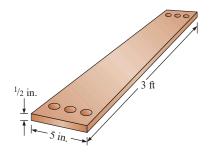


**EXAMPLE 3.3** What is the resistance of a copper bus-bar, as used in the power distribution panel of a high-rise office building, with the dimensions indicated in Fig. 3.8?

## Solution:


$$A_{\rm CM} \begin{cases} 5.0 \text{ in.} = 5000 \text{ mils} \\ \frac{1}{2} \text{ in.} = 500 \text{ mils} \\ A = (5000 \text{ mils})(500 \text{ mils}) = 2.5 \times 10^6 \text{ sq mils} \\ = 2.5 \times 10^6 \text{ sq mils} \left( \frac{4/\pi \text{ CM}}{1 \text{ sq mil}} \right) \\ A = 3.185 \times 10^6 \text{ CM} \\ R = \rho \frac{l}{A} = \frac{(10.37 \text{ CM} \cdot \Omega / \text{ft})(3 \text{ ft})}{3.185 \times 10^6 \text{ CM}} = \frac{31.110}{3.185 \times 10^6} \\ R = 9.768 \times 10^{-6} \Omega \\ \text{(quite small, } 0.000009768 \Omega) \end{cases}$$

We will find in the chapters to follow that the less the resistance of a conductor, the lower the losses in conduction from the source to the load. Similarly, since resistivity is a major factor in determining the resistance of a conductor, the lower the resistivity, the lower the resistance for the same size conductor. Table 3.1 would suggest therefore that silver, copper, gold, and aluminum would be the best conductors and the most common. In general, there are other factors, however, such as **malleability** (ability of a material to be shaped), **ductility** (ability of a material to be drawn into long, thin wires), temperature sensitivity, resistance to abuse, and, of course, cost, that must all be weighed when choosing a conductor for a particular application.

In general, copper is the most widely used material because it is quite malleable, ductile, and available; has good thermal characteristics; and is less expensive than silver or gold. It is certainly not cheap, however. Wiring is removed quickly from buildings to be torn down, for example, to extract the copper. At one time aluminum was introduced for general wiring because it is cheaper than copper, but its thermal characteristics created some difficulties. It was found that the heating due to current flow and the cooling that occurred when the circuit was turned off resulted in expansion and contraction of the aluminum wire to the point where connections could eventually work themselves loose and dangerous side effects could result. Aluminum is still used today, however, in areas such as integrated circuit manufacturing and in situations where the connections can be made secure. Silver and gold are, of course, much more expensive than copper or aluminum, but there are places where the cost is justified. Silver has excellent plating characteristics for surface preparations, and gold is used quite extensively in integrated circuits. Tungsten has a resistivity three times that of copper, but there are occasions when its physical characteristics (durability, hardness) are the overriding considerations.

## 3.3 WIRE TABLES

The wire table was designed primarily to standardize the size of wire produced by manufacturers throughout the United States. As a result,



**FIG. 3.8** *Example 3.3.*