

© Copyright 2021 Nutrigenomix Inc. All rights reserved.

Parce que votre ADN est Unick

Votre alimentation devrait l'être aussi

RAPPORT DE NUTRITION ET DE CONDITION PHYSIQUE PERSONNALISÉ

Cher(e) Caroline,

Nous sommes tous dotés d'un héritage naturel Unick: Notre ADN.

Seulement, notre alimentation, notre mode de vie et notre environnement pourraient avoir des influences sur notre santé. Alors il est temps que nous nous prenions en main et agissions en prévention. Be-Unick est là pour vous soutenir et vous outiller afin que vous puissiez influencer positivement l'expression de vos gènes par votre alimentation et un mode de vie sain basés sur des recommandations personnalisées.

Be-Unick a le plaisir de vous présenter votre rapport de nutrition et de performance physique personnalisé en fonction de l'analyse de votre ADN.

Dans ce rapport, vous trouverez des informations sur vos variantes génétiques en ce qui concerne votre métabolisme des nutriments, votre santé cardio- métabolique, votre gestion de poids et composition corporelle, des intolérances et sensibilités alimentaires, vos habitudes alimentaires, ainsi que votre performance sportive et votre risque de blessures. Il s'agit ici de vous informer afin que vous puissiez agir en prévention et laisser éclore votre potentiel humain.

Soutenu par Nutrigenomix, Be-Unick vous permet ainsi de recevoir des recommandations adaptées Unickement à vous, à votre ADN puisqu'au fond nous sommes tous Unick.

Parce que votre ADN est Unick, Votre alimentation devrait l'être aussi.

Alors soyez Unick, le meilleur est en vous!

gaëlle Yossa

Dr. Gaëlle NGAHA YOSSA MD, DESS Nutrition humaine fondamentale et appliquée, MBA Fondatrice de Be-Unick Inc

Numéro d'échantillon: 1515110000049 Date du rapport : September 22, 2021

La science derrière Be-Unick

« La nourriture de l'un est le poison de l'autre » — Lucrèce

La nutrition est l'un des facteurs liés aux habitudes de vie qui influence le plus le risque de développer certaines maladies; son impact sur le bien-être est significatif. En outre, on découvre de plus en plus l'importance de l'influence de nos gènes sur notre état nutritionnel et, conséquemment, sur notre santé. Le génome humain est constitué d'environ 25 000 gènes dont la forme peut varier entre les individus, faisant de nous tous des êtres uniques. Ces variations génétiques déterminent entre autre la couleur de nos yeux et de nos cheveux, mais elles caractérisent aussi la façon dont les nutriments que nous mangeons sont métabolisés et utilisés. La nutrigénomique, c'est la science qui étudie cette relation entre les gènes, la nutrition et la santé grâce à l'information génétique et aux technologies de pointe. Le terme « nutrigénomique » réfère à la fois à la façon dont les aliments et les suppléments que nous consommons influent sur nos gènes, et à la façon dont nos gènes peuvent influencer nos réactions à ce que nous mangeons.

Différentes versions d'un gène peuvent nous amener à réagir différemment à certaines composantes alimentaires comme par exemple le lactose du lait, le gluten du pain, la caféine du café. Notre réponse aux glucides, matières grasses, protéines, vitamines et minéraux ainsi que notre comportement alimentaire peuvent également être différents selon notre profil génétique. Nous connaissons tous par exemple des gens qui ne tolèrent pas le lactose ou ne peuvent pas consommer de gluten. Ces sensibilités alimentaires, qui diffèrent d'une personne à l'autre, peuvent habituellement être expliquées par des variations génétiques dans la population. Grâce à la science et la recherche, nous avons appris que les différences génétiques au sein de la population et entre les individus affectent grandement la réponse à une variété de facteurs-clés de la nutrition humaine. Par exemple, certains individus pourraient avoir avantage à limiter leur consommation de caféine ou augmenter leur apport en oméga-3, alors que d'autres pourraient se contenter de suivre les recommandations générales pour l'un ou l'autre de ces nutriments. La diète optimale pour vous dépend donc du type de variants que vous possédez pour ces gènes reliés aux nutriments. Comprendre votre profil génétique et ses recommandations sur votre propre réponse individuelle aux aliments, boissons et suppléments vous fournira les outils nécessaires pour faire les meilleurs choix alimentaires possibles.

La science de la nutrigénomique nous permet de tirer plein avantage de la nutrition pour améliorer notre santé et notre performance. Une telle alimentation personnalisée peut optimiser le statut nutritionnel d'un individu et lui donner la motivation de se concentrer sur des moyens de prévenir les maladies ou conditions reliées à l'alimentation. Une diète saine et équilibrée devrait pouvoir fournir suffisamment d'énergie et de nutriments pour permettre une santé optimale, une réduction du risque de maladie et un maintien d'un poids-santé. Quoique le fait de suivre les recommandations générales en matière de nutrition puisse s'avérer prudent, cette approche 'one-size-fits-all' en matière de recommandations alimentaires pourrait limiter certains individus à atteindre un capital de santé et de bien-être optimal. En s'ajustant plus précisément aux besoins alimentaires d'un individu en fonction de son profil génétique, il est possible de maximiser les impacts d'une saine nutrition sur la santé.

Table des matières

Résumé des résultats	
Votre apport alimentaire basé sur votre ADN:	
Recommandations diététiques	
LE MÉTABOLISME DES NUTRIMENTS	
La vitamine A	
La vitamine B ₁₂	
La vitamine C	
La vitamine D	1
La vitamine E	1
Le folate	1
La choline	1
Le calcium	1
Surcharge en fer	1
Carence en fer	
INTOLÉRANCES ET SENSIBILITÉS ALIMENTAIRES	
Le lactose	1
Le gluten	2
Le caféine et anxiété	2
LA SANTÉ CARDIOMÉTABOLIQUE	
	0
La caféine pour la santé cardiometabolique	
Les grains entiers	
Le sodium	
Oméga-6 et oméga-3	2
Activité physique pour la santé cardiométabolique	2

LA GESTION DU POIDS ET LA COMPOSITION CORPORELLE	
Activité physique pour la gestion du poids	28
Le bilan énergétique	29
Les protéines	30
Les lipides totaux	31
Les graisses saturées	32
Les graisses saturées et insaturées	33
Les graisses mono-insaturées	34
LES HABITUDES ALIMENTAIRES	
La perception du goût du gras	35
La préférence pour le sucré	36
Grignoter entre les repas	37
PHYSIOLOGIE DE L'EXERCICE, FORME PHYSIQUE ET RISQUE DE BLESSURES	
La motivation pour faire de l'exercice	38
Les comportements liés à l'exercice	39
Puissance et force physique	40
L'endurance	41
Dommages musculaires	42
La douleur	43
Densité osseuse	44
Les blessures au tendon d'Achille	45
Faits saillants additionnels en lien avec la génétique, la santé et le bien-être	46
Le conseil consultatif scientifique de Nutrigenomix	48

Résumé des résultats

Le métabolisme des nutriments

Composant Alimentaire	Gène, numéro rs	Variant à risque	Votre variant	Votre risque	Recommandation
Vitamine A	BCMO1, rs11645428	GG	GG	Élevé	Consommez des aliments riches en vitamine A préformée.
Vitamine B ₁₂	FUT2, rs601338	GG ou GA	GA	Élevé	Consommez des aliments riches en vitamine B12 biodisponible.
Vitamine C	GSTT1, rs2266633	Del	Ins	Typique	Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en vitamine C quotidiennement.
Vitaraina D	CYP2R1, rs10741657	A lawa with the care	GA	Élevé	Consommez 1000 IU (25 mcg) de vitamine D par
Vitamine D	GC, rs2282679	Algorithme	GG	Eleve	jour.
Vitamine E	COMT, rs4680	GG	GA	Typique	Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en vitamine E quotidiennement.
Folate	MTHFR, rs1801133	CT ou TT	П	Élevé	Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en folate quotidiennement.
Choline	MTHFD1, rs2236225	Algorithme	GG	Élevé	Assurez-vous de combler des sources de choline en
GHOIIITIE	PEMT, rs12325817	Algoritriirie	CG	Lieve	quantité suffisante.
Calcium	GC, rs7041	Algorithme	TG	Élevé	Consommez 1200 mg de calcium par jour.
Calcium	GC, rs4588	Algorithme	CA	Lieve	Consommez 1200 mg de calcium pai jour.
	SLC17A1, rs17342717		CC		
Surcharge en fer	HFE, rs1800562	Algorithme	GG	Faible	Suivez les recommandations fournies dans la section « carence en fer ».
	HFE, rs1799945		CC		
	TMPRSS6, rs4820268		GA		Suivez les recommandations du Guide alimentaire
Carence en fer	TFR2, rs7385804	Algorithme	CA	Élevé	canadien pour atteindre l'ANR en fer et consommez des aliments riches en vitamine C en même temps que les aliments riches en Fer.
	TF, rs3811647		AA		que les all Herris Hories et l'ét.

Intolérances et sensibilités alimentaires

Composant Alimentaire	Gène, numéro rs	Variant à risque	Votre variant	Votre risque	Recommandation							
Lactose	MCM6, rs4988235	CC ou CT	СТ	Un peu élevé	Limitez votre consommation de produits laitiers.							
	HLA, rs2395182	Algorithms	GT	GT								
	HLA, rs7775228		СТ									
Gluten	HLA, rs2187668			СТ	СТ	СТ	CT	СТ	CT	CT	СТ	СТ
Gluten	HLA, rs4639334	- Algorithme	GG	Moyen	Un risque moyen d'intolérance au gluten.							
	HLA, rs7454108		Π									
	HLA, rs4713586		AA									
Caféine	ADORA2A, rs5751876	TT	СТ	Typique	Suivez les recommandations pour la caféine dans la section CYP1A2 de votre rapport.							

La santé cardiométabolique

Composant Alimentaire	Gène, numéro rs	Risque/ réponse variant	Votre variant	Votre risque/ réponse	Recommandation
Caféine	CYP1A2, rs2472300	GA ou AA	AA	Élevé	Limitez votre consommation de caféine à 200 mg par jour.
Grains entiers	TCF7L2, rs12255372	TT ou GT	GT	Élevé	Consommez la majorité de vos produits céréaliers à grains entiers.
Sodium	ACE, rs4343	GA ou AA	AA	Élevé	Limitez votre consommation de sodium à 1500 mg par jour.
Acides gras oméga-3 et oméga-6	FADS1, rs174547	CC ou CT	Π	Typique	Rencontrez les Apports quotidiens recommandés pour les oméga-6 (LA) et oméga-3 (ALA).
Activité physique	LIPC, rs1800588	TT ou CT	СТ	Augmenté	Visez 150-300 minutes de cardio et au moins 2 jours/semaine d'activités de renforcement musculaire.

PAGE 2

La gestion du poids et la composition corporelle

Composant Alimentaire	Gène, numéro rs	Variant à risque	Votre variant	Votre risque	Recommandation
Activité	FTO, rs9939609	Algorithme	AA	- Augmenté	Visez 30 à 60 minutes par jour d'exercices cardio six jours par semaine et au moins deux jours par semaine
physique	ADRB2, rs1042713	Algoritrime	GG	Augmente	d'activités de renforcement musculaire.
Energie	UCP1, rs1800592	GG ou GA	GA	Réduit	Si vous souhaitez perdre du poids, visez un déficit énergétique quotidien de 10-20% des calories recommandées, et un déficit additionnel de 150 kcal.
Protéines	FTO, rs9939609	AA	AA	Augmenté	Consommez un apport en protéines entre 25-35% de votre apport énergétique total.
Lipides totaux	TCF7L2, rs7903146	П	CC	Typique	Consommez un apport en lipides entre 20-35% de votre apport énergétique total.
Graisses saturées	APOA2, rs5082	CC	TC	Typique	Limitez votre apport en graisses saturées à 10% au plus de votre apport énergétique total.
Graisses saturées et insaturées	FTO, rs9939609	TA ou AA	AA	Augmenté	Limitez votre apport en graisses saturées à 10% au plus de votre apport énergétique total avec au moins 5% provenant des graisses poly-insaturées.
Graisses mono-insaturées	PPARy2, rs1801282	GG ou GC	CC	Typique	Maintenez un équilibre des graisses saturées, mono- insaturées et poly-insaturées.

Les habitudes alimentaires

Composant Alimentaire	Gène, numéro rs	Risque/ réponse variant	Votre variant	Votre risque/ réponse	Recommandation	
Perception du goût du gras	CD36, rs1761667	GG ou GA	AA	Typique	Votre perception du gras est typique.	
Préférence pour le sucré	GLUT2, rs5400	CT ou TT	СТ	Élevé	Vous avez une forte préférence pour le sucré.	
Grignoter entre les repas	MC4R, rs17782313	CC ou CT	TT	Typique	Votre tendance à grignoter entre les repas est typique.	

Physiologie de l'exercice, forme physique et risqué de blessures

Composant Alimentaire	Gène, numéro rs	Risque/ réponse variant	Votre variant	Votre risque/ réponse	Recommandation
Motivation pour faire de l'exercice	BDNF, rs6265	AA ou AG	AA	Augmenté	Vous avez une motivation intrinsèque accrue pour faire de l'exercice.
Comportements	CYP19A1, rs2470158	A long with the second	GG	Tuninus	Vous avez une propension typique à faire de
liés à l'exercice	LEPR, rs12405556	Algorithme	GT	Typique	l'activité physique.
Puissance et force physique	ACTN3, rs1815739	TC ou CC	CC	Ultra	Vous avez un avantage génétique aux sports de puissance.
	NFIA-AS2, rs1572312		CC		
	ADRB3, rs4994		П		
Endurance	NRF2, rs12594956	Algorithme	CA	Typique	Votre potentiel d'endurance est typique.
	GSTP1, rs1695		AG		
	PGC1a, rs8192678		AA		
Dommages musculaires	ACTN3, rs1815739	TC ou TT	CC	Typique	Assurez-vous de bien faire les exercices de réchauffement et de récupération après l'effort.
Douleur	COMT, rs4680	GG ou GA	GA	Augmenté	Vous avez une tolérance augmentée à la douleur.
Densité osseuse	WNT16, rs2707466	TC ou CC	TC	Élevé	Vous avez un risqué élevé de faible densité osseuse.
Blessure au tendon d'Achille	COL5A1, rs12722	CT ou TT	CC	Typique	Vous avez un risque typique de blessure au tendon d'Achille.

PAGE 4 PAGE 5

Votre apport alimentaire basé sur votre ADN: Recommandations diététiques

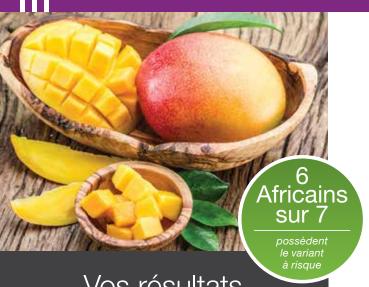
Composant alimentaire	Votre apport alimentaire estimé par jour¹	Votre ADN recommandations par jour (pour le maintien du poids) ²	Votre ADN recommandations par jour (pour perdre du poids)²	
Bilan énergétique³	2910 kcal	1968 kcal	1650 kcal	
		Les glucides		
Glucides	243 g	148-271 g	124-227 g	
Sucre ajouté	47 g	<25 g	<21 g	
Grains entiers (proportion de grains consommé sous forme de grains entiers)	~31 %	>75 %	>75 %	
		Les protéines		
Protéines	118 g	123-172 g	103-144 g	
		Graisses		
Lipides totaux ⁴	149 g	44-77 g	37-64 g	
Graisses saturées	43 g	<17-22 g	<14-18 g	
Graisses mono-insaturées	63 g	14-25 g	12-21 g	
Graisses polyinsaturées	31 g	13-14 g	11 g	
Oméga-3 Alpha-linolénique Acide (ALA)	2.3 g	1.7-2.6 g	1.5-2.2 g	
Oméga-6 Acide linoléique (AL)	25 g	<10.9 g	<9.2 g	

Composant alimentaire	Votre apport alimentaire estimé par jour ¹	Votre ADN recommandations par jour²
	Micronu	triments
Vitamine A	1235 mcg	700 mcg
Vitamine B ₁₂	4.2 mcg	2.4 mcg
Vitamine C⁵	40 mg	75 mg
Vitamine D	489 IU	1000 IU
Vitamine E	Vitamine E 25 IU 22 IU	
Folate	274 mcg	400 mcg
Choline	485 mg	425 mg
Fer ⁶	11 mg	18 mg
Calcium	1248 mg	1200 mg
Sodium ⁷	odium ⁷ 4372 mg <1500 mg	
	La ca	aféine
Caféine	353 mg	<200 mg
	Le la	ctose
Lactose	23 g	Voir la section sur l'intolérance au lactose

¹ Vos niveaux d'apport actuels ont été calculés à partir de vos réponses à l'évaluation alimentaire que vous avez effectuée en ligne. Notez que les apports en nutriments reflètent uniquement ceux provenant des sources d'aliments et de boissons (pas des apports de suppléments).

PAGE 6

² Vos recommandations basées sur l'ADN sont basées sur les résultats de vos tests ADN et des recommandations personnalisées dans ce rapport.


³ Votre apport énergétique total ne doit pas descendre en dessous de 1200 kcal par jour afin de maintenir un apport adéquat en nutriments.

⁴ Les graisses totales reflètent les apports en acides gras saturés, monoinsaturés, polyinsaturés, trans et autres.

⁵ Les personnes qui fument des cigarettes ont besoin de 35 mg supplémentaires de vitamine C par jour.

⁶ Si votre risque de surcharge en fer est moyen ou élevé, veuillez consulter les recommandations de la section surcharge en fer du rapport.

⁷ Si vous transpirez fréquemment abondamment pendant l'exercice, provoquant des pertes de sodium, vos besoins en sodium peuvent être plus élevés.

Gène	Numéro rs
BCMO1	rs11645428
Variant à risque	Votre variant
GG	GG

Votre risque

Élevé

seulement lorsque l'apport en vitamine A est

Recommandation

Puisque vous possédez le génotype GG du gène BCMO1, il est très important de combler l'ANR en vitamine A. Vous devriez consommer des aliments riches en vitamine A préformée tels que le poisson, le foie, les œufs et les produits laitiers. Combler l'ANR en vitamine A aidera à soutenir la vision, le système immunitaire et la santé reproductive. De plus, la vitamine A fonctionnera comme un antioxydant lorsqu'elle est consommée sous forme de béta-carotène. L'apport nutritionnel recommandé (ANR) pour la vitamine A est de 700 mcg EAR par jour pour les femmes et 900 mcg EAR par jour pour les

Consommez des aliments riches en vitamine A préformée.

La vitamine A (bêta-carotène)

La vitamine A est une vitamine liposoluble qui est importante pour la vision, le système immunitaire et la santé reproductive. Le bêta-carotène est un précurseur de la forme active de la vitamine A (aussi appelée rétinol) et un antioxydant présent dans les fruits et les légumes de couleur rouge ou orange. Le bêta-carotène peut être converti en rétinol dans le corps pour exercer ses fonctions biologiques. Une étude* a démontré que les personnes ayant le variant GG du gène BCMO1 peuvent moins efficacement transformer le bêtacarotène en vitamine A. Par conséquent, ces individus doivent consommer des aliments riches en vitamine A préformée pour soutenir ces fonctions.

*Lietz G et al. Single nucleotide polymorphisms upstream from the b-carotene 15,15'-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. Journal of Nutrition. 2012;142:161S-5S.

BCMO₁

Le béta-carotène mono-oxygénase 1 (BCMO1) est un enzyme qui joue un rôle essentiel dans la transformation du béta-carotène en vitamine A. Ceux ayant le variant GG du gène BCMO1 peuvent moins efficacement transformer le bêta-carotène en vitamine A et donc, doivent consommer une quantité suffisante de vitamine A, surtout de vitamine A préformée.

Sources alimentaires de vitamine A

	Riche en vitamine A préformée	Teneur (mcg EAR)
100 g de foie d'agneau bouilli	✓	6 020
100 g de abats de poulet, braisés	✓	4 730
470 g de mangue crue (1 fruit moyen)		1 847
100 g de anguille grillée	✓	1 084
½ tasse de citrouille, en conserve		1 010
100 g de poudre de tomate		862
1 c. à soupe de huile de palme rouge		778
½ tasse de carottes, cuites		650
½ patate douce (taille moyenne) bouillie sans peau		600
75 g de thon rouge	✓	530
½ tasse d'épinards, bouillis		500
½ tasse de courge musquée		410
50 g de fromage de chèvre, dur	✓	240
2 gros oeufs	✓	220
75 g de maquereau	✓	190

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) et les diététistes du Canada: Sources alimentaires de vitamine A

Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

La vitamine B₁₂

La vitamine B₁₂ (cobalamine) est essentielle au fonctionnement normal du cerveau et du système nerveux. De plus, elle est indispensable à la formation des globules rouges et prévient l'anémie mégaloblastique dont les symptômes incluent la fatigue, la faiblesse et la pâleur de la peau. Une étude* a démontré que le risque de carence en vitamine B₁₂ dépend du gène FUT2. Puisque les produits d'origine animale sont riches en vitamine B₁₂, les personnes qui font le choix d'une alimentation végétale présentent un risque élevé de carence en vitamine B₁₂.

*Hazra A et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nature Genetics 2008 Oct;40(10):1160-2.

FUT2

La fucosyltransférase 2 (FUT2) est une enzyme codée par le gène fucosyltransférase 2 et joue un rôle dans l'absorption de la vitamine B₁₂ et son transport entre les cellules. Certains variants de ce gène ont été liés à de faibles taux sanguins de vitamine B₁₂, surtout dans les végétariens. Néanmoins, la consommation suffisante de vitamine B₁₂ peut réduire le risque de carence en vitamine B₁₂ pour les individus avant le variant à risque.

Sources alimentaires de vitamine B₁₂

	Teneur (mcg)
100 g de foie de bœuf bouilli	111,0
100 g de foie d'agneau bouilli	81,9
5 grosses palourdes, bouillies ou cuites à la vapeur	59,0
100 g de escargot/buccin bouilli	18,1
6 huîtres moyennes, bouillies ou cuites à la vapeur	14,7
100 g de sardine, grillée	14,3
75 g de hareng atlantique	14,0
2 oeufs de poule, séché (30 g)	2,2
75 g de bœuf haché, maigre	2,2
1 tasse de boisson à base de plantes	2,2
75 g de saumon de l'Atlantique	2,1
75 g d'agneau	1,7
2 oeufs, cuits durs	1,1

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) et http://nutritiondata.self.com Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gène	Numéro rs	
FUT2	rs601338	
Variant à risque	Votre variant	
GG ou GA	GA	

Votre risque

Élevé

seulement lorsque l'apport en vitamine B12 est faible

Recommandation

Puisque vous possédez le variant GG ou GA du gène FUT2, vous avez un risque élevé de carence en vitamine B12. Il est donc important pour vous de respecter la RDA pour la vitamine B12 de 2,4 mcg par jour. Vous devriez vous concentrer sur la consommation d'aliments avec une biodisponibilité élevée de vitamine B12 (aliments contenant une forme de vitamine B12 que votre corps utilise plus efficacement). La viande et les produits de la pêche ont une biodisponibilité plus élevée que les œufs ou les sources végétales de vitamine B12, y compris les produits à base de soja ou les laits végétaux enrichis et les substituts de viande. Si vous suivez un régime végétarien ou végétalien, vous courez un risque encore plus grand de carence en vitamine B12 et en fonction de vos choix alimentaires, un supplément peut être justifié.

> Consommez des aliments riches en vitamine B12 biodisponible.

Numéro rs	
Ins ou Del	
Votre variant	
Ins	

Votre risque

Typique

Recommandation

Puisque vous possédez le variant Ins de GSTT1, le risque de carence en vitamine C n'est pas accru. Par conséquent, vos besoins en vitamine C seront satisfaits en suivant les recommandations du Guide alimentaire canadien. L'apport nutritionnel recommandé (ANR) pour la vitamine C est de 75 mg par jour pour les femmes, et 90 mg par jour pour les hommes. On recommande un supplément de 35 mg par jour pour les fumeurs. Les agrumes (fruits ou jus), les fraises, les tomates, les poivrons rouges et verts, le brocoli, les pommes de terre, les épinards, le chou-fleur et le chou sont des exemples d'aliments riches en vitamine C. La vitamine C peut également être consommée sous forme de suppléments et se retrouve dans la plupart des multivitamines.

Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en vitamine C quotidiennement.

La vitamine C

La vitamine C est un nutriment essentiel que l'organisme ne peut obtenir que par l'alimentation. Il existe une association entre un faible taux sanguin de vitamine C et l'augmentation du risque de maladies cardiovasculaires, de diabète de type 2 et de cancer. De plus, la recherche a démontré qu'à consommation égale de vitamine C, les quantités de vitamine C absorbées varient entre les individus. En effet, certains assimilent la vitamine C moins efficacement que d'autres, augmentant ainsi leur risque de carence en vitamine C. Deux études récentes* ont démontré que l'efficacité d'absorption de la vitamine C dépend du gène GSTT1.

*Cahill LE et al. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. American Journal of Clinical Nutrition. 2009;90:1411-7.

Horska A et al. Vitamin C levels in blood are influenced by polymorphisms in glutathione S-transferases.

Furnagean, Journal of Nutrition. 2011:50:437-48.

GSTT1

Le gène GSTT1 produit une protéine de la famille d'enzymes glutathion S-transférase. Ces enzymes jouent un rôle primordial dans l'utilisation de la vitamine C. Il existe deux variants du gène GSTT1 : le variant insertion (« Ins ») est pleinement fonctionnel alors que le variant délétion (« Del ») diminue la capacité de l'organisme à métaboliser la vitamine C. Les différentes versions du gène interagissent pour influencer l'utilisation de la vitamine C par l'organisme. Donc, un individu possédant le variant Del aura une concentration sanguine de vitamine C moins élevée qu'un individu possédant le variant Ins, même si les deux consomment une quantité identique de vitamine C.

Sources alimentaires de vitamine C

	Teneur (mg)
86 g de goyave, pelée crue (1 fruit moyen)	298
100 g de chou déshydraté, cru	261
100 g de fruit baobab, cru	247
100 g de fruit acridien, cru	234
1 poivron rouge	216
100 g de feuilles de courge cannelées, fraîches, matures	209
1 tasse de fraises	96
1 tasse d'ananas	92
1 tasse de brocoli	82
1 pamplemousse	78
1 mangue	75
1 kiwi	70
100 g de feuilles de Moringa, bouillies	69

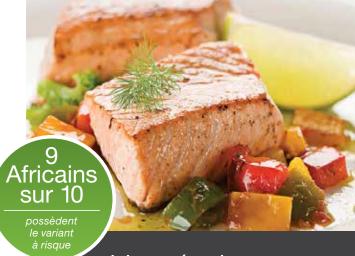
Source: Le Fichier canadien sur les éléments nutritifs et USDA Nutrient Database Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

La vitamine D

La vitamine D est indispensable pour l'assimilation du calcium et contribue aux fonctions cellulaires du corps. La vitamine D est synthétisée au niveau de la peau sous l'action des rayons UVB ou peut être apportée par l'alimentation.

Une carence en vitamine D peut avoir pour conséquence des faiblesses musculaires, des os fragiles et un déficit immunitaire. Une carence en vitamine D à vie est aussi associée avec un déficit cognitif, un risque de maladies auto-immunes, cardio-vasculaires et neurodégénératives. On peut diagnostiquer une carence en vitamine D en mesurant les taux sanguins de 25-hydroxy vitamine D. De plus, des découvertes scientifiques* démontrent que le risque de carence dépend des variations du gène CYP2R1 et GC.

*Slater NA et al. Genetic Variation in CYP2R1 and GC Genes Associated With Vitamin D Deficiency Status. Journal of Pharmacy Practice. 2015:1-6. Wang TJ et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180-88.


CYP2R1 & GC

Le gène CYP2R1 produit l'enzyme 25-hydroxylase, qui stimule la production de la forme active de la vitamine D à partir de son précurseur tandis que le gène GC produit la protéine de liaison de la vitamine D, qui se fixe à la protéine et la transporte aux tissus. Un lien a été établi entre des variant de ces gènes et l'augmentation du risque de faible concentration sanguine en vitamine D.

Sources alimentaires de vitamine D

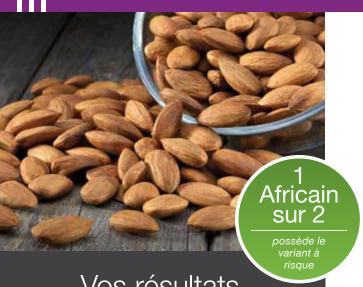
	Teneur (IU)
1 c. à soupe de huile de foie de morue	1 360
100 g de carpe, grillée	1 144
100 g de hareng fumé	1 000
75 g de saumon rouge	680
75 g de poisson blanc	448
2 oeufs de poule, séché (30 g)	368
½ cannette de sardines, en conserve à l'huile	254
40 g de saumon fumé	168
75 g de flétan	144
1 tasse de boisson à base de plantes	124
1 tasse de lait	104
½ tasse de jus d'orange, enrichi de vitamine D	50

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gènes	Numéro rss
CYP2R1 GC	rs10741657 rs2282679
Variant à risque	Votre variants
Algorithme	GA GG

Votre risque


Élevé

seulement lorsque l'apport en vitamine D est

Recommandation

Puisque vous possédez le variant GG ou GA de CYP2R1 et/ou le variant GG de GC, le risque de carence en vitamine D est accru. Par conséquent, il est très important que vous suiviez les recommandations du Guide alimentaire canadien. L'apport nutritionnel recommandé (ANR) pour la vitamine D est de 600-1000 IU (15-25 mcg) par jour afin de diminuer les risques de carence, maintenir et/ou améliorer la santé des os, la fonction cognitive, musculaire et immunitaire et la santé cardiovasculaire. Il peut être difficile d'obtenir un apport suffisant en vitamine D par l'alimentation et donc, la supplémentation peut être indiquée. Par contre, ne dépassez pas 2000 IU (50 mcg) par jour sans la surveillance de vos taux sanguins de vitamine D.

Consommez 1000 IU (25 mcg) de vitamine D par jour.

Gène	Numéro rs	
COMT	rs4680	
Variant à risque	Votre variant	
variant a risque	votre variant	
GG	GA	

Votre risque

Typique

Recommandation

Puisque vous possédez la variante AA ou GA du gène COMT, les recherches actuelles montrent qu'il n'y a pas de risque de cancer élevé associé à une supplémentation en vitamine E. En fait, ceux qui possèdent la variante AA du gène COMT ont un risque de cancer légèrement inférieur lorsqu'ils prennent des suppléments de vitamine E. Cependant, comme une dose efficace et sûre de vitamine E sous forme de suppléments n'a pas encore été établie pour la protection contre le cancer, il est recommandé d'augmenter les apports d'aliments riches en vitamine E. Par conséquent, tentez de combler l'ANR en vitamine E de 15 mg par jour (21 UI / jour) par le biais de sources alimentaires uniquement. Les bonnes sources alimentaires de vitamine E comprennent les amandes, les graines de tournesol, l'huile de tournesol, les noisettes et l'huile de pépins de raisin. Consultez votre fournisseur de soins de santé avant de prendre des suppléments contenant de la vitamine E.

Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en vitamine E quotidiennement.

La vitamine E

La vitamine E est un antioxydant liposoluble essentiel pour construire un système immunitaire fort et soutenir la santé de la peau et des yeux, et elle peut également aider à réduire le risque de maladies cardiovasculaires. La plupart des huiles végétales, comme l'huile de tournesol, de canola et de lin, sont de bonnes sources de vitamine E. Les noix et les graines sont également d'excellentes sources. Compte tenu de ses propriétés antioxydantes, le rôle de la supplémentation en vitamine E dans la prévention du cancer a suscité beaucoup d'intérêt. Alors que certaines études ont démontré un effet protecteur de la supplémentation en vitamine E sur le risque de cancer, d'autres ont signalé un risque accru avec une supplémentation en vitamine E plus élevée. La divergence des résultats entre les études peut être en partie liée à des variantes génétiques qui modifient le risque associé à la supplémentation en vitamine E.* Les scientifiques ont signalé qu'une variante génétique de COMT pourrait modifier le risque associé à la supplémentation en vitamine E.

*Hall KT et al. COMT and Alpha-Tocopherol Effects in Cancer Prevention: Gene-Supplement Interactions in Two Randomized Clinical Trials. J Natl Cancer Inst. 2019 doi: 10.1093/jnci/djy204

COMT

Le gène COMT produit une enzyme appelée catéchol-O-méthyltransférase, qui aide à détoxifier à la fois les substances produites par le corps et les composés environnementaux tels que les médicaments et les toxines nocives. Les variations du gène COMT ont un impact sur l'activité enzymatique de COMT, et la recherche montre que cette variation génétique peut modifier la façon dont les individus réagissent à la supplémentation en vitamine E en ce qui concerne le risque de cancer. Parmi les personnes possédant le variant GG, un risque de cancer légèrement accru a été observé avec une supplémentation en vitamine E par rapport au placebo. En revanche, les personnes possédant le variant GA ne présentaient aucun risque ni avantage, et les personnes possédant le variant AA avaient un risque de cancer légèrement réduit après une supplémentation en vitamine E.

Sources alimentaires de vitamine E

	Teneur (mg)
100 g de feuilles de niébé, séchées	15.0
1/4 tasse d'amandes	9,3
1/4 tasse de graines de tournesol, grillées	8,5
1 c. à soupe d'huile de tournesol	5,7
100 g de souchet (ou amande de gland de terre), bouilli	5.6
1/4 tasse de noisettes grillées à sec	5,2
½ avocat	4,0
2 c. à soupe de beurre d'arachide	2,9
1/4 tasse d'arachides grillées à sec	2,6
1 c. à soupe d'huile de canola	2,4
1 c. à soupe d'huile de palme fraîche	2.2
2 gros oeufs	1,0

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria

Le folate

Le folate est une vitamine B hydrosoluble essentielle à la croissance et au développement cellulaire. Un lien a été établi entre une concentration sanguine faible en folate et l'augmentation du risque de maladies cardiaques et d'accidents cérébrovasculaires (ACV). La recherche a aussi démontré qu'à consommation égale, la quantité de folate absorbée peut varier entre les individus. De plus, certains individus utilisent le folate alimentaire avec peu d'efficacité et, par conséquent, sont exposés à un risque plus élevé de carence en folate. Deux études* ont démontré que l'efficacité d'absorption du folate alimentaire dépend d'un gène appelé MTHFR.

*Solis C et al. Folate Intake at RDA Levels Is Inadequate for Mexican American Men with the Methylenetetrahydrofolate Reductase 677TT Genotype. Journal of Nutrition. 2008;138:67-72. Guinotte CL et al. Methylenetetrahydrofolate Reductase 677C T Variant Modulates Folate Status Response to Controlled Folate Intakes in Young Women. Journal of Nutrition. 2003;133:1272-1280.

MTHFR

Le gène MTHFR produit la méthylènetétrahydrofolate réductase (MTHFR), une enzyme essentielle à l'utilisation du folate par l'organisme. L'enzyme MTHFR convertit le folate alimentaire en une forme active du nutriment, le rendant utilisable par les cellules de l'organisme. Les variants du gène MTHFR déterminent la facon dont les individus utilisent le folate alimentaire. L'activité enzymatique de la MTHFR est réduite chez les individus possédant les variants CT ou TT du gène en comparaison avec les individus ayant le variant CC. Ils sont ainsi exposés à un risque de carence en folate plus élevé lorsque leur apport alimentaire en folate

Sources alimentaires de folate

	Teneur (mcg)
100 g de foie de poulet, braisé	746
100 g de feuilles de baobab, séchées	364
¾ tasse de lentilles, cuites	265
100 g de feuilles de morelle noires (africaines), cueillies, bouillies	192
½ tasse d'épinards, cuits	130
6 asperges	128
¾ tasse de pois chiches	119
100 g de feuilles de Moringa, bouillies	108
¾ tasse de haricots noirs	108
½ tasse de artichaut, bouilli	106
1 tasse de chou frisé, cru	100
100 g de fèves, bouillies	85
100 g de maïs vert (blanc), cuit	81
½ avocat	81
100 g de betterave, cuite	73

Source: Le Fichier canadien sur les éléments nutritifs et la National Nutrient Database de l'USDA Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gène	Numéro rs
MTHFR	rs1801133
Variant à risque	Votre variant
CT ou TT	П

Votre risque

Élevé

seulement lorsque l'apport en folate est faible

Recommandation

Puisque vous possédez le variant TT ou CT du gène MTHFR, un apport faible en folate accroît le risque de carence. Assurez-vous d'atteindre au minimum l'apport nutritionnel recommandé (ANR) de 400 mcg en folate tous les jours afin de réduire le risque de carence. Les lentilles, les haricots communs, noirs et blancs, les gombos, les asperges, les épinards et les légumes verts feuillus sont naturellement riches en folate. Les céréales prêtes à manger, le pain et les produits de boulangerie enrichis sont également de bonnes sources de folate. Le folate peut aussi être consommé sous forme de suppléments.

Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en folate quotidiennement.

Gène	Numéro rss
MTHFD1 PEMT	rs2236225 rs12325817
Maniarat Sariarana	Valuensiante
Variant à risque	Votre variants
Algorithme	GG CG

Votre risque

Élevé

seulement lorsque la choline alimentaire est faible

Recommandation

Puisque vous possédez une ou plusieurs des variantes à risque, vous avez un risque plus élevé de carence en choline si votre apport en choline est faible. Par conséquent, il est important de combler les apports suffisants (AS) de 425 mg/ jour pour les femmes ou de 550 mg / jour pour les hommes. Ne dépassez pas l'apport maximal tolérable (AMT) de 3,5 g / jour. Les aliments riches en choline comprennent la viande, la volaille, les produits laitiers et les œufs, ainsi que les légumineuses, le brocoli, les choux de Bruxelles et le quinoa. De plus, le fait de vous assurer que votre apport en folates est conforme aux recommandations alimentaires en folates contribue à réduire votre risque de carence en choline (reportez-vous à la section sur les folates pour vos recommandations spécifiques).

Assurez-vous de combler des sources de choline en quantité suffisante.

La choline

La choline joue de nombreux rôles dans le corps. Ce nutriment essentiel est impliqué dans de multiples voies métaboliques et est nécessaire à la production d'acétylcholine, un neurotransmetteur impliqué dans la mémoire, l'humeur et le contrôle musculaire. La choline se trouve dans toutes les cellules du corps, fournissant un composant structurel vital aux membranes cellulaires. La choline peut également avoir un impact sur le développement précoce du cerveau et réguler l'expression des gènes (processus par lequel la séquence d'ADN d'un gène est synthétisée sous sa forme protéique). Bien qu'une partie de la choline soit produite par notre propre corps, des sources alimentaires de choline sont nécessaires pour répondre à nos besoins quotidiens. Un certain nombre de facteurs contribuent aux besoins individuels en choline, tels que les niveaux d'oestrogène, la grossesse et l'allaitement, l'âge, l'activité sportive, ainsi que la méthionine, la bétaine et les folates. La recherche montre que la variation des gènes MTHFD1 et PEMT a également un impact sur les besoins alimentaires en choline.*

*Ganz AB, Shields K, Fomin VG, Lopez YS, Mohan S, Lovesky J, et al. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2016;30(10):3321-33.

Biology. 2016;30(10):321-33. Kohlmeier M, da Costa K, Fischer LM, Zeisel SH. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16025-30.

MTHFD1 & PEMT

La méthylène tétrahydrofolate déshydrogénase (MTHFD1) code pour une enzyme responsable du métabolisme du folate (également connu sous le nom de vitamine B9). La fonction de la choline est étroitement liée au métabolisme des folates car les deux partagent des rôles qui se chevauchent dans les mêmes voies métaboliques. Ceux qui possèdent la version AA ou AG du gène MTHFD1 sont plus à risque de développer des signes cliniques de carence en choline lorsque les apports en choline sont faibles par rapport à ceux qui ont le génotype GG. De plus, le gène de la phosphatidyléthanolamine N-méthyltransférase (PEMT) code pour une protéine qui permet au foie de produire de la choline. Ceux possédant les variantes CG ou CC du gène PEMT courent un risque plus élevé de présenter des signes cliniques de carence en choline par rapport à ceux possédant la variante GG lorsque l'apport en choline est faible. Le respect de l'apport suffisant (AS) pour la choline est donc particulièrement important pour les personnes présentant les variantes à risque de ces gènes.

Sources alimentaires de choline

	Teneur (mg)
1 oeuf	147
½ tasse de haricots de soya	107
85 g de poitrine de poulet	72
85 g de bœuf haché	72
85 g de morue de l'Atlantique	71
½ tasse de champignons shiitake, cuits	58
1 grosse pomme de terre au four	57
2 c. à table de germe de blé	51
½ tasse de haricots rouges rognons	45

Source: National Institutes of Health

Le calcium

Le calcium alimentaire est important pour la croissance, l'entretien et la réparation du tissu osseux. Il est également impliqué dans le maintien du calcium sanguin, dans la régulation de la contraction musculaire, dans la conduction nerveuse et la coagulation sanguine. Afin d'absorber le calcium, nous avons besoin d'un apport adéquat en vitamine D (reportez-vous à la section vitamine D pour vos recommandations spécifiques). Une alimentation inadéquate en calcium et en vitamine D augmente le risque de faible densité minérale osseuse et de fracture de stress. La recherche montre que certaines personnes n'utilisent pas le calcium alimentaire aussi efficacement que d'autres et cela pourrait dépendre des variations du gène GC.*

GC

Le gène GC produit la protéine de liaison de la vitamine D qui se fixe à la protéine et la transporte aux tissus. Puisque la vitamine D est un élément clé pour l'absorption du calcium, cette protéine de liaison peut affecter les niveaux de calcium du corps et donc, le risque de fractures des os. La recherche démontre que deux variations du gène GC sont associées à un risque élevé de fractures lorsque l'apport en calcium est faible.

Sources alimentaires de calcium

	Teneur (mg)
100 g d'écrevisses, séché	3 760
100 g de viande de crabe séchée	2 158
100 g de termite, frais, crues	1 460
100 g de graines de sésame, entier, torréfiées	989
100 g de pâte de haricots, dépulpés (variété blanche)	700
100 g de feuilles d'amarante, cuites	506
119 g de pomme africaine Star (1 fruit moyen)	465
50 g de fromage cheddar faible en gras	450
¾ tasse de yogourt, nature	330
1 tasse de lait écrémé	325
150 g de tofu, ferme	235
75 g de saumon en conserve, avec os	210
½ cannette de sardines, en conserve à l'huile	200
¾ tasse de kéfir, nature	185
100 g de plantain, mûr, rôti	160
100 g de farine de manioc	138
½ tasse d'épinards, bouillis	130
100 g de fromage (La Vache qui rit) (1 portion, 5.2 g)	26

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gène	Numéro rss	
GC	rs7041 rs4588	
Variant à risque	Votre variants	
Algorithme	TG CA	

Votre risque

Élevé

seulement lorsque l'apport en calcium est faible

Recommandation

Sur la base de votre variant GC, vous avez un risque accru de fracture osseuse si votre apport en calcium est inférieur à 1200 mg par jour. Rencontrer des apports de 1200 mg par jour ramènera votre risque élevé à un niveau normal. Les adultes de 19 à 50 ans ne doivent pas dépasser 2500 mg de calcium par jour et les adultes de plus de 50 ans ne doivent pas dépasser 2000 mg par jour. Essayez de combler l'apport quotidien recommandé en calcium à partir de sources alimentaires. La supplémentation en calcium ne doit pas dépasser 250 mg par jour, sauf avec avis contraire de votre professionnel de la santé.

Consommez 1200 mg de calcium par jour.

Gènes	Numéro rss
SLC17A1 HFE HFE	rs17342717 rs1800562 rs1799945
Variant à risques	Votre variants
Algorithme	CC GG CC

Votre risque

Faible

Recommandation

Puisque vous ne possédez aucun variant à risque, le risque de surcharge en fer est faible. Il est donc conseillé de suivre les recommandations données dans la prochaine section.

Suivez les recommandations fournies dans la section « carence en fer ».

Surcharge en fer

L'hémochromatose est une maladie caractérisée par une absorption excessive de fer et qui peut avoir pour conséquences des maladies du foie, l'arthrite et des troubles cardiaques. Il est très important qu'une personne à risque de surcharge en fer surveille leur apport en fer et leurs taux sanguins de ferritine, d'hepcidine ou de transferrine. Le fer existe sous deux formes : la forme héminique et non héminique. Le fer non héminique, que l'on trouve dans les aliments d'origine végétale, est moins bien absorbé par l'organisme que le fer héminique contenu dans les aliments d'origine animale. Toutefois, l'assimilation du fer non héminique peut être optimisée si on le consomme avec de la vitamine C. L'hémochromatose héréditaire est due à des variations du gène HFE ou du gène SLC17A1.*

'Allen KJ et al. Iron-overload-related disease in HFE hereditary hemochromatosis. New England Journal of Medicine. 2008;358:221-30.

Pichler I et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Human Molecular Genetics. 2011;15:1232-40.

HFE & SLC17A1

Des variations de la protéine de l'hémochromatose humaine codée par le gène HFE ainsi que des variations du gène SLC17A1 ont été liées à une surcharge en fer. La protéine de l'hémochromatose humaine régule l'absorption intestinale du fer. Ceux avec les variants à risque ne devraient pas consommer trop de fer et devraient surveiller leurs taux de marqueurs importants des réserves de fer. Les tests sanguins détectent environ 95% des surcharges en fer.

Sources alimentaires de fer

Sources de fer héminique	Sources de fer non héminique
Boeuf	Amandes
Poulet	Pois chiches
Poisson	Persil
Abats	Épinards
Crevette	Tofu
Veau	Haricots blancs

Carence en fer

Le fer est un minéral essentiel et un composant important de l'hémoglobine, la substance des globules rouges qui prend l'oxygène de vos poumons pour le transporter dans tout votre corps. Le fer soutient un système immunitaire fort et est également nécessaire pour maintenir des cellules, une peau, des cheveux et des ongles sains. Le faible statut de fer est déterminé en mesurant certains marqueurs sanguins tels que la ferritine, l'hepcidine ou la transferrine. De faibles réserves de fer peuvent entraîner une anémie associée à de la fatigue, une peau pâle, une faiblesse, un souffle court et des étourdissements. Plusieurs gènes peuvent avoir un impact sur le risque d'avoir un faible statut en fer, notamment les gènes TMPRSS6, TFR2 et TF.*

*Pichler I et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Human Molecular Genetics. 2011;15:1232-40.

Benyamin B et al. Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am J Hum Gen. 2009;84:60-65.

TMPRSS6, TFR2 & TF

Le gène TMPRSS6 code la protéine matriptase-2, impliquée dans la régulation de l'hepcidine qui joue un rôle dans la régulation du fer. Le gène du récepteur de la transferrine 2 (TFR2) code le récepteur de la transferrine qui facilite l'entrée cellulaire du fer et finalement, la protéine transferrine, codée par le gène transferrine (TF), transporte le fer dans le corps. Des variations de ces gènes peuvent affecter le risque de carence.

Sources alimentaires de fer

	Teneur (mg)
100 g de grillon taupe blanchi	41,7
100 g de termites, secs, crus	35,2
100 g de fruit de palmier Doum, cru	18,0
100 g de graines de sésame, séchées, crues	11,8
75 g de foie de poulet	9,8
100 g d'épinards de vigne (africains), feuilles cueillies, bouillies	8,6
1 tasse de haricots blancs	8,0
2 c. à soupe de graines de citrouille	5,2
100 g de feuilles de manioc bouillies	4,4
½ tasse d'épinards bouillis	3,4
2 c. à soupe de tahini	2,7
100 g de bœuf haché maigre	2,7
¾ tasse de pois chiches	2,4
1/4 tasse de noix de cajou, crue	2,2
1/4 tasses de amandes	1,5
100 g de betterave bouillie	0,8

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gènes	Numéro rss	
TMPRSS6 TFR2 TF	rs4820268 rs7385804 rs3811647	
Variant à risques	Votre variants	
Algorithme	GA CA	

Votre risque

AA

Élevé

seulement lorsque l'apport en fer est faible

Recommandation

Vous présentez un risque accru de faible taux de fer. Pour minimiser votre risque de faible teneur en fer, respectez les ANR pour le fer et consommez des sources alimentaires de vitamine C en même temps que les aliments contenant du fer non-héminique pour augmenter l'absorption du fer. Gardez à l'esprit que certaines sources alimentaires de fer non héminique, comme les épinards, ont avantage à être consommées sous leur forme cuite pour améliorer la biodisponibilité du fer. Concentrez-vous sur les aliments à haute biodisponibilité en fer sous forme de fer héminique provenant de produits d'origine animale. Les hommes âgés de 19 ans et plus et les femmes de plus de 50 ans devraient viser 8 mg / jour. Les femmes de 19 à 50 ans devraient viser 18 mg / jour.

Suivez les recommandations du Guide alimentaire canadien pour atteindre l'ANR en fer et consommez des aliments riches en vitamine C en même temps que les aliments riches en Fer.

Gène	Numéro rs	
MCM6	rs4988235	
Variant à risque	Votre variant	
CC ou CT	CT	

Un peu élevé

Votre risque

Le lactose

Le lactose est un glucide naturellement présent dans les produits laitiers. Dans le corps, le lactose est dégradé par l'enzyme lactase qui l'hydrolyse en deux différentes molécules de sucre, c'est-à-dire en glucose et galactose. Par contre, certaines personnes présentent une absence ou une diminution de la production de l'enzyme lactase. Puisque la digestion du lactose ne se fait pas normalement, le lactose excédentaire reste dans le tube digestif et est métabolisé par certaines bactéries avec la production de gaz, qui cause par la suite les symptômes de l'intolérance au lactose. Selon la quantité de lactase produite, certaines personnes ne peuvent tolérer aucun produit laitier tandis que d'autres peuvent tolérer de petites quantités. Certains génotypes ont été associés à un risque élevé de carence en calcium.*

L'intolérance au lactose

Lorsque le lactose n'est pas digéré proprement, les symptômes incluent des douleurs abdominales, des flatulences, des ballonnements et/ou des diarrhées et apparaissent environ une heure après avoir consommer de la nourriture contenant du lactose. Habituellement, les individus souffrant d'intolérance au lactose doivent éviter ou réduire leur consommation du lactose et doivent suivre ce régime à vie. Le risque d'intolérance au lactose dépend en partie du gène MCM6. Il est possible de développer une intolérance au lactose à court terme lors d'une maladie. Par exemple, l'intolérance au lactose peut provenir d'une maladie cœliaque non diagnostiquée mais peut se calmer lorsque la personne consomme un régime strict sans gluten.

MCM6

La protéine MCM6 fait partie du complexe protéique MCM qui contrôle l'expression du gène LCT qui produit l'enzyme lactase. La lactase permet la dissociation du lactose en glucose et galactose. Des variations génétiques de ce gène peuvent affecter la digestion du lactose et donc, peuvent avoir un effet sur le risque d'intolérance au lactose. Les individus ayant le génotype CC ou CT produisent une quantité limitée de lactase. Toutefois, ces variants ne peuvent pas prédire le risque d'intolérance pour les personnes qui ne sont pas d'origine européenne.

*Enattah NS et al. Identification of a variant associated with adult-type hypolactasia. Nature Genetics. 2002;30:233-7.

2002;30:233-7.
Koek et al. The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of Bone and Mineral Research. 2010;25(9):1980-7.
Dzialanski et al. Lactase persistence versus lactose intolerance: Is there an intermediate phenotype? Clinical Biochemistry. 2015. doi: 10.1016/j.clinbiochem.2015.11.001.

9
personnes
sur 10
Asiatiques de l'Est
possèdent le variant
à risque

9
personnes
sur 10
Africains

possèdent le varian

personnes sur 10 Caucasiens possèdent le varian à risque

Considérations nutritionnelles en suivant un régime sans lactose

La recherche montre que les personnes qui consomment un régime sans lactose courent un plus grand risque d'un apport insuffisant en calcium et en vitamine D par rapport aux personnes qui tolèrent le lactose.* Le calcium et la vitamine D sont importants pour construire et maintenir des os et des dents solides. Si vous souffrez d'intolérance au lactose, vous pouvez toujours consommer suffisamment de calcium et de vitamine D dans votre alimentation grâce au lait sans lactose ainsi qu'à des substituts de lait enrichis tels que les boissons au soja et aux amandes. Le calcium et la vitamine D n'étant toutefois pas ajoutés à tous les substituts du lait, assurez-vous de lire les étiquettes pour vérifier que les produits que vous choisissez ont été « enrichis en calcium et en vitamine D. »

*Koek et al. The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of Bone and Mineral Research. 2010;25(9):1980-7.

Sources alimentaires de lactose

	Teneur (g)
1 tasse de lait de vache	12
1 tasse de lait de chèvre	11
1 tasse de lait aromatisé	10
1 tasse de babeurre	9
¾ tasse de yogourt	7
½ tasse de crème glacée	5
½ tasse de yogourt glacé	5
½ tasse de fromage cottage	3
1/4 tasse de crème sure	2
50 g de fromage à pâte dure (exemple: parmesan)	<1

Source: Les diététistes du Canada, Sources alimentaires de lactose

Recommandation

Puisque vous possédez la variante CT du gène MCM6, vous avez un risque légèrement élevé de présenter des symptômes d'intolérance au lactose après avoir consommé du lactose. Si vous ressentez des symptômes gastro-intestinaux après avoir consommé des aliments contenant du lactose, essayez d'éviter le lactose et surveillez vos symptômes. Certaines personnes intolérantes au lactose peuvent tolérer jusqu'à 12 g de lactose par jour, ce qui équivaut à 1 tasse de lait. Répartir votre consommation toute au long de la journée et/ou combiner les aliments contenant du lactose aux repas peut aider à améliorer la tolérance. Pour aider à combler vos besoins en calcium et en vitamine D, veillez à consommer quotidiennement 1 portion de produits laitiers, si tolérée, et 1 à 2 substituts de lait ou de produits laitiers sans lactose enrichis en calcium et en vitamine D, tels que des boissons au soja ou aux amandes.

Limitez votre consommation de produits laitiers.

Gène	Numéro rss	
HLA	rs2395182 rs7775228 rs2187668 rs4639334 rs7454108 rs4713586	
Variant à risques	Votre variants	
	GT TT CT GG TT AA	
Algorithme	CT GG TT	

Moyen

Le gluten

Le gluten est une protéine présente dans le blé, l'orge, le seigle ainsi que les produits fabriqués à partir de ces grains. L'avoine pure ne contient pas de gluten. Toutefois, l'avoine est souvent contaminée par des grains contenant du gluten. La majorité des aliments qui contiennent du gluten fournissent des fibres de grains entiers et peuvent être une excellente source de vitamines et de minéraux. Cependant, pour certaines personnes, le gluten peut causer des problèmes digestifs graves conduisant à une malabsorption des nutriments, de l'anémie et d'autres problèmes de santé.

Maladie cœliaque et sensibilité au gluten

La maladie cœliaque est la forme la plus sévère d'intolérance au gluten. Elle touche environ 1% de la population. Les personnes atteintes de la maladie cœliaque ont besoin d'un régime sans gluten à vie.* La sensibilité au gluten non-cœliaque (NCGS) est une forme plus légère d'intolérance au gluten qui peut toucher 5% de la population. Les personnes atteintes de NCGS souffrent souvent de diarrhée, de douleurs abdominales, de fatigue et de maux de tête lorsqu'elles consomment des aliments contenant du gluten. Cependant, ces effets indésirables du gluten chez les personnes qui ne sont pas atteintes de la maladie cœliaque sont mal compris et le NCGS reste controversé.*

*Tonutti E and Bizzaro N. Diagnosis and classification of celiac disease and gluten sensitivity. Autoimmunity Reviews. 2014;13:472-6.

HLA

Les gènes HLA produisent un groupe de protéines appelé complexe d'antigène leucocytaire humain (HLA), responsable de la façon dont le système immunitaire distingue les protéines du corps lui-même des protéines étrangères potentiellement nocives. La recherche démontre que les gènes HLA sont les prédicteurs génétiques les plus importants de l'intolérance au gluten. Environ 99% des personnes atteintes de la maladie cœliaque et 60% de celles ayant une sensibilité au gluten non cœliaque* possèdent la version à risque DQ2 ou DQ8 du HLA, contre seulement 30% de la population générale. Six variations des gènes HLA peuvent être utilisées pour classer les individus dans des groupes à risque prédéfinis d'intolérance au gluten. La prédiction des risques est basée sur une échelle de risque faible, moyen ou élevé.

*Mark Wolters VM and Wijmenga C. Genetic background of celiac disease and its clinical Recommandation. American Journal of Gastroenterology. 2008;103:190-5. Sapone A et al. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Medicine. 2011;9:23. Monsuur AJ et al. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE 2008:3:e2270

20% des personnes

Risque moyen

10% des personnes Risque élevé

Considérations nutritionnelles en suivant un régime sans gluten

Les aliments sans gluten comprennent, sous leur forme non-transformée, les légumes frais, les fruits, les produits laitiers, la viande, le poisson, la volaille, les noix, les légumineuses, les graines, les graisses et les huiles. Les grains et pseudo grains sans gluten comprennent le riz, le quinoa, le maïs, le sarrasin, l'amarante, le teff, le sorgho et le millet. Quelques exemples de farines sans gluten comprennent la farine de manioc, la farine de noix de coco, la farine d'igname, la farine de plantain et la farine de patate douce. Pour les personnes qui doivent suivre un régime sans gluten, les aliments à éviter incluent tous les produits à base de blé, de seigle, d'orge ou de triticale. L'avoine pure sans gluten doit être consommée avec modération si elle est tolérée, tandis que l'avoine régulier (qui peut contenir du blé) doit être évitée. Pour la grande majorité de la population, une alimentation sans gluten n'est pas nécessaire. Les produits transformés sans gluten contiennent souvent plus de calories, de sodium, de sucre et de matières grasses ajoutés et moins de nutriments que leurs homologues contenant du gluten.

Sources alimentaires de gluten

Principales sources de gluten	Sources potentielles cachées de gluten
Le pain	La vinaigrette
Les pâtes	Le pudding
Les céréales	Le simili-crabe
Les craquelins et crisps	Les croustilles
Les flocons d'avoine*	Les frites
Les produits de boulangerie	Le bouillon
Le malt	Les chocolats et les bonbons
La sauce soya	Les viandes transformées
Les sauces	La soupe en conserve
L'orge ou les bières à base de blé	Le riz instantané
Le vinaigre	Les sauces à salade
Le blé: y compris le seigle, l'épeutre et l'orge	Les produits laitiers faibles en gras

^{*}L'avoine pure ne contient pas de gluten. Toutefois, l'avoine est souvent contaminée par des grains contenant du gluten.

Recommandation

Vous avez un risque moyen de développer la maladie cœliaque; cependant, cela ne signifie pas que vous êtes atteint de la maladie cœliague. Parlez à un professionnel de la santé si vous souffrez de diarrhée, de stéatorrhée, de crampes, de flatulences, de fatigue ou de douleurs articulaires lors de la consommation d'aliments contenant du gluten, ou si vous avez un membre de votre famille atteint de la maladie cœliaque. Les principales sources alimentaires de gluten comprennent le pain, les pâtes, les céréales et tout produit de boulangerie à base de blé, d'orge ou de seigle. Il n'est pas recommandé d'essayer immédiatement de supprimer le gluten de votre alimentation, car l'élimination du gluten peut interférer avec la précision des tests de diagnostic de la maladie cœliaque.

Un risque moyen d'intolérance au gluten.

Gène	Numéro rs
ADORA2A	rs5751876
Variant à risque	Votre variant
П	CT

Votre risque

Typique

Recommandation

Puisque vous possédez la variante CT ou CC du gène ADORA2A, vous avez un risque typique de percevoir une augmentation de l'anxiété après la consommation de caféine. Essayez de suivre vos recommandations de consommation de caféine à base d'ADN pour le gène CYP1A2 incluses dans votre rapport.

Suivez les recommandations pour la caféine dans la section CYP1A2 de votre rapport.

La caféine

et anxiété

De nombreux aliments et boissons tels que le café. le thé, les boissons gazeuses et le chocolat, ainsi que les boissons fonctionnelles, telles que les boissons énergisantes, contiennent de la caféine. Il existe également des sources cachées de caféine dans les analgésiques, les suppléments de perte de poids, ainsi que dans les boissons et produits alimentaires au chocolat ou au café. La caféine est largement utilisée pour favoriser l'attention et la vigilance, réduire la somnolence et atténuer la fatigue liée à diverses postes de travail à horaire rotatif ou pour les voyages avec changements de fuseau horaire. Dans le cerveau, les effets de la caféine sont principalement dus à son action bloquante de l'adénosine, un neuromodulateur qui augmente la somnolence et s'accumule au cours de la journée à l'approche du coucher. Malgré son utilisation répandue, la caféine peut causer de l'anxiété chez certaines personnes. Une variation courante du gène ADORA2A contribue aux manifestations subjectives d'anxiété après l'ingestion de caféine,* en particulier chez ceux qui consomment habituellement peu de caféine.**

*Childs E eta al. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008 Nov;33(12):2791-800 Alsene K et al. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2003 Sep;28(9):1694-702. **Rogers PJ, et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and polytical plant of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1.

ADORA2A

Le gène ADORA2A (récepteur de l'adénosine A2A) code pour l'un des principaux récepteurs de l'adénosine. L'adénosine a de nombreuses fonctions dans le corps, notamment la promotion du sommeil et de l'état de relaxation et la suppression de l'excitation. La caféine bloque les récepteurs de l'adénosine, ce qui entraîne les effets stimulants du café, du thé, du chocolat et de d'autres produits et suppléments alimentaires contenant de la caféine. Les personnes qui possèdent la variante TT du gène ADORA2A sont plus sensibles aux effets stimulants de la caféine et percoivent une plus grande augmentation de l'anxiété après la consommation de caféine que les personnes avec la variante CT ou CC.

pour la santé cardiometabolique

La caféine est le stimulant le plus consommé au monde et le café en est la source la plus abondante. La recherche a démontré que le café contenant de la caféine peut influencer de façon significative la santé cardiovasculaire. Toutefois, les résultats des effets du café sur le système cardiovasculaire sont inconsistants et parfois même contradictoires. Certaines études ont observé un lien entre la consommation élevée de café et une augmentation du risque d'hypertension artérielle et de maladies cardiaques, tandis que d'autres études ont démontré un effet protecteur avec une consommation modérée. Cependant, deux études notoires* ont récemment démontré que l'effet du café sur les maladies cardiovasculaires dépend des variations sur le gène CYP1A2, offrant une explication à ces différences de résultats.

*Cornelis et al. Coffee, CYP1A2 genotype, and risk of myocardial infarction. Journal of the American Medical Association. 2006;295:1135-41.
Palatini P et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. Journal of Hypertension. 2009;27:1594-1601.

CYP1A2

Le gène CYP1A2 produit une enzyme appelée cytochrome P450 1A2 (CYP1A2), la principale enzyme responsable de la décomposition de la caféine dans l'organisme. La recherche a démontré que les variations du gène CYP1A2 influent sur la vitesse à laquelle la caféine est métabolisée. C'est la vitesse à laquelle la caféine est métabolisée qui détermine si la consommation de produits contenant de la caféine, tel que le café, peut être nuisible à la santé du cœur. Les individus possédant les variants GA ou AA de CYP1A2 métabolisent la caféine plus lentement. Ils sont ainsi plus à risque d'hypertension artérielle et, par conséguent, de crises cardiagues si leur consommation de caféine est élevée. Par ailleurs, pour ceux qui possèdent le variant GG, le risque de maladies cardiaques est moindre si leur consommation de café est modérée que s'ils ne consomment pas de café.

Sources alimentaires de caféine

	Teneur (mg)
1 tasse de café	100
1 tasse de boisson énergisante	80
1 café espresso	85
1 tasse de thé noir	50
1 tasse de thé vert	45
1 canette de cola	26
40 g de chocolat noir	27
1 tasse de café, de thé ou 1 espresso décaféiné	0-15
1 tasse de tisane	0

Source: Le Fichier canadien sur les elements nutritifs et la National Nutrient Database de l'USDA

Vos résultats

sur 10

Gène Numéro rs CYP1A2 rs2472300 Variant à risque Votre variant GA ou AA AA

Votre risque

Élevé

seulement lorsque l'apport en caféine est

Recommandation

Puisque vous possédez le variant GA ou AA du gène CYP1A2, le risque d'hypertension et de crises cardiaques s'accroît si votre consommation quotidienne de caféine excède 200 mg, ou l'équivalent d'environ 2 petites tasses de café. Limiter votre consommation de caféine à un maximum de 200 mg par jour permettra de réduire ce risque. La caféine est naturellement présente dans le café, le thé, le cacao, le cola et le guarana. De la caféine artificielle est ajoutée au cola, aux boissons énergisantes, et à certains médicaments contre le rhume.

Limitez votre consommation de caféine à 200 mg par jour.

Gène	Numéro rs
TCF7L2	rs12255372
Variant à risque	Votre variant
GT ou TT	GT

Votre risque

Élevé

seulement lorsque l'apport en grains entiers est faible

Recommandation

Puisque vous possédez la variante TT ou GT du gène TCF7L2, il y a un risque accru de développer un diabète de type 2 si votre consommation de grains entiers est faible. Essayez de consommer la plupart de vos produits céréaliers sous forme de grains entiers. Une facon d'augmenter la consommation de grains entiers est de remplacer les glucides à indice glycémique élevé par des glucides à faible indice glycémique. Le tableau de remplacement des aliments vous donne quelques idées pour remplacer les glucides non entiers par des choix à grains entiers. Réduisez votre consommation de glucides comme le pain blanc, les bagels, les pommes de terre et le riz blanc à grains courts. Choisissez plutôt des grains entiers au faible indice glycémique. Les céréales qui peuvent être trouvées entières comprennent le blé, le riz, l'avoine, l'orge, le mais, le riz sauvage, le seigle, le quinoa et le sarrasin.

Consommez la majorité de vos produits céréaliers à grains entiers.

Les grains entiers

Les grains entiers sont des glucides à faible indice glycémique qui contiennent plus de fibres que les grains raffinés. Ils contiennent également plus de micronutriments essentiels tels que l'acide folique, le magnésium et la vitamine E. Des années de recherche ont démontré que les grains entiers peuvent aider à réduire le risque de plusieurs maladies, en particulier le diabète de type 2. Plus récemment, les scientifiques ont démontré que les avantages de la consommation de grains entiers peuvent être particulièrement importants chez les personnes qui ont une variante du gène TCF7L2.*

*Cornelis MC et al. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. American Journal of Clinical Nutrition. 2009;89:1256-62.

TCF7I 2

Le gène TCF7L2 produit une protéine appelée Transcription factor-7 like 2 (TCF7L2). Cette protéine est un facteur de transcription qui active ou désactive, selon le cas, plusieurs gènes. Les interactions protéinesgènes sont complexes et ne sont pas complètement élucidées à ce jour. Par contre, on sait maintenant que le gène TCF7L2 est l'un des indicateurs les plus fiables de la probabilité de développer le diabète de type 2. En effet, les individus possédant les variants GT ou TT du gène sont plus à risque de développer ce type de diabète. En revanche, des études récentes ont démontré que la consommation de grains entiers peut réduire le risque de diabète de type 2 chez les individus porteurs des variants GT ou TT du gène TCF7L2.

Remplacez ces aliments	Par ceux-ci
Le pain blanc, le pain pita, les bagels	Leurs équivalents à grains entiers
Le riz blanc	Le riz brun, riz sauvage, ou le quinoa
Les pâtes	Les pâtes de blé entier
Les céréales froides sucrées	Les céréales à grains entiers
Produits de boulangerie à la farine blanche	Leurs équivalents faits de blé entier

Sources de fibres

	Teneur (g)
100 g de son de blé	41,5
100 g de farine de millet	22,6
100 g de maïs vert (blanc), cuit	20,9
100 g de sorgho bouilli	4,1
100 g de millet perlé, bouilli	4,0

Source: Le Fichier canadien sur les éléments nutritifs et la National Nutrient Database de l'USDA Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria

Le sodium

Le sodium est un nutriment essentiel qui régule la pression artérielle et le volume sanquin. Par contre, la majorité de la population consomme une quantité de sodium excédant les besoins de l'organisme, ce qui a pour effet d'augmenter la pression artérielle et le risque d'hypertension et de maladies cardiagues. L'augmentation de la pression artérielle due à un apport élevé en sodium n'est toutefois pas la même pour tous. La recherche* a permis d'identifier des variations sur le gène ACE qui influencent l'effet du sodium alimentaire sur la pression artérielle.

*Poch E et al. Molecular basis of salt sensitivity in human hypertension: Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension. 2001;38:1204-9.

ACF

Le gène ACE permet la production de l'enzyme de conversion de l'angiotensine ACE, dont le rôle est de réguler la pression artérielle selon l'apport en sodium. La recherche a démontré que la façon dont la pression artérielle varie chez un individu par rapport à sa consommation en sodium dépend du variant du gène ACE qu'il possède. Les variants AG et AA augmentent le risque d'hypertension si l'apport en sodium est élevé, alors que le risque est moindre pour les individus possédant le variant GG.

Sources alimentaires de sodium

	Teneur (mg)
100 g de kilichi (viande de bœuf fumée)	2 790
100 g de tsiswa (termites cuits)	2 280
1 paquet de nouilles ramen, avec assaisonnement	1 760
100 g de pois d'Angole, graines matures, crues	1 392
1 tasse de soupe en conserve	1 130
75 g de jambon	1 040
100 g de saucisse, frankfort	1 000
1 cornichon, de grosseur moyenne	830
½ tasse de sauce tomate en conserve	650
50 g de féta	560
50 g de céréales pour petit déjeuner, flocons de maïs	545
1 petit sac de croustilles	390
2 c. à soupe de sauce tomate (Ketchup)	275
1 tranche de pain	230

Source: Le Fichier canadien sur les éléments nutritifs et la National Nutrient Database de l'USDA Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Africains sur 10 possèdent le variant à risque

Vos résultats

Gène	Numéro rs
ACE	rs4343
Variant à risque	Votre variant
GA ou AA	AA

Votre risque

Elevé

seulement lorsque l'apport en sodium est

Recommandation

Puisque vous possédez la variante AA ou GA du gène ACE, il existe un risque accru d'hypertension artérielle lorsque l'apport en sodium est élevé. Limiter la consommation de sodium au niveau de l'apport suffisant (AS) devrait contribuer à réduire le risque. L'AS est de 1500 mg par jour chez les adultes de 19 à 50 ans, de 1300 mg par jour chez les adultes de 51 à 70 ans et de 1200 mg par jour chez les adultes de 71 ans et plus. L'AS de 1500 mg par jour équivaut à 3/4 cuillère à thé de sel par jour, qui comprend le sodium qui se trouve naturellement dans les aliments ainsi que le sel qui est ajouté pendant le traitement et la préparation. Les aliments riches en sodium comprennent les soupes et les légumes en conserve, les croustilles, les viandes transformées, la sauce soya, le ketchup et les fromages fondus. Essayez de choisir des options à faible teneur en sodium de ces aliments riches en sodium.

Limitez votre consommation de sodium à 1500 mg par jour.

VOS	rest	litat

Gène	Numéro rs
FADS1	rs174547
Variant à risque	Votre variant
CC ou CT	П

Votre risque

Typique

Recommandation

Étant donné que vous possédez la variante TT du gène FADS1, votre taux de cholestérol HDL n'est probablement pas affecté par le niveau alimentaire d'oméga-6 (LA) ou votre rapport entre oméga-6 (LA) et oméga-3 (ALA). Suivez les recommandations pour les adultes en bonne santé, qui devraient viser à consommer entre 5 et 10% d'énergie provenant d'oméga-6 LA et entre 0,6 et 1,2% d'énergie provenant d'oméga-3 ALA. Limitez les apports en oméga-6 LA provenant des produits de boulangerie, des aliments frits et autres aliments transformés. Pour la cuisson, la pâtisserie et les vinaigrettes, choisissez l'huile de canola, qui est une excellente source d'oméga-3 ALA. D'autres aliments riches en oméga-3 ALA comprennent les graines de lin et de chia.

Rencontrez les Apports quotidiens recommandés pour les oméga-6 (LA) et oméga-3 (ALA).

Oméga-6 et oméga-3

Une consommation plus élevée de graisses polyinsaturées (AGPI) est associée à un risque réduit de maladies cardiovasculaires. Les AGPI comprennent à la fois les acides gras oméga-6, tels que l'acide linoléique (LA), et les acides gras oméga-3, tels que l'acide alpha-linolénique (ALA). Puisque notre corps ne peut pas fabriquer d'oméga-6 LA et d'oméga-3 ALA, ces graisses essentielles doivent être obtenues à partir de notre alimentation. Cependant, consommer trop d'oméga-6 LA et trop peu d'oméga-3 ALA peut avoir des effets néfastes sur la santé. Des études ont démontré qu'un gène impliqué dans le métabolisme de ces AGPI peut avoir un impact négatif sur les niveaux de cholestérol HDL (« bon cholestérol ») lorsque l'apport alimentaire en oméga-6 LA est élevé*, ou lorsque le rapport oméga-6 LA par rapport aux oméga-3 ALA est trop élevé.**

FADS1

Le gène FADS1 est responsable de la production d'une enzyme appelée désaturase d'acides gras-1. Cette enzyme convertit les oméga-6 LA et les oméga-3 ALA en AGPI à chaîne plus longue, qui participent à leur tour aux réponses inflammatoires et immunitaires. Par rapport à ceux avec la variante TT, les personnes qui ont la variante CC ou CT ont des niveaux inférieurs de cholestérol HDL lorsque la consommation d'oméga-6 LA est élevée. Parmi ceux qui ont la variante CC ou CT, l'augmentation de la proportion d'oméga-3 ALA alimentaire par rapport à l'oméga-6 LA favorise des niveaux plus élevés de cholestérol HDL.

Sources alimentaires de oméga-6 et oméga-3

		Oméga-3 ALA (g)	Oméga-6 LA (g)
1 c. à table de graines d	e chia*	1,9	0,6
1 c. à table de graines d	e lin*	1,6	0,4
1 c. à table d'huile de ca	nola	1,3	2,7
1/4 tasse de noix de gren	oble	0,9	11
½ tasse de fèves edama	me*	0,3	1,5
75 g de saumon*		0,3	0,2
75 g de sardines*		0,2	0,1
1 c. à table d'huile de ma	aïs	0,2	7,3
1 c. à table de céréales de blé, roties*	de germe	0,1	0,4
1 c. à table de beurre de	tahini	0,1	3,5
1 c. à table d'huile de ca	rhame	0,01	1,8
1/4 tasse de graines de to	urnesol	0,01	2,7
1 c. à table d'huile de to	urnesol	0,01	4,0

^{*}Favorise l'atteinte d'un ratio oméga-3/oméga-6 plus équilibré Fichier canadien des éléments nutritifs

L'activité physique

pour la santé cardiométabolique

L'activité physique présente des avantages importants pour la santé mentale, la forme physique, le maintien du poids et la prévention de nombreuses maladies chroniques. En effet, l'exercice améliore la fonction de votre cœur, vos poumons et vaisseaux sanguins, et il a également des effets bénéfiques sur les lipides sanguins. Les scientifiques ont démontré que le gène LIPC influence les taux sanguins de cholestérol HDL (le « bon » cholestérol). La recherche montre également que l'activité physique augmente davantage le cholestérol HDL chez les personnes qui possèdent une variante particulière du gène LIPC, par rapport à celles qui ne l'ont pas.*

'Grarup et al. The -250G>A promoter variant in hepatic lipase associates with elevated fasting serum high-density lipoprotein cholesterol modulated by interaction with physical activity in a study of 16,156 Danish subjects. Journal of Clinical Endocrinology and Metabolism. 2008;93:2294-2299.

Ahmad et al. Physical Activity Modifies the Effect of LPL, LIPC, and CETP Polymorphisms on HDL-C Levels and the Risk of Myocardial Infarction in Women of European Ancestry. Circulation: Cardiovascular Genetics. 2011;4:74-80.

LIPC

Le gène de la lipase hépatique, également connu sous le nom de LIPC, code pour une enzyme qui joue un rôle clé dans le métabolisme des lipides sanguins. LIPC aide à transporter le cholestérol HDL vers le foie, où se produit une transformation additionnelle des lipides. Des études exhaustives menées chez des hommes et des femmes démontrent qu'une des variantes génétiques du LIPC a un impact sur la façon dont les taux de cholestérol HDL augmentent en réponse à l'activité physique. En général, les personnes physiquement actives ont tendance à avoir des concentrations de cholestérol HDL plus élevées que celles qui sont sédentaires. Cependant, même parmi ceux qui sont physiquement actifs, les personnes qui portent le variant TT ou CT dans le gène LIPC présentent une réponse augmentant le HDL lorsqu'ils s'engagent dans une activité physique, ce qui entraîne un cholestérol HDL plus élevé que les individus sans cette variante.

Types d'activités cardiovasculaires

Modérée à intense	
Natation	Marche, jogging, course
Marche rapide (5 km/h ou plus)	Tennis
Vélo	Aquaforme

Types d'activités de renforcement musculaire

Lever des poids	Faire des pompes
Exercices avec des élastiques	Faire des abdominaux
Jardinage intensif (creuser, pelleter)	Power Yoga et Power Pilates

Vos résultats

Gène	Numéro rs
LIPC	rs1800588
Variant à réponse	Votre variant
TT ou CT	CT

Votre réponse

Augmenté

lorsque l'activité physique est élevée

Recommandation

Puisque vous possédez la variante CT ou TT du gène LIPC, vous avez une réponse augmentant le cholestérol HDL grâce à l'activité physique. Faites de 150 à 300 minutes d'exercice d'intensité modérée à intense par semaine. Cela peut être atteint grâce à 30 à 60 minutes d'exercice aérobie d'intensité modérée à intense cinq jours par semaine par périodes de 10 minutes ou plus. Cela vous permettra de profiter des avantages de l'activité physique non seulement pour votre taux de cholestérol mais aussi pour la composition corporelle, la gestion du poids, la santé mentale, la tension artérielle, la santé des os, la glycémie et de nombreux autres facteurs liés à la santé. Vous devez également inclure des activités de renforcement musculaire au moins 2 jours par semaine.

Visez 150-300 minutes de cardio et au moins 2 jours/semaine d'activités de renforcement musculaire.

LA SANTÉ CARDIOMÉTABOLIQUE | PAGE 26 LA SANTÉ CARDIOMÉTABOLIQUE | PAGE 27

^{*}Lu Y et al. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. American Journal of Clinical Nutrition. 2010; 92:258–65.

Dumont J et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clinical Nutrition. 2018;37:1683-1689.

"Hellstrand S et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. Journal of Lipid Research. 2012; 53: 1183–1189.

Gènes	Numéro rss
FTO ADRB2	rs9939609 rs1042713
Variant à réponse	Votre variants
Algorithme	AA GG

Votre réponse

Augmenté

Recommandation

Puisque vous possédez les variantes de réponse améliorée du gène FTO et / ou ADRB2, vous avez une réponse de perte de poids améliorée lorsque vous vous consacrez à atteindre des niveaux plus élevés d'activité physique. Par conséquent, vos recommandations d'activité physique consistent à inclure au moins 30 à 60 minutes par jour d'activité cardiovasculaire modérée à intense en périodes de 10 minutes ou plus, sur au moins 6 jours par semaine. Vous devez également inclure des activités de renforcement musculaire au moins 2 jours par semaine. Ces activités devraient impliquer les principaux groupes musculaires. En respectant ces recommandations d'activité physique, vous êtes plus susceptible d'augmenter votre masse maigre, de diminuer votre masse grasse et de diminuer votre poids corporel.

Visez 30 à 60 minutes par jour d'exercices cardio six jours par semaine et au moins deux jours par semaine d'activités de renforcement musculaire.

L'activité physique

pour la gestion du poids

L'activité physique présente des avantages importants pour la santé mentale, la forme physique, le maintien du poids et la prévention de nombreuses maladies chroniques. Les exercices de conditionnement cardiovasculaire ou aérobie comprennent ceux qui augmentent votre fréquence cardiaque pendant une période prolongée, comme la marche rapide, la course à pied, la natation et le cyclisme. Ces exercices d'aérobie améliorent la fonction de votre cœur, de vos poumons et de vos vaisseaux sanguins. Les exercices de conditionnement musculaire améliorent la force et la puissance musculaire ainsi que la santé des os et comprennent des activités telles que l'haltérophilie ou le yoga et le Pilates de plus haute intensité. La plupart des formes d'activité physique sont bénéfiques; cependant, certaines personnes peuvent perdre du poids plus que d'autres en fonction de la quantité et du type d'activité physique qu'elles pratiquent. La recherche montre que des variants du gène FTO peuvent avoir un impact sur la réponse métabolique d'un individu à l'activité physique.* En effet, l'activité physique peut réduire les effets du gène FTO sur le risque de surpoids et d'obésité jusqu'à 75%.** De plus, une variante du gène ADRB2 influence la quantité de graisse corporelle que vous perdez en réponse à un exercice cardiovasculaire.***

*Andreasen et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes. 2008;57:95-101.

Reddon et al. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study. Scientific Reports. 2016;6:1-10. *Garenc et al. Effects of 2-Adrenergic Receptor Gene Variants on Adiposity: The HERITAGE Family Study. Obesity Research. 2003;11:612-618.

FTO & ADRB2

Le gène FTO est également connu sous le nom de « gène associé à la masse grasse et à l'obésité », et son impact sur la gestion du poids et la composition corporelle a été clairement démontré. Le rôle du gène FTO dans l'organisme est lié au métabolisme, à la dépense énergétique et à l'équilibre énergétique. Il agit également au niveau des régions du cerveau impliquées dans la régulation de l'apport énergétique. Les recherches actuelles montrent que des recommandations personnalisées en matière d'activité physique peuvent considérablement contribuer à la perte de poids et au maintien du poids chez les personnes possédant certaines variantes du gène FTO.* Le gène ADRB2 code pour le récepteur bêta-2-adrénergique, qui appartient à une famille de molécules impliquées dans la réponse 'fight-or-flight' et la réponse à des substances comme l'adrénaline. ADRB2 contribue à la dégradation et à la mobilisation des cellules graisseuses, et son activité augmente pendant l'exercice. Une vaste étude sur des personnes obèses et sédentaires a révélé que la variation du gène ADRB2 pouvait prédire la perte de graisse en réponse à un exercice cardiovasculaire. Les femmes qui portaient deux copies d'une variante ADRB2 spécifique avaient une réponse améliorée à un programme d'exercices cardiovasculaires, perdant plus de trois fois plus de graisse corporelle que les femmes qui avaient une réponse typique.**, ***

Le bilan énergétique

Notre corps a besoin d'énergie pour ses fonctions vitales. La calorie (ou kilojoule) est une unité de mesure de l'énergie couramment utilisée. Cette énergie provient des aliments et des boissons consommés et nous utilisons cette énergie pour assurer plusieurs processus corporels comme la digestion, la respiration, la fonction cérébrale et le maintien de la température corporelle. L'énergie dépensée pour maintenir en activité ses fonctions vitales est connu comme le métabolisme de base (MB). Le MB varie d'un individu à l'autre car il dépend de la masse musculaire, du poids, de l'âge et de la génétique. Une étude* démontre que le MB peut être influencé par les variants du gène UCP1. La dépense énergétique totale est la somme du MB et l'énergie dépensée pour l'activité physique. Consommer moins d'énergie et/ou dépenser plus d'énergie favorise la perte de poids.

*Nagai N et al. UCP1 genetic polymorphism (-3826A/G) diminishes resting energy expenditure and thermoregulatory sympathetic nervous system activity in young females. Int J Obesity. 2011;35:1050-5.

La protéine découplante 1 (UCP1) est présente dans les tissus adipeux bruns et est impliquée dans le métabolisme énergétique qui utilise l'énergie chimique des cellules pour produire de la chaleur. Le gène UCP1 est essentiel dans le maintien de la température corporelle et peut affecter le MB. La recherche démontre que les individus ayant le génotype GG ou GA ont tendance à avoir un MB inférieur à ceux ayant le génotype AA. De ce fait, ils doivent consommer moins d'énergie pour maintenir les fonctions corporelles.

Aliments riches en énergie

	Teneur (calories)
½ d'une pizza au pepperoni et au fromage de 12 pouc	es 660
Poisson, pané, frit (1 pièce)	590
100 g de ingokho (poulet frit)	532
100 g de chips de plantain	531
100 g de Omena wa Kukaangwa (omena frit)	450
Tourte à la viande et aux légumes (1 tourte individuell	e) 450
100 g d'ekwang (ignames sautées avec des feuilles)	431
100 g de kaimati (boulettes frites)	429
100 g de siro (semoule & noix)	412
½ tasse de mélange de noix, rôties	410
1 muffin aux carottes	340
1 avocat	320
1 beignet, enrobé au chocolat	270
20-25 frites	240
1 croissant	230
65 g de safou (1 fruit moyen)	211

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria.

Vos résultats

Gène	Numéro rs
UCP1	rs1800592
Variant à réponse	Votre variant
GG ou GA	GA

Votre réponse

Réduit

Recommandation

Puisque vous possédez le variant GG ou GA du gène UCP1, votre MB quotidien peut être inférieur d'environ 10% (ou 150 kcal) à ceux qui ont le variant AA du gène UCP1. Cette diminution de 10% est basée sur un MB moyen de 1500 kcal par jour, qui peut être supérieur ou inférieur à votre MB. Par conséquent, pour perdre de la masse grasse, il peut être utile de réduire l'apport énergétique quotidien ou d'augmenter la dépense énergétique grâce à un exercice supplémentaire, d'un montant égal à 10-20% de vos besoins énergétiques estimés, plus 150 kcal supplémentaires. Par exemple, une personne consommant 2000 kcal par jour pour maintenir son poids peut choisir un déficit énergétique de 200 kcal, plus un déficit supplémentaire de 150 kcal par jour, ce qui totalise un déficit de 350 kcal pour la perte de poids. Ces valeurs dépendront de plusieurs facteurs, dont les niveaux d'activité physique et le temps nécessaire pour atteindre votre objectif.

Si vous souhaitez perdre du poids, visez un déficit énergétique quotidien de 10-20% des calories recommandées, et un déficit additionnel de 150 kcal.

^{*}Rodrigues et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition. 2015;31:1344-50. **Garenc et al. Effects of Beta-2-Adrenergic Receptor Gene Variants on Adiposity: The HERITAGE Family Study. Obesity Research. 2003;11:612-618.

^{***}Lagou et al. Lifestyle and Socioeconomic-Status Modify the Effects of ADRB2 and NOS3 on Adiposity in Furopean-American and African-American Adolescents, Obesity, 2011;19:595-603

Gène	Numéro rs	
FTO	rs9939609	
Variant à réponse	Votre variant	
AA	AA	

Votre réponse

Augmenté

lorsque l'apport en protéines est élevé

Recommandation

Puisque vous avez la variante AA du gène FTO, vous obtenez des résultats améliorés en matière de perte de poids lorsque vous consommez un régime modéré à riche en protéines. Un régime alimentaire modéré à riche en protéines peut être bénéfique car il peut vous aider à perdre de la masse grasse, à améliorer la perte de poids et à améliorer votre composition corporelle. Il peut également aider à améliorer à long terme la distribution de la graisse corporelle et augmenter vos chances de perte de poids à long terme. Visez à consommer 25 à 35% de l'énergie provenant des protéines si vous faites le choix d'opter pour un régime hypocalorique.

Consommez un apport en protéines entre 25-35% de votre apport énergétique total.

Les protéines

Les protéines sont essentielles pour le développement musculaire, la cicatrisation, la santé des cheveux, de la peau et des ongles et la fonction immunitaire. Les protéines sont mieux connues pour leur rôle du soutien et de la réparation de tissus musculaires. Les protéines aident aussi à se sentir rassasié plus longtemps et avec moins de calories. Pour ceux à risque de surpoids et d'obésité en fonction du gène FTO, un régime riche en protéines peut aider à stimuler la perte de poids et à maintenir un poids à court terme et à long terme.

FTO

Le gène FTO est aussi connu comme le « fat mass and obesityassociated gene » puisqu'il peut affecter le maintien du poids et la composition corporelle. Spécifiquement, le rôle de ce gène est lié au métabolisme de base, à la dépense énergétique totale et au bilan énergétique. Ce gène est aussi exprimé dans certaines régions du cerveau impliquées dans la régulation de l'apport énergétique. Pour ceux ayant subi une chirurgie bariatrique pour perdre du poids, le succès de perte de poids à long terme peut être prédit par le gène FTO.* La littérature scientifique démontre que des recommandations spécifiques en matière d'alimentation et d'activité physique peuvent aider à stimuler la perte de poids et à maintenir un poids pour ceux ayant certains génotypes.**

*Rodrigues GK et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition. 2015;31(11-12):1344-50.
**Zhang X et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: The POUNDS LOST trial. Diabetes. 2012;61(11):3005-11.

Sources alimentaires de protéines

	Teneur (g)
100 g de viande de gibier séchée	66.7
100 g de thon grillé	33,8
75 g de poitrine de poulet	25,0
75 g de bœuf haché extra maigre	23,0
75 g de saumon au four	20,0
100 g de soja bouilli	15,1
1/3 tasse de graines de melon, crues	15,0
¾ tasse de lentilles	14,0
¾ tasse de pois chiches	9,0
1 tasse de lait écrémé	9,0
1/4 tasse d'amandes	8,0
1 oeuf entier	6,0

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consommées au Cameroun. Base de données alimentaires du Nigeria

Les lipides totaux

Les matières grasses pour l'absorption de certaines vitamines notamment de la vitamine A, D, E et K. Chaque gramme de gras apportant plus du double des calories qu'un gramme issu de protéines ou de glucides, les lipides représentent le type de nutriment le plus énergétique. La quantité totale et le type de lipides dans l'alimentation peuvent affecter la santé cardiovasculaire et la composition corporelle. En général, les graisses insaturées sont des graisses plus favorables à la santé que les graisses saturées et les gras trans. Le gène TCF7L2 est impliqué dans la régulation du poids et de la composition corporelle. Quelques études ont démontré que les personnes ayant le génotype TT subissent une perte de pois supérieure en consommant une alimentation faible à modérée en matières grasses versus une alimentation riche en matières grasses. En revanche, les personnes ayant le génotype CC ou TC la perte de poids est moins affectée par le type de gras consommé.*

*Grau K et al. TCF7L2 rs7903146-macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet. American Journal of Clinical Nutrition. 2010;91:472-9.

Mattei J et al. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. American Journal of Clinical Nutrition. 2012;96:1129-36

TCF7L2

Le gène TCF7L2 produit une protéine appelée Transcription factor-7 like 2 qui régule l'expression de plusieurs gènes. La recherche scientifique démontre que la quantité de matière grasse dans l'alimentation affecte la composition corporelle (masse maigre/musculaire vs. masse grasse) et le risque de surpoids et d'obésité chez les individus ayant le génotype TT. De plus, ces individus ont un risque accru de résistance à l'insuline lorsque leur apport en matière grasse est élevé. La consommation d'une alimentation faible à modérée en matières grasses peut faciliter la perte de poids chez les personnes ayant le génotype TT, ce qui peut, en outre, avoir des effets favorables sur la résistance à l'insuline.

Sources alimentaires de matières grasses

	Teneur (g)
100 g de noix de palme décortiquée, brute	55,3
100 g de graines de sésame, séchées, crues	48,3
100 g de pâte d'arachide	47,2
100 g de fourmis volantes, séchées	46,9
1/4 tasse de noix de Macadamia	26,0
50 g de fromage cheddar	17,0
1 c. à soupe de beurre	16,0
1 c. à soupe d'huile d'olive	14,0
1/4 tasse de pistaches	14,0
75 g de bœuf haché maigre	11,0
50 g de fromage de chèvre	11,0
¾ tasse de yogourt, 2-4% M.F.	8,0
Saumon Sockeye (75g)	8,0
100 g de soja bouilli	7,4

Source: Valeur nutritive de quelques aliments usuels (Santé Canada) Gouvernement du Kenya/FAO. 2018. Table de la composition des aliments du Kenya. Nairobi, 254 pp. Guide photographique de portions alimentaires (GPPA) pour l'estimation des quantités consom Cameroun, Base de données alimentaires du Nigeria

Vos résultats

Gène	Numéro rs
TCF7L2	rs7903146
Variant à réponse	Votre variant
ТТ	CC

Votre réponse

Typique

Recommandation

Puisque vous possédez la variante CC ou TC du gène TCF7L2, vous avez une réponse de perte de poids typique en fonction de votre apport en matières grasses. Cependant, pour vous assurer d'avoir une alimentation saine et équilibrée, consommez 20 à 35% de vos besoins énergétiques quotidiens totaux en matières grasses si vous faites le choix d'opter pour un régime hypocalorique.

Consommez un apport en lipides entre 20-35% de votre apport énergétique total.

Gène	Numéro rs
APOA2	rs5082
Variant à réponse	Votre variant
CC	TC

Votre réponse

Typique

Recommandation

Puisque vous possédez la variante de risque typique du gène APOA2, tentez de suivre les directives générales pour limiter l'apport en graisses saturées à moins de 10% de l'apport énergétique total, afin de réduire le risque global associé à d'autres problèmes de santé tels que les maladies cardiovasculaires. Les aliments riches en graisses saturées comprennent les viandes grasses (agneau, porc et bœuf), les viandes transformées (bacon, salami), le beurre, le fromage, les aliments frits et les huiles de noix de coco et de palme souvent présentes dans les aliments transformés et les produits de boulangerie. Des alternatives appropriées à faible teneur en graisses saturées comprennent les huiles d'olive et végétales, les viandes maigres, les produits laitiers à faible teneur en matières grasses, le poisson et les sources de protéines végétales telles que les haricots, les lentilles, les noix / graines ou les protéines végétales telles que les boissons de soja et le tofu.

Limitez votre apport en graisses saturées à 10% au plus de votre apport énergétique total.

Les graisses saturées

Les graisses saturées, que l'on trouve entre autres dans la viande rouge, sont depuis longtemps associées à des maladies telles que le diabète, les maladies cardiovasculaires et l'obésité. Toutefois, le lien entre les graisses saturées et l'obésité était, jusqu'à tout récemment, mal compris. Le fait que certains individus ayant une alimentation riche en graisses saturées semblaient plus susceptibles de souffrir d'obésité que d'autres restait inexpliqué. Des études* ont maintenant démontré que l'effet des graisses saturées sur l'obésité peut être influencé par les variants du gène APOA2.

*Corella D et al. APOA2, dietary fat, and body mass index: replication of a gene- diet interaction in 3 independent populations. Archives of Internal Medicine. 2009;169:1897-906.

APOA2

Le gène APOA2 permet la production de la protéine apolipoprotéine A-II. Cette dernière joue un rôle important dans la capacité de l'organisme à utiliser différents types de matières grasses. La recherche a permis d'identifier des variations sur le gène APOA2 dans la population. Ces variations interagissent de façon distincte avec les graisses saturées et ainsi, influencent différemment le bilan énergétique et ultimement, le risque d'obésité. Les individus ayant le variant CC du gène ont un risque plus élevé d'obésité si leur alimentation est riche en graisses saturées que ceux possédant les variants TT ou TC.

Sources alimentaires de graisses saturées

	Teneur (g)
75 g de boeuf, bout de côtes	11
50 g de cheddar	10
½ tasse de crème glacée	11
1 c. à soupe de beurre	8
75 g de salami	8
75 g de boeuf haché ordinaire, cuit	7
1 hamburger au fromage, 1 galette	6
1 petit muffin	5
20-25 frites	5
1 c. à soupe de crème 18% M.G.	5

Source: Le Fichier canadien sur les éléments nutritifs et la National Nutrient Database de l'USDA

Les graisses saturées et insaturées

Il existe deux types principaux de graisses alimentaires : les graisses saturées et insaturées. Les graisses saturées, comme celles présentent dans la viande rouge et les pâtisseries, sont associées à une augmentation du risque de maladies cardiovasculaires, de diabète et d'obésité. Contrairement aux graisses saturées, les graisses insaturées, comme celles présentent dans l'huile d'olive, d'amande et de pépins de raisin, peuvent aider à réduire le risque de ces maladies. Une étude* a démontré que les variations du gène FTO influent la réponse de l'organisme aux graisses saturées et insaturées. Les variants AA et TA facilitent la perte de poids, préviennent l'augmentation des réserves de graisses de graisses et réduisent le risque d'obésité. *Phillips CM et al. High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. Journal of Nutrition. 2012;142:824-31.

Le gène FTO est également connu sous le nom de « gène associé à la masse grasse et à l'obésité » car il peut avoir un impact sur la gestion du poids et la composition corporelle. Le rôle de ce gène dans l'organisme est lié au métabolisme, à la dépense énergétique et à l'équilibre énergétique. Il agit également dans les régions du cerveau impliquées dans la régulation de l'apport énergétique. Chez les personnes qui ont subi une chirurgie bariatrique pour perdre du poids, la variation du gène FTO peut aider à prédire le succès de leur perte de poids à long terme, ce qui peut avoir des implications importantes pour les plans de soins nutritionnels.* La recherche montre que pour les personnes présentant la variante AA ou TA, un apport élevé en graisses insaturées et un faible apport en graisses saturées dans l'alimentation peuvent aider à faciliter la perte de poids, diminuer les réserves de graisses autour de l'abdomen et diminuer le risque d'obésité.*

*Rodrigues et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition. 2015;31:1344-50.

Sources alimentaires de graisses mono-insaturées et poly-insaturées

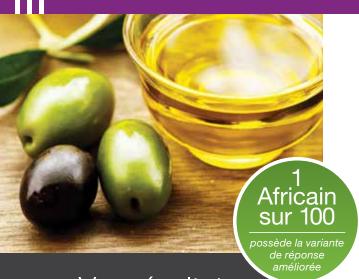
Les graisses mono-insaturées	Teneur (g)
1/4 tasse de noix de Macadamia	20
2 c. à soupe de beurre d'amande	12
1 c. à soupe d'huile d'olive	10
1 c. à soupe de canola	8
2 c. à soupe de beurre d'arachide	8
Les graisses poly-insaturées	Teneur (g)
Les graisses poly-insaturées 1 c. à soupe d'huile de lin	Teneur (g)
1 c. à soupe d'huile de lin	10
1 c. à soupe d'huile de lin 1 c. à soupe d'huile de pépins de raisin	10

Source: Valeur nutritive de quelques aliments usuels (Santé Canada)

Vos résultats

Gène	Numéro rs
FTO	rs9939609
Variant à réponse	Votre variant
TA ou AA	AA

Votre réponse


Augmenté

lorsque l'apport en graisses saturées est faible et l'apport en graisses poly-insaturées est élevé

Recommandation

Puisque vous possédez le génotype TA ou AA, vous pouvez favoriser la perte de poids en maintenant les gras saturés en dessous de 10% de votre apport calorique et en allant chercher la balance de l'apport recommandé en gras sous forme de gras insaturés. Spécifiquement, votre apport en graisses poly-insaturées devrait être d'au moins 5% de l'apport énergétique total et le reste devraient être apporté par des graisses monoinsaturées. Ceci aidera à réduire le risque de surpoids, de prise de poids et d'accumuler la graisse abdominale.

Limitez votre apport en graisses saturées à 10% au plus de votre apport énergétique total avec au moins 5% provenant des graisses poly-insaturées.

Gène	Numéro rs
PPARy2	rs1801282
Variant à réponse	Votre variant
GG ou GC	CC

Votre réponse

Typique

Recommandation

Puisque vous possédez le génotype CC, consommer plus de graisses monoinsaturées ne va pas nécessairement faciliter la perte de poids et la diminution de la graisse corporelle. Néanmoins, pour une bonne santé cardiovasculaire, visez à adopter une alimentation équilibrée de graisses saturées, mono-insaturées et poly-insaturées pour atteindre l'ÉVA pour les lipides.

Maintenez un équilibre des graisses saturées, monoinsaturées et poly-insaturées.

Les graisses mono-insaturées

Les graisses mono-insaturées, comme celles présentent dans l'huile d'olive, les amandes et les avocats, sont associées à un risque réduit de maladies cardiovasculaires. Les graisses mono-insaturées diminuent le taux du mauvais cholestérol et aident à augmenter le taux du bon. Une étude* a démontré que certains variants du gène PPARy2 peuvent faciliter la perte de poids et réduire la graisse corporelle.

*Garaulet M et al. PPARy Pro12Ala interacts with fat intake for obesity and weight loss in a behavioural treatment based on the Mediterranean diet. Molecular Nutrition and Food Research. 2011;55:1771-9.

PPARv2

Le gène PPARy2 est impliqué dans le développement adipocytaire et est exprimé principalement dans le tissu adipeux. À cause de son rôle, le gène PPARy2 a un effet sur le contrôle du poids et la composition corporelle. Spécifiquement, les personnes ayant le génotype GG ou GC et qui consomment une alimentation riche en graisses mono-insaturées ont tendance à subir une plus grande perte de poids et diminution de graisse corporelle, par rapport aux personnes ayant le génotype CC.

Sources alimentaires de graisses mono-insaturées

	Teneur (g)
1/4 tasse de noix de Macadamia	20
2 c. à soupe de beurre d'amande	12
1 c. à soupe d'huile d'olive	10
1 c. à soupe d'huile de canola	8
2 c. à soupe de beurre d'arachide	8
1 c. à soupe d'huile de sésame	6
1/4 tasse de graines de citrouille et de courge, séchées	5
¾ tasse de fèves de soya, bouillies	3
1/4 tasse d'houmous	2

Source: Valeur nutritive de quelques aliments usuels (Santé Canada)

La perception du goût du gras

L'apport alimentaire est principalement déterminé par la perception du goût et les préférences alimentaires. La façon dont une personne perçoit le goût des aliments riches en gras est très importante car l'apport en matières grasses affecte la santé du cœur et la composition corporelle. Les lipides sont essentiels pour l'absorption de certaines vitamines telles que la vitamine A, D, E et K. Chaque gramme de lipide fournit 9 calories d'énergie, ce qui représente plus du double des calories fournies par un gramme de protéine ou de glucide. Une étude a démontré que la préférence pour des aliments riches en matières grasses dépend des variations du gène CD36.*

*Melis M, Sollai G, Muroni P, Crnjar R, Barbarossa IT. Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiour Pepino MY et al. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. Journal of Lipid Research. 2012;53:561-6.

CD36

Le gène cluster de différenciation 36 (CD36), aussi connu comme translocase d'acide gras (« fatty acid translocase »), produit une translocase qui se présente sur les surfaces cellulaires et assure le transport des acides gras. Plusieurs études ont associé des variations génétiques du gène CD36 aux différences de perception du goût et de la texture des graisses et des huiles. À une concentration donnée, le goût du gras est plus intense pour les super-goûteurs par rapport aux « goûteurs faibles ».

Sources alimentaires riches en lipides

	n graisses saines mono-insaturées)	Teneur (g)
50 g de fromage cheddar		17
½ avocat	✓	15
1 c. à soupe d'huile d'olive	✓	14
1 c. à soupe de beurre		12
20 à 25 croustilles		12
1 hamburger		12
1 croissant		12
75 g de saumon	✓	9
½ tasse de crème glacée au choco	lat	8
1 tasse de lait homogénéisé		8

Source: Valeur nutritive de quelques aliments usuels (Santé Canada)

Africains sur 10

Vos résultats

Gène	Numéro rs
CD36	rs1761667
Variant à réponse	Votre variant
GG ou GA	AA

Votre réponse

Typique

Recommandation

Puisque vous possédez la variante AA du gène CD36, vous êtes un «faible goûteur» de matières grasses. Cela signifie que vous avez besoin de plus de matières grasses dans vos aliments pour pouvoir les détecter. En comparaison, ceux qui sont «super goûteurs» détectent les graisses à des niveaux inférieurs. Consommer trop de matières grasses et de mauvais types de gras (saturés ou insaturés) peut augmenter le risque d'obésité et de maladie cardiométabolique. Rapportez-vous à la section «Gras totaux» de votre rapport pour votre apport quotidien recommandé en gras.

Votre perception du gras est typique.

Gène	Numéro rs
GLUT2	rs5400
Variant à risque	Votre variant
CT ou TT	СТ

Votre risque

Élevé

Recommandation

Puisque vous possédez la variante CT ou TT du gène GLUT2, vous courez un risque accru de surconsommation de sucre. Soyez conscient de cette tendance à consommer des aliments et boissons sucrés et essayez de maintenir votre apport en sucre ajouté en dessous de 5% de votre apport énergétique quotidien total. Un apport élevé en sucre ajouté est lié au surpoids et à l'obésité, aux maladies cardiométaboliques et au risque de caries dentaires.

Vous avez une forte préférence pour le sucré.

La préférence pour le sucré

La consommation de sucre est en partie déterminée par notre goût sucré et nos envies de manger certains aliments et boissons. Les préférences et les envies d'aliments et de boissons sucrées varient considérablement. De nombreux facteurs peuvent avoir un impact sur votre préférence pour les aliments sucrés, notamment l'âge auguel vous avez été initié aux sucreries et les associations psychologiques entre la consommation de ces aliments et certaines expériences de vie ou émotions. En plus des signaux « générateurs de plaisir » dans le cerveau émis en réponse à manger ou à boire quelque chose de sucré, il existe des zones spécialisées dans le cerveau qui régulent à la fois la prise alimentaire et les niveaux de glucose (sucre) dans le corps. La recherche a montré que votre consommation d'aliments sucrés peut être déterminée par une variante génétique qui régule la glycémie dans votre corps. Les personnes porteuses de la variante associée à une consommation de sucre plus élevée courent également un risque plus élevé de caries dentaires.

GLUT2

Le transporteur de glucose de type 2 (GLUT2) est impliqué dans la régulation du glucose (sucre) dans l'organisme. L'expression de ce gène a été trouvée dans des zones du cerveau impliquées dans le contrôle de la prise alimentaire. Les personnes qui possèdent la variante TT ou TC de ce gène semblent avoir une plus grande préférence pour les aliments et boissons sucrés et sont plus susceptibles de surconsommer du sucre. De plus, ils présentent un risque plus élevé de carie dentaire.**

*Eny KM et al. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genomics. 2008;33(3):355-60.
**Kulkarni GV et al. Association of GLUT2 and TAS1R2 genotypes with risk for dental caries. Caries Research 2013; 47:219-25

Aliments riches en sucres

	Teneur (g)
2 tasses de cappuccino glacé	56
1 cannette de Cola	36
1 tasse de jus d'agrumes, gelé, dilué	32
40 g de caramels	26
50 g de chocolat au lait	26
2 c. à soupe de sirop d'érable	24
10 fèves à la gelée	20
1 tasse de maïs soufflé au caramel	20
75 g de sucette glacée	10
1 c. à soupe de confiture	10
·	· ·

Source: Valeur nutritive de quelques aliments usuels (Santé Canada)

Grignoter entre les repas

Grignoter peut être bénéfique si les collations sont saines et tant que la personne ne dépasse pas l'apport calorique journalier recommandé pour maintenir un poids santé. Les collations saines peuvent aider avec le contrôle du poids, à réduire les envies alimentaires et à augmenter les niveaux d'énergie. Cependant, pour la majorité des gens, grignoter devient une habitude malsaine à cause du choix de collation et/ou qui mène à excéder l'apport calorique quotidien recommandé. Pour la santé et le bien-être, il est important de gérer les fringales émotionnelles et de viser à consommer des collations saines. Quelques raisons pour l'alimentation émotionnelle incluent l'ennui, l'habitude (par exemple, manger devant la télévision ou manger à certaines heures), le stress, la frustration, l'anxiété ou la solitude. Une étude* a démontré que certaines variations du gène MC4R sont associées à la probabilité de grignoter.

*Stutzmann F et al. Common genetic variation near MC4R is associated with eating behaviour patterns in European populations. Int J Obes. 2009;33:373-378.

MC4R

Le gène MC4R produit le récepteur de la mélanocortine de type 4, exprimé principalement au niveau de l'hypothalamus, une région du cerveau qui contrôle l'appétit et la faim. Le gène MC4R est important pour les voies cérébrales impliquées dans la régulation de l'appétit et de la faim. La recherche démontre que les individus ayant le variant CC ou CT sont plus susceptibles de grignoter et d'avoir un appétit augmenté.

Remplacer ces aliments	Par
Croustilles et sauce	Pain pita au blé entier avec houmous
Muffin	Muffin anglais au blé entire avec beurre d'arachide
Crème glacée avec garnitures	Yogourt faible en gras avec baies fraîches
Assortiment de noix et fruits secs	Céréales riches en fibre avec lait/ substitut du lait
Croustilles aux légumes	Légumes frais avec sauce faible en gras
Salade de pâtes	Salade mixte avec pois chiches
Nachos avec fromage	Craquelins de blé entier avec fromage faible en gras
Croustilles	Maïs soufflé
Tranche de pizza	La moitié d'un sandwich à la dinde avec légumes

Vos résultats

Gène	Numéro rs
MC4R	rs17782313
Variant à risque	Votre variant
CC ou CT	Π

Votre risque

Typique

Recommandation

Puisque vous possédez le génotype TT, le risque de grignoter entre les repas est typique. Afin de maintenir un métabolisme sain, il est recommandé de laisser un intervalle de 6 heures entre les repas et d'écouter les messages de faim internes que nous envoie notre corps comme un manque d'énergie, des changements d'humeur, des grondements d'estomac, des faiblesses, des étourdissements, ou un mal de tête. Finalement, il est recommandé de choisir des collations saines qui ne sont pas denses en calories.

Votre tendance à grignoter entre les repas est typique.

LES HABITUDES ALIMENTAIRES | PAGE 36 LES HABITUDES ALIMENTAIRES | PAGE 37

Gène	Numéro rs
BDNF	rs6265
Variant à réponse	Votre variant
AA ou AG	AA

Votre réponse

Augmenté

Implications

Puisque vous possédez le variant AA ou AG du gène BDNF, vous êtes plus susceptible de ressentir plus de plaisir et d'améliorations de l'humeur après avoir fait de l'exercice. Vous avez aussi tendance à percevoir un niveau d'effort physique inférieur au niveau perçu par les individus ayant le variant GG. Tous ensemble, ces réponses à l'exercice entraînent une motivation accrue pour faire de l'exercice et augmentent la probabilité que vous allez faire de l'exercice régulièrement. Par conséquent, vous êtes à un avantage génétique en ce qui concerne la motivation pour commencer ou continuer de faire de l'exercice.

Vous avez une motivation intrinsèque accrue pour faire de l'exercice.

La motivation pour faire de l'exercice

L'attitude d'une personne envers l'exercice et l'effet qu'elle a sur l'humeur peut affecter signifiquement les chances de commencer ou de maintenir une vie active. La recherche démontre que les personnes ayant le variant AA ou AG du gène BDNF sont plus probables d'éprouver un changement positif de l'humeur et d'aimer faire de l'exercice. Ils percoivent aussi leur niveau d'effort physique à être plus bas que ceux ayant le variant GG.* Tous ses facteurs ont un effet sur la motivation pour faire de l'exercice. Une vie active offre plusieurs bienfaits comme l'amélioration de la fonction cognitive et un risque réduit de nombreuses maladies grâce à l'amélioration du taux de graisse corporelle, de la glycémie, de la tension artérielle et du profil lipidique.

*Bryan A et al. A transdisciplinary model integrating genetic, physiological, and psychological correlates of voluntary exercise. Health Psychol. 2007;26:30-39.
Caldwell Hooper A et al. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J Behav Med. 2014;37(6):1180-92.

BDNF

Le facteur neurotrophique issu du cerveau, aussi connu sous le nom de BDNF, est une protéine codée par le gène BDNF. Cette protéine agit dans les régions du cerveau qui influent le système nerveux, musculaire et les vaisseaux sanguins. À cause de la complexité de l'endurance mentale et de la réponse psychologique à l'exercice, le gène BDNF est un des facteurs génétiques qui peut influer le comportement lié à l'exercice futur. Néanmoins, la recherche démontre que ceux ayant le variant AA ou AG ressentent plus de plaisir et une amélioration de l'humeur après avoir fait de l'exercice et perçoivent un effort physique moindre durant l'exercice par rapport à ceux sans ces variants.

Les comportements liés à l'exercice

Faire des exercices peut réduire la tension artérielle, faire baisser la glycémie, améliorer les taux de cholestérol, combattre la dépression ainsi que d'autres bienfaits. La recherche démontre que les gènes CYP19A1 et LEPR ont un impact sur la probabilité de s'adonner à une activité physique.*

*De Moor MH et al. Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc. 2009;41:1887-95.

CYP19A1 & I FPR

Le gène CYP19A1 code l'enzyme aromatase, une enzyme responsable de certaines conversions hormonales. La voie physiologique exacte est toujours mal comprise. Cependant, la recherche actuelle démontre que ceux ayant le variant AA ou GA du gène CYP19A1 ont de meilleures chances de faire de l'exercice par rapport aux personnes ayant le variant GG. De plus, le gène LEPR code la protéine du récepteur de la leptine, une protéine qui aide à réguler le poids corporel. Cette association entre les variations génétiques du gène LEPR et les comportements liés à l'exercice provient du rôle du gène dans le bilan énergétique. Les personnes ayant le génotype TT ou GT du gène LEPR ont plus tendance à faire de l'exercice comparé aux personnes ayant le génotype GG.

Vos résultats

Gènes CYP19A1 **LEPR**

Numéro rss rs2470158 rs12405556

Variant à réponse

Votre variants

Algorithme

GG GT

Votre réponse

Typique

Implications

Basé sur vos variants des gènes LEPR et CYP19A1, vous avez une tendance typique de faire de l'exercice. Établissez des objectifs SMART (spécifique, mesurable, atteignable, réaliste, temporellement défini) tous les mois et considérez l'utilisation d'imagerie mentale; ceci peut augmenter votre motivation. Avoir un partenaire d'entraînement peut aussi augmenter la probabilité de s'adonner à l'activité physique.

Vous avez une propension typique à faire de l'activité physique.

Gène	Numéro rs
ACTN3	rs1815739
Variant à réponse	Votre variant
CC ou TC	CC

Votre réponse

Ultra

Implications

Comme ce marqueur n'a pas été détecté dans votre échantillon, il est conseillé de suivre les conseils généraux. Essayez de participer à des activités de renforcement au moins deux jours par semaine. Les activités de renforcement sont importantes pour la construction et le maintien de la masse musculaire.

Vous avez un avantage génétique aux sports de puissance.

Puissance et force physique

Les activités de renforcement sont des activités qui développent la musculature et les os. La recherche démontre que les exercices de renforcement musculaire peuvent aussi être bénéfiques à la santé du cerveau, aider à réguler la glycémie, améliorer la posture et aider à atteindre et maintenir un poids santé. Les exercices de poids corporel tels que faire des pompes, des abdominaux et des fentes, le soulèvement des poids et le travail avec bandes élastiques sont des exemples d'activités de renforcement. Quelques activités de tous les jours sont aussi considérées des exercices de renforcement comme le jardinage, transporter les sacs d'épicerie et monter des escaliers en courant. Une étude* a démontré que le gène ACTN3 a un impact sur la prédisposition génétique à exceller dans les sports de puissance.

*Ma F et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One. 2013;8:e54685.

ACTN3

Il existe deux types de fibres dans le muscle squelettique: les fibres S (slow) et les fibres F (fast). Les fibres F développent une force et une vitesse plus importante, nécessaires pour les séances d'activité intense comme le sprint. Les fibres S peuvent contracter longtemps et à plus faible intensité et sont utilisées pour la marche et le jogging. Le gène ACTN3, codant la protéine alpha-actinine de type 3, est exprimé exclusivement dans les fibres F. Donc, certaines variations de ce gène peuvent être bénéfiques pour les exercices ou les activités exigeant de la puissance. En particulier, les individus ayant le variant CC du gène ACTN3 sont plus susceptibles d'exceller en sport de puissance. Ceux ayant le génotype TC ont un potentiel en matière de puissance musculaire légèrement augmenté.*

*Garton and North. The effect of heterozygosity for the ACTN3 null allele on human muscle performance. Med Sci Sports Exerc. 2015 [Epub ahead of print].

L'endurance

Les activités d'endurance font référence aux exercices « cardio » ou aérobiques qui font augmenter votre fréquence cardiaque, comme la marche rapide, le jogging, le vélo, la natation ou la danse. Votre VO2 max, ou capacité aérobie maximale, est une mesure de la quantité maximale d'oxygène que votre corps peut traiter pendant 1 minute d'exercice, et c'est un marqueur de la forme physique. Un VO2 max plus élevé se traduit généralement parun avantage de performance lorsqu'il s'agit d'activités d'endurance, bien que de nombreux facteurs jouent un rôle. La recherche montre que plusieurs gènes ont un impact sur votre prédisposition génétique à exceller dans les activités d'endurance.* Dans certains de ces gènes, il a également été démontré que certaines versions du gène améliorent plus efficacement votre capacité d'endurance en réponse à un entraînement d'endurance et de plus grande intensité par rapport à d'autres versions du gène.**

*Ahmetov I et al. Genome-wide association study identifies three novel genetic Numéro rss associated with elite endurance performance. Biol Sport. 2015;32(1):3-9. doi:10.5604/20831862.1124568.
Santiago C et al. Trp64Arg polymorphism in ADRB3 gene is associated with elite endurance performance. British Journal of Sports Medicine. 2011;45:147–8.
**Zarebska A et al. The GSTP1 c.313A>G polymorphism modulates the cardiorespiratory response to aerobic training. Pip. Sport 204431242 125.

training. Biol Sport. 2014;31:261-266.
He et al. NRF2 genotype improves endurance capacity in response to training. Int J Sport Med. 2007;

Stefan et al. Genetic Variations in PPARD and PPARGC1A Determine Mitochondrial Function and Change in

NFIA-AS2, ADRB3, NRF2, GSTP1 & PGC1a

NFIA-AS2, ADRB3, NRF2, GSTP1 et PGC1a sont tous impliqués dans des processus physiologiques qui ont un impact sur vos capacités d'endurance. Les personnes ayant la variante CC dans le gène NFIA-AS2 ont tendance à avoir un VO2 max plus élevé, ce qui est avantageux pour les exercices d'endurance. Les variations du gène ADRB3 sont plus fréquentes chez les athlètes d'endurance de classe mondiale que chez les sujets-témoin non sportifs. Le gène NRF2 joue un rôle important dans la production de mitochondries, qui sont en quelque sorte les centrales électriques de la cellule. Ceux possédant la variante AA améliorent leur endurance en réponse à l'entraînement physique. La variation du gène GSTP1 est également associée à des différences dans les réponses VO2 max à l'entraînement aérobie et les individus avec les variantes GG et GA ont de plus grandes améliorations. Enfin, la variante GG du gène PGC1a est associée à une meilleure aptitude aérobie en réponse à un entraînement d'endurance. Ensemble, ces gènes peuvent prédire votre avantage génétique pour exceller dans les activités d'endurance et les sports.

Vos résultats

Gènes	Numéro rss
NFIA-AS2 ADRB3	rs1572312 rs4994
NRF2	rs12594956
GSTP1	rs1695
PGC1a	rs8192678

Variant à réponses Votre variants

Algorithme

CC TTCA AG AA

Votre réponse

Typique

Implications

Sur la base de votre ADN, votre potentiel d'endurance est typique Vous devrez peut-être augmenter votre entraînement dans une plus grande mesure qu'une personne ayant un avantage génétique pour atteindre le même niveau de forme cardiovasculaire. Essayez de faire de 150 à 300 minutes d'exercice d'intensité modérée à intense par semaine. Cela peut être atteint grâce à 30 à 60 minutes d'exercices aérobiques d'intensité modérée à intense cinq jours par semaine, comme la marche rapide ou le cyclisme d'intensité modérée la course, les sports d'équipe ou le cyclisme ou la natation d'intensité plus élevée.

Votre potentiel d'endurance est typique.

Gène	Numéro rs
ACTN3	rs1815739
Variant à risque	Votre variant
TC ou TT	CC

Votre risque

Typique

Implications

Puisque vous possédez la variante CC du gène ACTN3, vous avez une susceptibilité typique aux lésions musculaires après un exercice intense ou inhabituel. Lorsque vous démarrez un nouveau programme d'exercice, assurezvous de prendre les précautions nécessaires, comme l'échauffement et la récupération, et augmentez progressivement l'intensité de l'exercice au fil du temps. Le repos et la récupération sont également importants - si vous ressentez une douleur extrême après une séance d'entraînement, arrêtez de travailler ce groupe musculaire jusqu'à ce qu'il ne soit plus douloureux. Il est également important d'assurer un apport adéquat en protéines tout au long de la journée pour la réparation musculaire et de consommer beaucoup d'aliments végétaux riches en antioxydants tels que les fruits, les légumes, les noix et les graines.

Assurez-vous de bien faire les exercices de réchauffement et de récupération après l'effort.

Dommages musculaires

Les douleurs musculaires d'apparition retardée (DMAR) sont couramment ressenties dans les jours qui suivent un exercice inhabituel ou intense, et elles se caractérisent par des muscles tendres et raides qui entraînent également une réduction temporaire de la force et de l'amplitude des mouvements. Elles résultent de lésions musculaires induites par l'exercice, qui, à de faibles niveaux, sont un stimulus positif pour la croissance musculaire et l'augmentation de la force. Cependant, des dommages excessifs ou une récupération inadéquate peuvent causer des douleurs persistantes et inutiles qui peuvent entraver les gains de force et augmenter le risque de développer des blessures à l'effort. Les DMAR sont causées par le stress oxydatif, l'inflammation et la dégradation des protéines musculaires. Il existe une variabilité considérable dans la réponse d'un individu à un exercice qui endommage les muscles, en raison de facteurs tels que l'âge, les antécédents d'exercice et la génétique. La recherche montre que la variation du gène ACTN3 influence la susceptibilité aux lésions musculaires après un exercice prolongé, intense ou inhabituel.* Le type d'activité induisant le plus de dommages musculaires est le plus souvent la résistance à haute intensité ou l'exercice de type puissance.

ACTN3

Le gène ACTN3 code pour la protéine alpha-actine 3, qui joue un rôle clé dans la contraction des fibres musculaires à contraction rapide ou de type puissance lors de courtes périodes d'activités intenses, telles que le sprint ou la levée de poids lourds. La variation génétique d'ACTN3 affecte l'expression de la protéine résultante dans les fibres à contraction rapide, et les individus qui portent au moins une copie du variant T produisent une protéine ACTN3 fonctionnant moins bien, ce qui a été associé à un risque accru de lésions musculaires. Par exemple, une étude récente a montré que les athlètes d'endurance expérimentés possédant la variante TC ou TT présentaient des niveaux plus élevés de marqueurs de lésions musculaires après un marathon de compétition que les individus avec la variante CC. Une tendance similaire a été observée dans une étude où de jeunes hommes en bonne santé s'exercaient en laboratoire à des exercices d'extension du genou et travail des quadriceps.**

*Del Coso et al. ACTN3 genotype influences exercise-induced Dommages musculaires during a marathon competition. European Journal of Applied Physiology. 2017;117:409–416.

**Vincent et al. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. Journal of Applied Physiology (1985). 2010;109:564-573.

La douleur

La douleur est une sensation désagréable stimulée par le système nerveux qui peut être légère à sévère. Le seuil de la douleur est un terme qui fait référence au point où la personne commence à ressentir une douleur à un niveau intolérable. La perception de la douleur est subjective. La tolérance à la douleur correspond au niveau maximal d'intensité qu'une personne peut tolérer. Il existe des différences dans la façon dont, et au dégrée que l'on ressent la douleur. En général, les hommes ont un niveau de tolérance à la douleur plus élevé que les femmes. La recherche démontre que des variations du gène COMT ont un effet sur la perception de la douleur.*

 * Zubieta et al. COMT val[sup158]met genotype affects $\mu\text{--}$ Opioid Neurotransmitter Responses to a Pain Stressor. Sci. 2003;299:1240-1243. Sitessor. 301. 2003,299.1240-1240.
Tammimäki A, Männistő PT. Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics. 2012;22(9):673-91.

COMT

Le gène catechol-o-methyltransferase est impliqué dans les voies de la douleur du corps humain. Pour ces raisons, les chercheurs ont étudié comment des variations de ce gène peuvent influencer la perception de la douleur. Les études démontrent que le gène COMT est un élément de prévision significatif de la tolérance à la douleur. Spécifiquement, les individus ayant le variant AA ont tendance à ressentir plus de douleur comparé à ceux ayant les variants GG ou GA.

Vos résultats

Gène	Numéro rs
COMT	rs4680
Variant à réponse	Votre variant

GG ou GA

Votre réponse

GA

Augmenté

Implications

Puisque vous possédez la variante GG ou GA du gène COMT, vous avez une tolérance accrue à la douleur, ce qui signifie que vous avez tendance à ressentir moins de douleur. Pour augmenter encore plus votre tolérance à la douleur, il existe plusieurs stratégies que vous pouvez utiliser, telles que la pratique de la respiration profonde et la transformation des pensées négatives en pensées positives lorsque vous ressentez de la douleur. Par exemple, quand vous courez, essayez de ne plus vous concentrer sur l'inconfort que vous pourriez ressentir dans vos muscles et concentrez-vous sur l'impact positif de la course sur votre santé. Faire de l'exercice plus souvent pour renforcer la tolérance à l'inconfort peut également aider à diminuer la perception de la douleur pendant l'activité physique. Assurez-vous de ne pas faire de l'exercice avec la douleur, car cela pourrait provoquer des blessures.

Vous avez une tolérance augmentée à la douleur.

Africains sur 10

possèdent le variant

Vos résultats

Gène	Numéro rs
WNT16	rs2707466
Variant à risque	Votre variant
CC ou TC	TC

Élevé

Votre risque

Implications

Puisque vous possédez la variante CC ou TC du gène WNT16, vous avez un risque élevé d'avoir une densité osseuse faible et de fracture osseuse. Les protocoles d'exercice qui produisent des forces mécaniques élevées dans le squelette peuvent augmenter la densité et la résistance osseuses. Par exemple, les sports comme le basket-ball et le volley-ball, ou les cours de fitness qui incluent la course ou le saut peuvent tous contribuer à améliorer la densité osseuse. De plus, il a été démontré que les exercices de résistance utilisant votre propre poids corporel, des poids libres ou des machines. renforcent les os. Les activités quotidiennes telles que monter les escaliers, faire des courses ou faire du jardinage aident également à maintenir la solidité des os. Essayez de faire des exercices avec des poids ou stance presque tous les jours de la semaine. Assurez-vous de demander l'avis d'un expert avant d'essaver de nouveaux exercices ou des exercices plus difficiles. Il est également important d'assurer des apports adéquats en protéines, calcium, vitamine D et antioxydants pour une santé osseuse optimale.

Vous avez un risqué élevé de faible densité osseuse.

Densité osseuse

L'ostéoporose et l'ostéopénie sont des maladies osseuses courantes qui surviennent plus souvent chez les personnes âgées mais peuvent se développer à tout âge. Les deux impliquent une détérioration des tissus, entraînant une faible densité minérale osseuse (DMO) et une résistance osseuse compromise. L'ostéoporose peut se développer sans aucun signe ni symptôme et se caractérise par une faible DMO et un risque élevé de fracture osseuse. L'ostéopénie est également caractérisée par une DMO réduite et peut prédire le développement éventuel de l'ostéoporose et le risque de fracture. Les fractures sont associées à une hospitalisation. ainsi qu'à une mobilité et une autonomie réduites. Nos os nous soutiennent, protègent nos organes et nous permettent de bouger. Nous stockons également des minéraux tels que le calcium et le phosphore dans nos os, qui les maintiennent solides, et nous les libérons dans la circulation lorsqu'ils sont nécessaires à d'autres tissus. Le pic de masse osseuse est atteint au début de l'âge adulte et diminue progressivement avec l'âge. Le taux de perte osseuse est influencé par des facteurs tels que la nutrition et l'exercice, certaines formes d'exercice ralentissant le taux de perte et même augmentant la DMO et la solidité osseuse. La variation génétique contribue également aux différences de niveaux de DMO entre les individus. La recherche montre qu'une variante génétique du gène WNT16 est associée à un risque accru de faible DMO et à un risque accru de fracture.*

*Zheng et al. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLOS Genetics. 2012:8; e1002745.

WNT16

WNT16 code pour une protéine appartenant à la famille des gènes WNT, qui est impliquée dans la régulation de la formation osseuse. Le WNT16 a été associé à la masse osseuse et à la structure des os à tous les stades de la vie, et il est un déterminant important de la DMO, de la solidité osseuse et du risque de fracture. Les individus qui possèdent la version CC ou TC du gène WNT16 sont prédisposés à avoir une DMO plus faible et un risque plus élevé de fracture osseuse, par rapport à ceux avec la variante TT. Il est particulièrement important pour les personnes présentant la variante CC ou TC de s'adonner à des exercices de mise en charge et de s'assurer qu'elles consomment des quantités adéquates de protéines, de vitamine D et de calcium qui sont des nutriments essentiels pour la santé des os.

Exercices impliquant des charges

Marche	Tennis
Randonnée	Sports d'équipe impliquant course et sauts
Course	

Exercices de résistance

Pompes	Levée de poids
Fentes	Machines avec des poids
Bandes élastiques	Squats

Blessure au tendon d'Achille

Votre tendon d'Achille est l'un des tendons les plus volumineux et puissants du corps humain. Il est l'un des tendons les plus gros et les plus puissants du corps humain. Ce tendon permet la pointe et l'extension du pied. Malheureusement, les blessures du tendon d'Achille sont très communes et suivent des exercices qui exigent une poussée d'énergie. Les symptômes éprouvés incluent la douleur extrême, la tendresse, l'enflure ou la rigidité au long du dos du pied et au-dessus du talon. Le risque de développer une blessure du tendon d'Achille dépend, en partie, du gène COL5A1.*

*September AV et al. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Brit J Sport Med. 2009;43:357–365.

COL5A1

Le gène COL5A1 régule la production d'une protéine, appelée collagen alpha-1(V) chain, ce qui, à son tour, est essentiel pour la formation du collagène. Le collagène est la protéine qui est utilisée pour la production des tissus conjonctifs du corps. À cause de son rôle, les scientifiques ont maintenant étudié l'association entre ce gène et le risque de blessure au tendon d'Achille. Il est maintenant démontré qu'avoir le variant CT ou TT accroît le risque de blessure au tendon d'Achille.

Echauffement: étirements dynamiques

Fentes latérales	La pose du guerrier
Levées du talon	Marche proprioceptive (talons-orteils)
Fentes marchées jambe arrière tendue	Mountain climber flexion de hanches en alternance position planche

Exercices de renforcement des jambes

Exercices à risques élevés pour le tendon d'Achille

Saut de boîte	Sprint avec dénivelé
Pliométrie	Poussée de traineau

Africains sur 10 possèdent le variant à risque

Vos résultats

Gène	Numéro rs		
COL5A1	rs12722		
Variant à risque	Votre variant		
CT ou TT	CC		

Votre risque

Typique

Implications

Puisque vous possédez le variant CC, le risque de blessure du tendon d'Achille est typique. Afin de diminuer le risque, soyez conscient des activités exigeant une poussée d'énergie ou une hyper-extension de ce tendon telle que la course en montée. Les mesures préventives incluent l'étirement des mollets et l'augmentation de la durée des échauffements et des refroidissements.

Vous avez un risque typique de blessure au tendon d'Achille.

Faits saillants additionnels en lien avec la génétique, la santé et le bien-être

Le tableau ci-dessous comprend des marqueurs génétiques qui fournissent des informations supplémentaires sur la santé et le bien-être. Ces informations proviennent d'études de recherche sur la variation génétique et ses liens avec diverses issues de santé, tels l'association d'un marqueur génétique avec un niveau plus élevé d'un nutriment dans le sang. Cette section diffère des sections précédentes du rapport, qui se concentrent sur les marqueurs génétiques qui modifient la façon dont nous réagissons au régime alimentaire ou à l'exercice pour avoir un impact sur la santé. Par conséquent, actuellement, aucune recommandation de régime personnalisé ou de forme physique n'est donnée pour les marqueurs du tableau suivant. Discutez avec votre professionnel de la santé des stratégies générales que vous pouvez mettre en œuvre pour optimiser votre santé compte tenu de ces informations supplémentaires liées à la santé.

	Gène, numéro rs	Fonction	Risque/ réponse variant	Votre variant	Votre risque/ réponse	Implications	
Nutriments							
Magnesium	TRPM6, rs11144134	TRPM6 est un transporteur de magnésium	TT ou CT	СТ	Élevé	Votre risque de carence en magnesium est élevé.	
Zinc	SLC30A3, rs11126936	SLC30A3 est un transproteur du zinc	CC	CC	Élevé	Votre risque de carence en zinc est élevé.	
Amidon	AMY1, rs4244372	AMY1 est une enzyme salivaire pour la digestion de l'amidon	AA	AT	Typique	Votre capacité à métaboliser l'amidon est typique.	
Vitamine E	Intergenique – rs12272004	Variant non loin d'un gene codant pour une des composantes du HDL	CC ou CA	CA	Élevé	Votre risque de carence en vitamin E est élevé.	
		Infl	ammation et c	apacité antid	oxidante		
Adiponectine	ADIPOQ, rs17366568	Adiponectine est une hormone anti- inflammatoire	GA ou AA	GA	Réduit	Vos niveaux d'adiponectine sont probablement diminués.	
Interleukine-6	IL6, rs1800795	IL6 est un biomarqueur d'inflammation	GG ou GC	GG	Élevé	Vos niveaux d'interleukine-6 sont probablement plus élevés que la moyenne.	
Superoxyde Dismutase 2	SOD2, rs4880	SOD2 est un antioxidant fabriqué par l'organisme	TT ou CT	СТ	Réduit	Votre production de l'enzyme SOD2, qui affecte la capacité antioxidante, est diminuée.	
Oxyde Nitrique	NOS3, rs1799983	NOS3 produit l'oxide nitrique ui possède des propriétés antioxidantes	GT ou TT	GG	Typique	Vos niveaux d'oxide nitrique sont probablement typique.	

	Gène, numéro rs	Fonction	Risque/ réponse variant	Votre variant	Votre risque/ réponse	Implications		
Habitudes alimentaires								
Susceptibilité à la faim	NMB, rs1051168	NMB est impliqué dans la régulation du comportement alimentaire	TT	GT	Typique	Votre susceptibilité à la faim est typique.		
	Gestion du poids							
Maintien de la perte de poids à long terme	ADIPOQ, rs17300539	Adiponectine régule le métabolisme des gras et la sensibilité à l'insuline	AA ou AG	GG	Typique	Votre capacité à maintenir la perte de poids à long terme est typique.		
			Sommeil e	t style de vie	е			
Sommeil court	CLOCK, rs1801260	CLOCK regule le rythme circadien	CC ou TC	TT	Typique	Vous avez un risque typique de sommeil court.		
Sensibilité à l'alcool	ALDH2, rs671	ALDH2 est impliqué dans le métabolisme de l'alcool	AA ou AG	GG	Typique	Vous avez une sensibilité typique aux effets de l'acool.		
			Santé cardi	ométaboliqu	ue			
Cholestérol Total	APOA5, rs662799	APOA5 est un composant du HDL	CC ou TC	TT	Typique	Vous avez un risque typique de cholestérol total élevé.		
Cholestérol LDL	ABCG8, rs6544713	ABCG8 transporte le cholestérol	TT ou CT	CC	Typique	Vous avez un risque typique de cholestérol LDL élevé.		
Cholestérol HDL	ABCA1, rs1883025	ABCA1 est impliqué dans le transport du cholestérol	TT ou TC	CC	Typique	Vous avez un risque typique de bas niveaux de cholestérol HDL.		
Triglycérides	ANGPTL3, rs10889353	ANGPTL3 est impliqué dans le métabolisme des lipides	AA ou CA	AA	Élevé	Vous avez un risque augmenté de triglycérides élevés.		
Glucose à jeûn	ADCY5, rs11708067	ADCY5 est impliqué dans la secretion de l'insuline	AA ou GA	AA	Élevé	Vous avez un risque augmenté de glucose à jeûn élevé.		
Insuline	IRS1, rs2943641	IRS1 est impliqué dans les signaux d'insuline	CT ou CC	СТ	Élevé	Vous avez un risque augmenté de concentrations d'insuline élevées.		
Blessures								
Coiffe des	MMP1, rs1799750	MMP1 et MMP3 sont impliqués	Algorithme	GG	- Élevé	Votre risqué de blessures à la coiffe des rotateurs est élevé.		
rotateurs	MMP3, rs3025058	dans le remodelage des tissus		DelA				

Le conseil consultatif scientifique international

Ahmed El-Sohemy, PhD

Dr El-Sohemy est le fondateur de Nutrigenomix inc. Il en est aussi le conseiller scientifique en chef en plus d'être le président du conseil consultatif scientifique international, composé des principaux leaders d'opinion dans le domaine de la nutrigénomique. Dr El-Sohemy a obtenu son doctorat de l'université de Toronto, puis une bourse postdoctorale de la Harvard School of Public Health. Il est titulaire d'une chaire de recherche du Canada en génomique nutritionnelle à l'Université de Toronto et siège au Conseil consultatif des sciences de Santé Canada. Dr El-Sohemy a publié plus de 150 articles dans les meilleures revues scientifiques et médicales évaluées par les pairs. Il a aussi donné plus de 200 conférences invitées partout à travers le monde. Il est membre du comité éditorial de 10 revues scientifiques, en plus d'avoir été expert-réviseur pour plus de 30 différentes revues scientifiques et médicales et 12 organismes subventionnaires de recherche. Enfin, Dr El-Sohemy a été membre de groupes d'experts-conseils internationaux et de conseils consultatifs scientifiques pour plusieurs organisations. Dr El-Sohemy est récipiendaire de plusieurs prix d'excellence en recherche octroyés par la Canadian Nutrition Society et le American College of Nutrition.

David Castle, PhD

Dr Castle est professeur titulaire de la chaire de recherche sur l'innovation dans les sciences de la vie à l'université d'Édimbourg. Sa recherche porte sur l'engagement démocratique, la réglementation et la gouvernance, la propriété intellectuelle et la gestion des connaissances. Professeur Castle est un expert de renommée mondiale sur les aspects sociaux, éthiques et juridiques de la nutrigénomique. Il est l'auteur du livre « Science, Society, and the Supermarket : The Opportunities and Challenges of Nutrigenomics. » Il a beaucoup publié sur les dimensions sociales de la science, des technologies et de l'innovation. Son travail et son expertise sur les initiatives de recherche stratégique et en gestion de projet de recherche lui ont valu plusieurs distinctions importantes. Il a été consultant pour le gouvernement et pour l'industrie en matière d'impact des politiques et des programmes nationaux de transfert de technologie, de la propriété intellectuelle et des stratégies de gestion des connaissances, et sur les considérations non scientifiques en matière de régulation de la science et de la technologie.

Lynnette R Ferguson, D.Phil. (Oxon.), DSc

Dre Ferguson est directrice du programme Nutrigenomics New Zealand. Sa recherche sur les dommages et les mécanismes de réparation de l'ADN lui a permis d'obtenir un doctorat de l'université d'Oxford. Par la suite, elle retourne en Nouvelle-Zélande pour travailler sur la cancérogenèse au Auckland Cancer Society Research Centre. Désormais, sa recherche porte sur l'interaction entre les gènes et l'alimentation, spécialement dans le développement des maladies chroniques telles que les affections abdominales inflammatoires. En tant que directrice du programme Nutrigenomics New Zealand, elle travaille en collaboration avec plusieurs scientifiques à l'intégration des outils de nutrigénomique à la scène scientifique néozélandaise. Elle a supervisé plus de 30 étudiants et compte plus de 300 publications évaluées par les pairs. Dre Fergusson est éditrice en chef pour la revue Mutation Research : Fundamental and Molecular Mechanisms of Mutation, en plus d'être membre de comités éditoriaux de plusieurs autres grandes revues scientifiques.

J. Bruce German, PhD

Dr German est directeur du Foods for Health Institute de l'université de Californie à Davis (http://ffhi.ucdavis. edu/) et est professeur en science et technologie de l'alimentation. Dr German a obtenu son doctorat de l'université Cornell avant de se joindre au corps professoral de l'université de Californie (Davis) en 1988. En 1997, il devient le premier titulaire de la chaire de recherche John E. Kinsella Endowed Chair in Food, Nutrition and Health. Sa recherche en nutrition personnalisée porte spécifiquement sur la structure et la fonction des lipides alimentaires, sur l'impact des composants des produits laitiers dans l'alimentation et sur la santé, et sur l'application de l'évaluation métabolique dans le but de personnaliser l'alimentation et la santé. Dr German a publié plus de 350 articles et détient plusieurs brevets pour des technologies et des applications de composants alimentaires bioactifs. Des articles scientifiques publiés par les membres de son laboratoire comptent parmi les 5 plus cités dans le domaine.

David Jenkins, MD, DSc, PhD

Dr Jenkins a obtenu un doctorat de médecine et un Ph.D. de l'université d'Oxford. Il est actuellement professeur dans les départements de médecine et de sciences de la nutrition à l'Université de Toronto. Il pratique la médecine au sein du département d'endocrinologie et du métabolisme, en plus d'être directeur du centre de nutrition clinique et de modification des facteurs de risque de l'hôpital St. Michael's. Dr Jenkins a publié plus de 300 articles évalués par les pairs et a donné des centaines de conférences invitées dans le monde. Il a siégé à de nombreux comités internationaux servant à l'établissement des lignes directrices sur le traitement du diabète et, plus récemment, du nouveau système d'apports nutritionnels recomman dés (ANR) conjoint des États-Unis et du Canada de la National Academy of Sciences. Son équipe a été la première à définir et à explorer le concept d'index glycémique des aliments en plus de démontrer l'ampleur de l'effet métabolique des fibres solubles visqueuses. Il a reçu de nombreuses récompenses nationales et internationales reconnaissant sa contribution à la recherche en nutrition. Dr Jenkins est titulaire d'une chaire de recherche du Canada en étude de la nutrition et du métabolisme.

Jose Ordovas, PhD

Dr Ordovas est professeur de nutrition et directeur du laboratoire de nutrigénomique au United States Department of Agriculture, Human Nutrition Research Center on Aging de l'université Tufts de Boston. Après avoir obtenu son doctorat de l'université de Saragosse en Espagne, il fait des stages postdoctoraux à l'université Harvard, au Massachusetts Institute of Technology et à l'université Tufts. La recherche de Dr Ordovas porte sur les facteurs génétiques prédisposant aux maladies cardiovasculaires et leur interaction avec des facteurs environnementaux. Il a publié environ 700 articles évalués par les pairs, en plus d'avoir écrit de nombreuses revues de littérature et édité cinq livres sur la nutrigénomique. Il a été conférencier invité à des centaines de rencontres internationales et est présentement membre de l'Institute of Medicine's Food and Nutrition Board (National Academies). Il est rédacteur en chef pour la revue Current Opinion in Lipidology (Genetics Section), en plus de faire partie de comités éditoriaux pour plusieurs revues scientifiques. Dr Ordovas est un membre honorifique de la société espagnole d'athérosclérose en plus d'avoir recu d'autres distinctions pour sa contribution au domaine de la nutrigénomique.

Ben van Ommen, PhD

Dr van Ommen est directeur de la Nutrigenomics Organisation (NuGO) et est chercheur principal au TNO, un des plus grands organismes de recherche indépendants dans le domaine de la nutrition au monde. Il est également directeur du programme de biologie des systèmes au TNO et y dirige les activités de recherche sur la nutrigénomique, la nutrition globale, et la santé et la médecine personnalisées. Ses travaux de recherche portent sur l'exploitation de la biologie des systèmes pour atteindre la santé métabolique et pour cerner les maladies métaboliques. Par sa recherche, il tente de comprendre l'ensemble des processus permettant le maintien de la santé optimale en évitant les maladies sous-phénotypiques, en plus de développer de nouveaux biomarqueurs et de nouvelles stratégies de traitement.

Nanci Guest, PhD, RD, CSCS

Dr. Nanci Guest est diététiste du sport, coach d'entraînement personnel certifiée et spécialiste certifiée de la force et du conditionnement physique et elle travaille en pratique privée dans ce domaine depuis 20 ans. Elle a complété son doctorat et son stage postdoctoral dans le domaine de la nutrigénomique, de la santé et de la performance sportive à l'Université de Toronto. Elle a obtenu son baccalauréat en agriculture et diététique et sa maîtrise en sciences de la nutrition avec une spécialisation en nutrition sportive à l'Université de la Colombie-Britannique. Dr. Guest a publié ses recherches dans des revues de premier plan, présenté lors de conférences internationales et a été invitée à donné des dizaines de conférences à travers le monde. Dr. Guest est consultante mondiale auprès d'athlètes et d'équipes professionnels et amateurs. Elle a été diététiste en chef aux Jeux olympiques de Vancouver 2010 et aux Jeux panaméricains de Toronto 2015 et a été consultante auprès de divers athlètes canadiens et internationaux en vue des Jeux olympiques de Londres, Sotchi, Rio et PyeongChang. Elle a également participé à la création de directives nutritionnelles pour les athlètes pour le Comité international olympique.

Les rapports de Nutrigenomix® se veulent informatifs et ne sont pas destinés à être utilisés comme conseils médicaux. Les recommandations fournies dans les rapports ne peuvent pas être utilisées pour traiter, diagnostiquer ou guérir des conditions médicales ou maladies. Les clients ayant des conditions médicales ne devraient pas modifier ni arrêter leurs médications ou tout autre traitement sans d'abord consulter leur médecin. Les recommandations des rapports de Nutrigenomix® ne sont pas destinées aux enfants ni aux femmes enceintes ou allaitantes. Le panneau Nutrigenomix de santé et de bien-être n'a pas été approuvé par la Food and Drug Administration (FDA, « Agence américaine des produits alimentaires et médicamenteux ») des États-Unis. Pour toutes questions, contactez-nous à info@nutrigenomix.com. Pour les conditions d'utilisation et la politique de confidentialité, référez-vous à notre site Web au www.nutrigenomix.com

© Copyright 2021 Nutrigenomix Inc. All rights reserved.