Force at Each Stage

Extending direction:

Cylinder force at 1st stage= 70 x 63.62 x 0.8=3,562.72kgf Cylinder force at 2nd stage= 70 x 31.42 x 0.8=1,759.52kgf

Retracting direction:

Cylinder force at 2nd stage= 70 x 19.44 x 0.8=1,088.64kgf Cylinder force at 1st stage= 70 x 20.07 x 0.8=1,123.92kgf

Reference Data

KP70/140H

Telescopic Cylinder Reference Data

How To Read Buckling Chart

- How to determine the max. working load according to the telescopic cylinder type
- 1. Determine in which condition the telescopic cylinder is mounted among to shown below.
- 2. After determining the mounting condition, obtain the value L for the condition. 3. Determine the max. working load according to the value L and the telescopic cylinder type from the buckling chart.

How to determine the max. stroke according to the telescopic cylinder type

- 1. Determine in which condition the telescopic cylinder is mounted among (1) to (9) shown below.
- 2. Determine the value L according to the max. working load and the telescopic cylinder type from the buckling chart.
- 3. After the mounting condition is determined, the stroke can be obtained from the value L.

Mounting Conditions

Telescopic Cylinder Reference Data

Load Weight-Speed Diagram of Each Series Based on Cushioning Characteristics

Calculation of Cylinder Stroke & Most Retracted Size

www.kccpr.com

KTC70HP series

Telescopic Cylinder Reference Data

Confirmation of Port Diameter According to Cylinder Speed

The above diagram shows the relationship between speed and required flow rate for each size of double acting telescopic cylinder and the relationship between required flow rate and pipe flow velocity for each port diameter. (*The pressure loss can be reduced by using one size larger piping. The flow velocity was calculated with Sch80 steel pipe for piping.)

Min. Req	uired Amount of Fluid for Cylinder	Unit:{
Туре	Min. required amount of fluid	
Type 10	1.39x10 ⁻³ × Stroke(mm)	
Type 20	2.78x10 ⁻³ × Stroke(mm)	
Type 30	3.98x10 ⁻³ × Stroke(mm)	
Type 40	5.23x10 ⁻³ × Stroke(mm)	
Type 50	6.65x10 ⁻³ × Stroke(mm)	

Telescopi	c Cylinder	Port Diam	neter							
Series	Type 10	Type 20	Type 30	Type 40	Type 50					
Port dia. Rc(PT)	Port dia. 3/8 1/2 1/2 3/4 3/4									
•The minimu subtracting supply side •In the usabl velocity ext result of thi •When the c the cap cov direction, the •Please sele is over 80m	Im required a the amount of at the maxin e range, the ceeds 7 m/s, s, the output ylinder is use ver side shou he discharge ct Rc(PT)3/4 m/s	mount of fluid of fluid on the num cylinder pipe flow vel- the piping re is decreased at 60kgf/cr ld be less tha flow rate sho head side po	d for cylinder e outlet side of stroke. ocity is less t sistance and 1 when the cy n ² in the retra an 3.5 m/s. W ould be less t ort size for Ø	refers to the of the cylinde han 7 m/s. N the pressure /linder opera acting directio /hen it is use han 5.5 m/s. 30 cylinder ir	amount of fl or from the ar ormally, whe closs are inc tes, and the son, the discha d at 140kgf/c n case of cylin	uid obtained by nount of fluid on the n the pipe flow reased, and, as the speed is reduced. arge flow rate on cm ² in the retracting nder retracting speed				

67

Telescopic Cylinder Reference Data

Precautions

- Do not apply load to the ram tube end at the 1st stage. Doing so may cause operation failure.
- Avoid applying side load to the piston rod when operating.
- Doing so can cause operation failure or damage to the cylinder. If side load is applied, provide guides or protect the rod end threads.
- In such case, consult KCC.
- Correctly center the piston rod axis in the load moving direction. Incomplete centering can cause operation failure and damage to the cylinder.
- In the case of mounting style TA, TB or CA, center the rotation axis and the mating mount.
- Correctly fit the mounting bracket of mounting style TA or TB as shown below.

- Ensure that the mounting block has a sufficient rigidity to prevent occurrence of deflection from the cylinder thrust force.
- Use mounting bolts of strength class of JIS8.8 or more. For the tightening torque, see the following table. Incomplete tightening can cause looseness and damage of the bolts.

Tightening Torque Table

-	-					
Thread dia.	Strength class	M8	M10	M12	M14	M16
Tightening	10.9	36	72	125	198	305
torque	8.8	25	51	89	141	216
Thread dia.	Strength class	M18	M20	M22	M24	
Tightening	10.9	420	590	800	1020	
torque	8.8	290	410	560	720	

· Take care that eccentric load is not applied to the piston rod when connecting the rod end attachment and load.

 \cdot The piston rod is made from a hollow pipe. Therefore, when fitting a rod end attachment, provide a stopper on the spigot of the thread end as shown in the figure.

Precautions for piping

Unit: N·m

· When the cylinder is used by meter-out control on the rod side(ISO type: head side), the pressure resistance of the piping (rubber hose, etc.) used and the rod side(ISO type: head side) should be three times or more higher than the max. working pressure on the cap side(ISO type: cap side).

- Before connecting the piping, flush the inside of the piping. When connecting with a rubber hose, do not bend the hose at an angle less than the specified radius.
- Take care that air is not collected in the middle of the piping.

Applications

www.kccpr.com

Specifications

						1						
	Туре	Type 10	Type 20	Туре 30	Type 40	Type 50						
Boro sizo	1 Stage	Ø63	Ø90	Ø110	Ø125	Ø140						
DUIE SIZE	2 Stage	Ø45	Ø65	Ø80	Ø90	Ø100						
Operati	ng pressure			70kgf/cm ² (7MPa)								
Max. oper	. operating pressure Rod side:150kgf/cm ² (15.3MPa) Head side:90kgf/cm ² (9.2MPa)											
Proof	f pressure	Rod side:	210kgf/cm² (21.4MPa)		Head side:140kgf/cm ² (14.3MPa)						
Min. opera	ating pressure	Rod side:6kgf/cm² (0.61MPa) Head side:3kgf/cm² (0.31MPa)										
Operating	g piston speed	10m/min	9m/min	8.4m/min	8.4m/min 7.7m/min 7.1m/min							
Min.operati	ng piston speed			0.06m/min	·							
Fluid te	emperature			-5 ~ 80 ℃ (No freezing)							
Ambient	temperature			-10 ~ 50 ℃								
Wo	rking oil			Petroleum-based fluid								
Toleran	ce of thread			KS class 2								
Toleran	ice of stroke	0~1000 ^{+2.8}	1001~1600 +3.2	1601~2500 ^{+3.6} 0	2501~3100 ^{+4.0} 0							
Mour	Mounting style LA, LT, FA, FB, CA, TA, TB											

% 60kgf/cm² is standard pressure when cylinder is in reverse operation with common speed.
% Operating pressure: Max. allowable setting pressure for a relief valve while cylinder is operating.
* Max. operating pressure: Maximum allowable pressure generated in a cylinder (surge pressure, etc.)
* Proof pressure: Test pressure a cylinder can withstand without unreliable performance when returning to operating pressure.

* Min. operating pressure: Minimum pressure for a cylinder installed horizontally and operating without load.

Mass

								Unit : kg
Basic			Μοι	unting m	nass			Additional mass
(SD)	LA	LT	TA	TB	FA	FB	CA	stroke
5.7	0.44	0.37	1.08	1.08	0.93	0.93	0.32	0.0084
15.4	1.25	1.05	3.06	3.06	2.85	2.85	0.91	0.0169
27.0	2.29	1.93	5.61	5.61	4.88	4.88	1.66	0.0212
41.4	3.52	2.22	8.64	8.64	7.43	7.43	2.56	0.0313
57.2	4.92	4.14	11.99	11.99	10.24	10.24	3.55	0.0431
	Basic mass (SD) 5.7 15.4 27.0 41.4 57.2	Basic (SD) LA 5.7 0.44 15.4 1.25 27.0 2.29 41.4 3.52 57.2 4.92	Basic (SD) LA LT 5.7 0.44 0.37 15.4 1.25 1.05 27.0 2.29 1.93 41.4 3.52 2.22 57.2 4.92 4.14	Basic (SD) Image: Constraint of the system LA Image: Constraint o	Basic (SD) LA LT TA TB 5.7 0.44 0.37 1.08 1.08 15.4 1.25 1.05 3.06 3.06 27.0 2.29 1.93 5.61 5.61 41.4 3.52 2.22 8.64 8.64 57.2 4.92 4.14 11.99 11.99	Basic (SD) LA LT TA TB FA 5.7 0.44 0.37 1.08 1.08 0.93 15.4 1.25 1.05 3.06 3.06 2.85 27.0 2.29 1.93 5.61 5.61 4.88 41.4 3.52 2.22 8.64 8.64 7.43 57.2 4.92 4.14 11.99 11.99 10.24	Basic (SD) LA LT TB FA FB 5.7 0.44 0.37 1.08 1.08 0.93 0.93 15.4 1.25 1.05 3.06 3.06 2.85 2.85 27.0 2.29 1.93 5.61 5.61 4.88 4.88 41.4 3.52 2.22 8.64 8.64 7.43 7.43 57.2 4.92 4.14 11.99 11.99 10.24 10.24	Basic (SD) LA LT TA TB FA FB CA 5.7 0.44 0.37 1.08 1.08 0.93 0.93 0.32 15.4 1.25 1.05 3.06 3.06 2.85 2.85 0.91 27.0 2.29 1.93 5.61 5.61 4.88 4.88 1.66 41.4 3.52 2.22 8.64 8.64 7.43 7.43 2.56 57.2 4.92 4.14 11.99 11.99 10.24 10.24 3.55

Calculation:

Ex) KTC70HP-FB30-A1500 Basic mass: 27.0 / Additional mass: 0.0212 / Cylinder stroke: 1,500mm / FB type: 4.88 27.0 + (0.0212 X 1500) + 4.88 = 63.68 kg

KTC70HP series

Telescopic Cylinder

Part List

Part no.	Parts	Material	Quantity
1	Tube	STKM13C	1
2	Head Cover	S45C	1
3	Rod Cover	S45C	1
4	Bush	BC3	1
5	Bush Cover	S45C	1

Part no.	Parts	Material	Quantity
6	Piston & Rod	S45C	1
7	Piston & Rod	S45C(STPG38)	1
8	Socket Bolt	SCM440	8
9	Socket Bolt	SCM440	8

Packing List

Part no.	10	11	12	13	14	15	16	17	18
Parts	DUST SEAL	R/PACKING	O-RING	DUST SEAL	R/PACKING	O-RING	O-RING & PACKING	R/PACKING	O-RING & PACKING
Material	N.B.R	N.B.R	N.B.R	N.B.R	N.B.R	N.B.R	N.B.R	N.B.R	N.B.R
Quatity Type	1	1	1	1	1	2	1	2	1
Type 10	SDR28	SKY28	G40	SDR53	SKY53	G58/G63	P39	16x24x5	P53
Type 20	SDR40	SKY40	G60	SDR75	SKY75	G85/G90	65x49x20.5	16x24x5	90x70x22.4
Туре 30	SDR45	SKY45	G75	SDR90	SKY90	G105/G110	80x60x22.4	16x24x5	110x85x22.4
Type 40	SDR53	SKY53	G85	SDR106	SKY106	G120/G115	90x70x22.4	16x24x5	125x100x25.4
Type 50	SDR60	SKY60	G95	SDR118	SKY118	G135/G140	100x75x22.4	16x24x5	140x115x22.4

Dimensions-Axial Angle of Foot (LA)

Dimensions-Base Mounting Axial Angle of Foot (LT)

Туре	А	D	DM	Е	EE	EM	FP	HK	К	KK	LI	E LH	MM	NF	NT	Р
Type 10	25	24	Ø73	98	Rc(PT)3/8	51	48	Ø21 ^{H9}	26 ⁰ _{-0.1}	M24×2	9	9 50 ^{±0}	^{.2} Ø28	18	M12	25
Type 20	35	32	Ø105	138	Rc(PT)1/2	71	67	Ø30 ^{H9}	34 ⁰ _{-0.1}	M33×2	13	9 70 ^{±0}	^{.2} Ø40	24	M16	38
Type 30	40	41	Ø125	158	Rc(PT)1/2	81	80	Ø36 ^{H9}	42 ⁰ _{-0.1}	M39×2	16	4 85 ^{±0}	^{.2} Ø45	30	M20	40
Type 40	45	46	Ø145	178	Rc(PT)3/4	92	93	Ø42 ^{H9}	47 ⁰ _{-0.1}	M45×2	18	4 95 ^{±0}	^{.2} Ø53	36	M24	45
Type 50	52	55	Ø165	196	Rc(PT)3/4	100	107	Ø49 ^{H9}	48 ⁰ _{-0.1}	M52×2	20	3 105 [±]	^{0.2} Ø60	36	M24	50
Туре	RD	SB	ST	SV	TN	TS	UA	UE	US	VD	W	WK	XS	XW	ΥP	ZB
Type 10	Ø59	Ø13.5	10	13	75	110	98	Ø89.5	130	32	13	45	93	118	13	145
Type 20	Ø84	Ø18	16	17	105	150	138	Ø129	180	43	17	60	127	162	17	200
Type 30	Ø100	Ø22	20	22	115	175	158	Ø155	210	50	20	70	150	190	20	235
Type 40	Ø112	Ø24	22	23	130	205	178	Ø177	240	57	23	80	173	218	24	270
Type 50	Ø128	Ø26	24	23	150	230	196	Ø193	270	65	25	90	197	247	25	303

Dimensions-Rod Side Flange (FA)

Dimensions-Head Side Flange (FB)

Unit : mm

	Unit min																
Туре	Α	D	DM	E	EE	EF	EK	F	FB	FC	FP	НК	K	KK	MM	Р	RD
Type 10	25	24	Ø73	98	Rc(PT)3/8	98	95	20	Ø9	Ø120	48	Ø21 ^{H9}	26 ⁰ _{-0.1}	M24×2	Ø28	25	Ø59
Type 20	35	32	Ø105	138	Rc(PT)1/2	138	136	30	Ø13.5	Ø170	67	Ø30 ^{H9}	34 ⁰ _{-0.1}	M33×2	Ø40	35	Ø84
Type 30	40	41	Ø125	158	Rc(PT)1/2	165	161	35	Ø16	Ø195	80	Ø36 ^{H9}	42 ⁰ _{-0.1}	M39×2	Ø45	40	Ø100
Type 40	45	46	Ø145	178	Rc(PT)3/4	190	183	40	Ø18	Ø225	93	Ø42 ^{H9}	47 ⁰ _{-0.1}	M45×2	Ø53	45	Ø112
Type 50	52	55	Ø165	196	Rc(PT)3/4	205	200	45	Ø20	Ø245	107	Ø49 ^{H9}	48 ⁰ _{-0.1}	M52×2	Ø60	50	Ø128

Туре	UE	UF	VA	VC	VD	VE	W	WK	YF	YP	ZB	ZF
Type 10	Ø89.5	135	14	15	32	35	13	45	17	13	145	155
Type 20	Ø129	195	21	20	43	50	17	60	23	17	200	215
Type 30	Ø155	225	25	25	50	60	20	70	32	20	235	255
Type 40	Ø177	260	28	29	57	69	23	80	32	24	270	290
Type 50	Ø193	285	31	37	65	82	25	90	33	25	303	325

Dimensions-Rod Side Trunnion (TA)

Dimensions-Head Side Trunnion (TB)

* For cylinder (stroke over 1200mm) installed in horizontal direction, please support the weight of rod side of cylinder.

																	U	nit : mm
Туре	А	BD	D	DM	E	EE	EK	FY	FP	HK	К		KK	MM	Р	RD	TD	TL
Type 10	25	31	24	Ø73	98	Rc(PT)3/8	95	43	48	Ø21 ^{H9}	26 ⁰ _{-0.1}	N	/124×2	Ø28	25	Ø59	Ø28 ^{e9}	20
Type 20	35	38	32	Ø105	138	Rc(PT)1/2	136	55	67	Ø30 ^{H9}	34 ⁰ _{-0.1}	N	//33×2	Ø40	35	Ø84	Ø35 ^{e9}	25
Type 30	40	48	41	Ø125	158	Rc(PT)1/2	161	68	80	Ø36 ^{H9}	42 ⁰ _{-0.1}	N	/139×2	Ø45	40	Ø100	Ø45 ^{e9}	30
Type 40	45	58	46	Ø145	178	Rc(PT)3/4	183	81	93	Ø42 ^{H9}	47 ⁰ _{-0.1}	N	/45×2	Ø53	45	Ø112	Ø55 ^{e9}	30
Type 50	52	63	55	Ø165	196	Rc(PT)3/4	200	93	107	Ø49 ^{H9}	48 ⁰ _{-0.}	, N	152×2	Ø60	50	Ø128	Ø60 ^{e9}	35
Туре	ТМ	TR	UE	UN	I UW	VA VA	VB	VD	VE	VU	W	WK	XC	XG	YG	YP	ZB	ZD
Type 10	100 ⁰ -0.35	, R3	Ø89.	.5 140) 95	14	16	32	35	21	13	45	150	50	32	13	145	166
Type 20	145 ⁰ _{-0.4}	R3	Ø12	9 198	5 135	i 21	20	43	50	35	17	60	205	72	43	17	200	225
Type 30	175 ⁰ _{-0.4}	R3	Ø15	5 235	5 160	25	25	50	60	37	20	70	240	82	50	20	235	265
Type 40	200 0	, R3	Ø17	7 260) 185	28	30	57	69	39	23	80	280	92	62	24	270	310
Type 50	220 ⁰ _{-0.46}	, R3	Ø19	3 290	205	31	32	65	82	47	25	90	315	104	68	25	303	347

Туре	Α	CD	D	DM	E	EE	EK	EW	FP	НК	К	KK	L	LR	MM	MR	Р
Type 10	25	Ø25 ^{H10}	24	Ø73	98	Rc(PT)3/8	95	28 ⁰ _{-0.1}	48	Ø21 ^{H9}	26 ⁰ _{-0.1}	M24×2	30	R27	Ø28	R22	25
Type 20	35	Ø35 ^{H10}	32	Ø105	138	Rc(PT)1/2	136	40 ⁰ _{-0.1}	67	Ø30 ^{H9}	34 ⁰ _{-0.1}	M33×2	45	R44	Ø40	R30	35
Type 30	40	Ø45 ^{H10}	41	Ø125	158	Rc(PT)1/2	161	50 ⁰ _{-0.1}	80	Ø36 ^{H9}	42 ⁰ _{-0.1}	M39×2	55	R54	Ø45	R38	40
Type 40	45	Ø55 ^{H10}	46	Ø145	178	Rc(PT)3/4	183	55 ⁰ _{-0.1}	93	Ø42 ^{H9}	47 ⁰ _{-0.1}	M45×2	65	R64	Ø53	R45	45
Type 50	52	Ø60 ^{H10}	55	Ø165	196	Rc(PT)3/4	200	63 ⁰ _{-0.1}	107	Ø49 ^{H9}	48 ⁰ _{-0.1}	M52×2	70	R69	Ø60	R50	50

Туре	RD	UE	VA	VD	VE	W	XC	ZC
Type 10	Ø59	Ø89.5	14	32	35	13	175	197
Type 20	Ø84	Ø129	21	43	50	17	245	275
Type 30	Ø100	Ø155	25	50	60	20	290	328
Type 40	Ø112	Ø177	28	57	69	23	335	380
Type 50	Ø128	Ø193	31	65	82	25	373	423

2 - 81