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1. INTRODUCTION TO PRODUCTIVE 
EFFICIENCY MEASUREMENT 
Significant progress has been made in recent years towards achieving the 
Sustainable Development Goals, and in particular SDG7 on clean energy access. 
However, if the goal of universal access to energy is to be met by 2030, large-scale 
investment and rapid and significant action is needed. According to the IEA in 2022, 
approximately 733 million people still lack access to electricity globally (IEA et al, 
2022). Electricity access in many low and middle-income contexts is hampered with 
reliability issues and supply constraints. Supplies from off-grid and mini-grid solutions 
are often insufficient for meeting aspirational energy access needs, and struggle to 
enable economic development (Ulsrud 2020, Bukari et al 2023). While frameworks 
such as the ESMAP Multi-tier Framework on Energy Access (ESMAP, 2015) have tried 
to account for variations in reliability, capacity and service quality, there remains a 
gap in the assessment of the performance of energy access solutions, in technical, 
economic and social terms. The paucity of evidence-based assessment of 
determinants of project or programme success has been cited by Duran and 
Sahinyazan (2021b). This paper seeks to apply a well-established quantitative 
assessment methodology known as Data Envelopment Analysis (DEA), to the energy 
access space, specifically in assessing the efficiencies of mini-grids in Sub-Saharan 
Africa. Applications of DEA methodologies to the performance analysis of distributed 
energy systems are limited in the literature, as are applications looking at electricity 
access in developing countries. The outcomes of this analysis will be used to propose 
technical, policy and economic interventions to improve the efficiency of operation 
of mini-grids, reduce up-front capital costs, enable more efficient supply regimes, 
and create better energy access outcomes. 

Performance benchmarking has become a common business practice, which is 
undertaken to understand the current performance of a given unit of production or 
service compared to its peers. The theoretical idea comes from the concept of 
economic efficiency which in simple terms means producing as large an output as 
possible from a given set of inputs. The seminal work of Farrel (1957) introduced the 
concept of using the ‘best results observed in practice’ peers to estimate an efficient 
production function. This is explained in Figure 1 below using a two-input case. This 
paper applies the concepts of performance benchmarking to the delivery of 
electricity services via mini-grids in Sub-Saharan Africa. 

Data envelopment analysis was initially proposed as a performance assessment 
methodology of a set of homogeneous decision-making units (DMUs) in the mid-
1970s, through the work of Charnes, Cooper & Rhodes (1978). The authors presented 
a linear programming formulation of efficiency measurement that facilitated the 
development of a data-driven approach of performance measurement.  

The main idea of DEA is to measure the relative technical efficiency of DMUs by a 
ratio of a weighted sum of outputs to a weighted sum of inputs, where the input and 



 
 
 
output weights are selected in a manner that no DMU can have an efficiency score 
greater than unity (Charnes et al., 1994)  

This work has been expanded on significantly in the following decades. The initial 
CCR model assumed constant returns to scale, leading to Banker, Charnes & 
Cooper (1984) proposing an alternative model for estimating variable returns to 
scale, and a method for determining the most-productive-scale-size (MPSS) for 
decision-making units. The BCC model assumes a convexity constraint, ensuring that 
theoretical units are of similar scale sizes to the measured units, enabling the 
calculation of the MPSS for individual DMUs. 

 

  

Fig. 1: Measurement of productive efficiency 

Let us assume that SS’ represents the various combinations of two inputs X and Y that 
an efficient firm uses to produce a unit of output (which in other words is known as the 
production possibility frontier). If a firm actually uses a combination of inputs 
represented by the point P, then the firm is using many more inputs compared to an 
efficient firm. To operate at the efficient level, it would have to use the combination 
of inputs which lies on the SS’ curve. Assuming a constant returns to scale1, this efficient 
combination is given by the point Q. This means that the efficient firm would produce 
(OP/OQ) times more output from the inputs used by the company producing at point 
P. The ratio OQ/OP gives the measure of technical efficiency. But the firm has to use 
the inputs in a cost-effective manner as well. If AA’ has a slope equal to the ratio of 
the prices of the two factors, then cost minimisation requires that the firm produces 
where the cost function is tangent to the production possibility frontier (i.e. at Q’). This 

 
1 Which implies that if inputs are increased by a given factor, the output will also increase 
proportionately.  
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is different from Q, although both Q and Q’ lie on the technically efficient production 
possibility. Therefore, if the firm chooses the input combinations represented by Q’, it 
will reduce its cost by a factor OR/OQ, which is a measure of its price efficiency.  

The overall efficiency is given by the product of technical efficiency and price 
efficiency [i.e. (OQ/OP)x(OR/OQ) = OR/OP]. Had the firm chosen its inputs in a 
technically efficient and cost-efficient manner, its costs would be only a fraction 
OR/OP of what they are now.  

In practice, the production possibility function of a firm is not known and Farrel (1957) 
suggests that such a function can be constructed using observed data. The 
production possibility is then called the best practice frontier. The above approach 
has led to the development of benchmarking as a new field of study which is still used 
in business analysis and regulatory studies.  

Section 2 below details our review of literature on data envelopment analysis 
applications to the performance analysis of renewable energy systems, and highlights 
the limited applications to-date in the analysis of mini-grid systems in developing 
countries. Section 3 describes our methodology, and how different estimation 
approaches can be used to determine best-practice frontiers using DEA. Section 4 
shows an illustrative application of the methodology using an open-access dataset of 
mini-grids in developing countries from Duran & Sahinyazan (2021b). Section 5 
discusses the results of our DEA modelling work on this dataset, and highlights the 
differences in terms of input- and output-oriented models and different returns-to-
scale assumptions. Finally, Section 6 contains our conclusions from the research, and 
recommendations for policy-makers and future research. 

 

2. LITERATURE REVIEW OF DEA APPLICATIONS 
TO RENEWABLE ENERGY SYSTEMS 
Several applications of DEA to the productivity benchmarking of renewable energy 
systems exist in the literature. Agrell, Bogetoft & Tind (2005) use DEA to develop a 
benchmarking model to compare regulatory regimes across the Scandinavian 
electricity networks. Kuosamen, Saastomoinen & Sipiläinen (2013) compare three 
different assessment methodologies (DEA, stochastic frontier analysis and stochastic 
semi-nonparametric envelopment of data) in their analysis of benchmark regulation 
of the Finnish electricity distribution network. Gouveia et al (2015) use a value-based 
DEA method, which links traditional DEA with multiple criteria decision analysis to 
benchmark the performance of maintenance and outages repair for a Portuguese 
electricity distribution company. Arcos-Vargas, Núñez-Hernández and Villa-Caro 
(2017) assess 102 small electricity distributors in Spain using three separate input-
oriented DEA models, considering both constant and variable returns to scale. 

In the renewable energy space, authors have used DEA to investigate grid-scale 
and national-scale renewable energy installations and renewable sources, as well as 



 
 
 
benchmarking the performance of specific technologies across multiple installations, 
and latterly to assess the efficiency of different renewable energy mini-grid 
installations. Sueyoshi & Goto (2014) use both input- and output-oriented DEA 
models with variable returns to scale to analyse the performance of 160 grid-tied 
photovoltaic power plants in the United States and Germany. Wang et al (2017) use 
both stochastic frontier analysis and DEA to assess the environment-adjusted 
operational performance of photovoltaic plants in the United States. Wu et al (2018) 
assess photovoltaic poverty alleviation projects in China using a three-phase model, 
integrating DEA with Pearson correlation coefficients and a Tobit regression analysis. 
Indeed, Tobit regressions and DEA are frequently combined in the literature, with Wu 
et al (2016) using these combined methods to assess the efficiency of wind farms in 
China, and Sağlam (2017) using a 2-stage DEA-Tobit analysis to assess the 
productive efficiency of large-scale wind farms in the United States. Other forms of 
regression analysis have been combined with DEA in the literature, for example, 
Barros et al (2017) uses a virtual frontier dynamic range-adjusted DEA model 
alongside Simplex regression analysis to investigate the efficiency of Angolan 
hydroelectric power plants. Finally, Aziz & Chowdhury (2021) use a two-stage DEA 
model with Tobit regression to assess the performance of solar mini-grids in 
Bangladesh. The authors analyse the performance of twenty-one solar PV mini-grids 
using both the CCR and BCC models, perform a slacks analysis (also referred to as a 
slacks-based measure of efficiency (SBM)), and use Tobit regression to explore the 
relationship between dependent variables, efficiency scores from the DEA models, 
and exogenous factors. Slacks analysis in this instance refers to the assessment of the 
distance of each decision-making unit that is not on the efficiency frontier from the 
efficiency frontier. Both models used in Aziz & Chowdhury (2021) are input-oriented, 
as the total market size of an individual mini-grid is limited, and the objective is to 
deliver electricity services in the most efficient way. 

DEA applications to renewable energy system performance benchmarking have 
several themes in common across the literature. DEA models used in the literature 
tend to be mixed, with constant and variable returns-to-scale models both used 
extensively for different purposes. Different types of returns-to-scale models are also 
commonly combined to derive different levels of efficiency measure, with pure 
technical efficiencies being analysed alongside scale efficiencies and slacks. DEA is 
also combined with regression analysis quite commonly in the literature. While this is 
not necessary for the methodology to produce robust results, it can offer some 
additional insights into the data: DEA in general produces more accurate results, but 
regression offers greater stability of accuracy of results (Thanassoulis, 1993). While it is 
common for models in the literature to feature multiple inputs and outputs, which is a 
strength of the methodology, Sueyoshi & Goto (2014) and Wang et al (2017) for 
example use a more limited set of input and output variables: three input and two 
outputs in the case of Sueyoshi & Goto (2014) and four input and one output in the 
case of Wang et al (2017). 

From the review, we have identified a significant gap in the literature relating to 
performance analysis studies relating to energy and renewable energy in Sub-



 
 
 
Saharan African countries. Specifically for mini-grids, we have found only one 
comparable paper in Aziz & Chowdhury (2021) and for Sub-Saharan African nations, 
Barros et al (2017) is the sole comparable paper. DEA has been used to an extent in 
the performance analysis of energy production and distribution in industrialised 
countries, and for distributed renewable energy systems, but applications to the 
problem space of mini-grid performance are limited. This article seeks to address 
that gap by providing an indicative example of the application of the DEA 
methodology to the global mini-grids sector. 

 

3. ESTIMATION APPROACHES FOR THE BEST 
PRACTICE FRONTIERS 
In essence, the DEA methodology uses the observed data to identify the subset of 
DMUs that define the envelopment surface (efficient frontier). Those on this surface 
are efficient DMUs and any DMU not lying on the surface is inefficient. The DEA analysis 
provides information on the sources and amounts of inefficiency. the efficiency scores 
are relative measures – derived relative to other DMUs in the data set. This also implies 
that the efficiency scores will change if the sample size changes, or if the assumptions 
behind the scoring methodology change. In addition, the geometry of the 
envelopment surface is determined by the model chosen. For example, the CCR 
model results in a piecewise linear, constant-returns-to-scale envelope surface. The 
proportionality rule of constant returns to scale also implies the efficient DMUs will lie 
on the rays like the one shown in Fig. 1. The BCC model on the other hand uses a 
variable returns-to-scale envelope surface (Banker, Charnes and Cooper, 1984) which 
relaxes the ray assumption by adding a convexity constraint. Many more models and 
extensions have been explored in the literature but for this study, we are limiting 
ourselves to CCR and BCC models.  

A further distinction is generally made with regards to optimisation of inputs or 
outputs. When the analysis aims to maximise the output for a given set of inputs, the 
output-oriented model is used. On the other hand, when inputs are maximised to 
produce a given output, the model is termed as an input-oriented model (Cooper, 
Seiford & Tone, 2007). In this study, we are using both the input-oriented and output-
oriented models for comparing the performance of mini-grids.  

Three separate aspects of mini-grid performance were considered in this study, 
namely technical, economic, and social aspects. Different input and output 
variables are needed when considering each of these dimensions:  

1) For the technical performance of a mini-grid, we considered output variables 
such as generation per unit of capacity, user per unit capacity, given the installed 
capacity, its renewable energy share and other available data (such as hours of 
service and employee per unit capacity). Given the constraints on available data to 
perform this analysis, three technical dimensions were selected to take forward: the 



 
 
 
capacity per person, the renewable energy share of the mini-grid system, and the 
age of the system. 

2) For the economic analysis, cost per unit of output or LCOE is a desired output 
variable. Conventional input variables include installation cost per unit of capacity, 
employee related costs per unit of capacity, fuel related costs per unit of output 
and so on: for this analysis, we used cost per watt delivered as an economic output 
variable 

3) For social performance analysis, data for suitable variables are not easily 
available. In an output-oriented analysis, in line with the universal electrification 
target, the share of households gaining access in the community can be 
considered. Reduced dependence on traditional fuels or % increase in study time 
could be another desired outcome to consider. The capacity of the mini-grid and its 
renewable energy share could be the inputs for this dimension. Data availability 
remains an important challenge in this study. Commonly reported data include 
capacity, renewable energy share and number of users. Cost data and social data 
are more difficult to find. Survey data can provide information at a given point in 
time and the data set can be limited as well. Faced with this challenge, we have 
kept the analysis simple and exploratory in this study, and restricted the analysis to 
technical and economic dimensions. 

 

4. ILLUSTRATIVE CASE APPLICATIONS 
Duran and Sahinyazan (2021a) reported a global dataset of mini-grid projects 
covering both developed and developing countries. The data contains information 
about project location, year of construction, technology type, capacity, population 
served, and project cost estimates, among others. The data was used to conduct an 
econometric analysis of mini-grid projects which was reported in Duran and 
Sahinyazan (2021b). This is a rich dataset that is available publicly and is suitable for 
illustrating the DEA application. This section presents the details of this analysis. 

 

4.1 Data selection for the application 

The above dataset includes mini-grids from developed countries, which are likely to 
have different characteristics compared to the mini-grids for electricity access being 
used in developing countries. As a first step, we have removed any project information 
from the developed countries. This reduced the sample to 83 projects.  

We then extracted information relating to ownership type, installation date, installed 
capacity, Renewable energy fraction in the capacity, population served and 
installation cost of the project. Each project was identified using a code indicated the 
country of the project, and its identification in the main data file. For example, In-9 
implies the project was located in India and it came from the 9th row of the metadata 
file. The ownership type was then coded as follows: private as 1, public as 2, PPP as 3, 
community as 4. The age of each project was identified from the difference between 



 
 
 
2020 and the installation date. Using installed capacity and population served, the 
capacity per person was calculated. In the absence of information on power 
produced from the plant, the cost per Watt (calculated from the installation cost and 
installed capacity) is used as a proxy for the cost of generation. This is used as the 
output variable and the remaining data was used as input variables, apart from the 
ownership type, which was used as a non-controllable variable. 

For generation capacity per capita, this variable represents the ability of a mini-grid 
to supply adequate power to the users of the system. The renewable energy share 
represents the environmental sustainability and low-carbon nature of the system. The 
age of the facility is used to capture the status of the technology, as older systems are 
correlated with less clean technologies and lower reliability. The cost per watt as an 
output is used to capture the affordability of the system for developers. 

After processing data, it was noticed that two variables were reporting errors due to 
missing data. Accordingly, these points were removed from the set used for the 
analysis. The data used for this case is placed in Annex 1, which contains data for 81 
projects. Ramanathan (2003) suggests that the number of DMUs in a sample dataset, 
in order to be representative, should be greater than three times the sum of input and 
output variables, or larger than the product of the number of inputs and outputs, both 
of which are true for this dataset. Table 2 presents the variables used in the analysis of 
this dataset. To perform the analysis, an open-source software package, OSDEA, was 
employed, and results were further analysed in MS Excel (OSDEA, 2023). 

Table 2: Variables used in the analysis of Duran & Sahinyazan (2021a) 

Variable Unit 

Input 1 Capacity/person (W/capita) 

Input 2 Renewable Energy Share (0 – 1) 

Input 3 Age (integer) 

Non-controllable Input 1 Ownership model (1, 2, 3, 4 for private, public, PPP or 
community) 

Output 1 Cost/watt (USD/W) 

 

4.2 Results from the CCR analysis 

First, we have considered the output-oriented CCR model with cost per Watt used as 
the output variable. This model optimises for increased outputs for a constant level of 
inputs. The three inputs included were capacity per person, RE share, and age of the 
installation, with ownership type as a fourth, non-controllable input. Using the above 
combination of inputs and output, four plants were found to be efficient. Four others 
received a score between 0.6 and 0.8. Another 8 plants received a score between 
0.4 and 0.6. The majority of the plants scored below 0.4. The scatter plot of the 
efficiency scores is presented in Fig. 1. 

Figure 1: Scatter plot of output-oriented CCR efficiency 



 
 
 

 

As indicated previously, the efficient plants form the best practice envelope and, in 
our case, four plants were on this envelope. All other plants are compared against 
these efficient plants. Each plant is placed in a peer group composed of one or more 
of the efficient plants. This peer group represents the plant on the efficiency frontier 
that the plant in question is most similar to. The frequency of plants under different 
groups for the CCR analysis is shown in Table 3. Nam-104 has the greatest number of 
peers, followed by the group composed of Col-45 and Nam-104, and the group 
composed of Col-45 and N-76. This suggests that the greatest number of plants are 
most similar to Nam-104 in terms of their efficiency.  

Table 3: Peer groups and plant distribution 

 

Peer 
Group 

Nam-
104 

N-
76 

Per-
41 

Col-
45 

Col-
45 & 
N-76 

Col-
45 & 
Nam-
104 

Per-
41 & 
Nam-
104 

Per-
41 & 
N-76 

Col-
45, N-
76 & 
Nam-
104 

Per-
41, N-
76 & 
Nam-
104 

All 
Efficient 
Mini-
Grids 

Mini-
Grids 
in 
Group 

23 1 1 2 17 18 11 4 2 1 1 

 

The closer to 1 the lambda value is for a given plant in relation to its peers, the closer 
to the peer the efficiency of the plant is, and the less the plant needs to increase its 
outputs to reach the efficient frontier for this output-oriented model. For the largest 
peer group, the peers of Nam-104, the highest lambda value reported was 0.5 for Ton-
34, In-68 and CV-85, while the lowest non-zero reported value was 0.04, for Ken-58. 

Slacks, when used in relation to models like CCR and BCC, are the additional 
improvements in input reduction or output maximisation over that which is implied 



 
 
 
by the gap in efficiency score, which deals with increases in outputs or decreases in 
inputs equally across all input and output variables. The four efficient plants have no 
slack available in their input variables, meaning they are operating efficiently across 
all inputs. Other plants have some slacks, but the level of input slack varies by plant 
and by input, depending on the magnitude of the input variables. AS-7 illustrates this 
variance well, with slacks of 2,275.48 W/person in capacity, and 0.5 in terms of 
renewable energy share. This means AS-7 could maintain its efficiency while 
dramatically reducing its capacity in terms of watts per person, as well as reducing 
the share of renewable energy in the plant generation mix. This also highlights a limit 
of the analytical method: higher renewable energy shares do not necessarily 
translate to more efficient plants in the analysis, and this needs to be accounted for 
when analysing the results. For constant returns-to-scale models like the CCR model, 
the efficiency scores for the output and input-oriented variances are the same, as 
the efficiency frontier does not change with regard to the orientation of the model. 
The peer groups for this analysis are also identical to the input-oriented model 
presented in table 3. Examining the lambda values, however, provides additional 
insight into how the sample of DEAs is performing in relation to the efficiency frontier. 
For Nam-104 again, the highest lambda value reported was 0.12 for Tuv-53, and the 
lowest non-zero lambda was 0.0009 for MAU-13. 

The overall trend of lambda values being smaller (closer to 0) is mirrored in the slacks 
for input-oriented model. Comparing AS-7 again, the W/person capacity slack is 
293.01, and the renewable energy share slack has fallen to 0.06, both reduced 
dramatically from the output-oriented model. This indicates that, while individual 
plants themselves may have more to improve under an input-oriented model, and 
are further away from their peers, they are operating efficiently for their scale size 
under a constant returns-to-scale assumption. 

 

4.3 Results from the BCC Analysis 

The Banker, Charnes and Cooper model (BCC) represents an efficiency analysis 
from a variable returns-to-scale perspective. While the CCR model gives a pure 
technical efficiency measure, the BCC model accounts for the scale size of 
individual DMUs, and accounts for efficiency at all scale sizes, allowing for a 
determination of the most-productive-scale-size (MPSS) of DMUs. If DMUs are 
operating at a scale size that is larger or smaller than what would be optimally 
productive for them, the BCC model accounts for and captures this inefficiency. 

Figure 2: Scatter plot of input-oriented BCC Efficiency 



 
 
 

 

34 plants achieved an efficiency score of 1 in the input-oriented BCC analysis, 
however only 14 of these plants are defined as efficient in the software output. This is 
due to the presence of output slacks for the plants with perfect efficiency scores: an 
example of this is H-6, which has a BCC efficiency of 1, but has input slacks in plant 
age, and output slacks in cost per watt delivered. Input-oriented BCC efficiency 
scores are significantly higher than those for the CCR analysis, which is consistent 
with the variable returns-to-scale assumptions inherent in the BCC model. The 
majority of plants score above 0.6 in this analysis, with some outliers: the worst-
performing plant, Tan-98, has an efficiency score of 0.36.  

Compared to the CCR model, which had 11, the input-oriented BCC analysis has 39 
separate peer groups. The largest peer group was for Per-41, which has 16 peers, 
followed by a combined peer group of Per-41, Ken-57 and MM-94. 27 of these 39 
peer groups had a single member, indicating a greater overall spread of peers on 
the efficiency frontier under the variable returns-to-scale assumption. 

For Per-41, with the largest peer group, 16 plants had a lambda value of 1, 
indicating they were equally as efficient, while the largest non-zero lambda was 
0.03. The 32 plants with non-zero lambda values to Per-41 exhibited an even spread 
across the range. 

Figure 3: Scatter plot of output-oriented BCC efficiency 



 
 
 

 

14 plants are classed as efficient under the output-oriented BCC analysis. No plants 
in this analysis have perfect efficiency scores but are not classed as efficient, 
indicating no output slacks for efficient plants at these scale sizes. 

There are 33 peer group combinations for different plants in this analysis. Per-41 
again has the largest peer group, with 16 peers, followed by a group of Col-45 and 
Nam-104 together, with 11. 23 of these 33 peer groups have a single member. Of the 
non-zero, non-one lambda values for Per-41, the largest is 0.96, with the smallest 
being 0.006. Seven plants have a lambda value of 2/3 (0.667). 

 

4.4 Scale Efficiency of Mini-Grids 

Using the CCR and BCC model outputs, we can now calculate the scale efficiency 
of the sampled mini-grids. Constant returns-to-scale efficiency scores, such as the 
outputs of the CCR models, represent the overall efficiency of the mini-grid, 
including both technical efficiency and scale efficiency. Variable returns-to-scale 
models, such as the outputs of the BCC models, represent the pure technical 
efficiency of the mini-grid, regardless of their current scale size. If we therefore 
calculate the ratio of CCR efficiency to BCC efficiency, we can determine the scale 
efficiency of the mini-grids, and investigate the most-productive scale size for the 
assessed mini-grids. The results for the input-oriented scale efficiency and output-
oriented scale efficiency analysis are presented in Figure 4 and 5 below: 

Figure 4: Scatter plot of input-oriented scale efficiency 



 
 
 

 

Figure 5: Scatter plot of output-oriented scale efficiency 

 

In these analyses, the higher the scale efficiency score, the closer the plant is to 
operating at its most productive scale size. 

Table 3 presents the full results of the analysis, including CCR efficiency, input- and 
output-oriented BCC efficiency, and scale efficiency for the 81 mini-grids analysed. 

 

Table 4: Full DEA Results 

Mini-Grid CCR 
Efficiency 

BCC-Input 
Efficiency 

BCC-Output 
Efficiency 

Scale Efficiency – 
Input 

Scale Efficiency - 
Output 

H-5 0.162 1.000 0.162 0.162 1.000 

H-6 0.342 1.000 0.342 0.342 0.349 

AS-7 0.129 0.683 0.189 0.129 0.145 



 
 
 

In-8 0.415 1.000 0.415 0.415 1.000 

In-9 0.330 1.000 0.330 0.330 0.381 

In-10 0.541 1.000 0.541 0.541 0.903 

Ma-11 0.042 0.702 0.060 0.042 0.080 

CV-12 0.033 0.699 0.047 0.033 0.041 

MAU-13 0.012 0.960 0.013 0.012 0.034 

Per-16 0.097 0.902 0.107 0.097 0.210 

Niu-17 0.131 1.000 0.131 0.131 1.000 

H-20 0.396 1.000 0.396 0.396 0.866 

In-21 0.158 1.000 0.158 0.158 0.227 

Ch-24 0.309 0.768 0.403 0.309 0.398 

Ton-34 0.072 0.620 0.117 0.072 0.081 

Ton-36 0.693 0.943 0.735 0.693 0.792 

Ind-37 0.120 1.000 0.120 0.120 0.120 

Gua-38 0.115 0.656 0.176 0.115 0.115 

Dom-Hai-39 0.175 0.563 0.310 0.175 0.175 

Col-40 0.081 0.751 0.107 0.081 0.090 

Per-41 1.000 1.000 1.000 1.000 1.000 

Ecu-42 0.073 0.559 0.130 0.073 0.073 

Mex-43 0.676 0.972 0.696 0.676 0.781 

Col-44 0.103 0.785 0.131 0.103 0.103 

Col-45 1.000 1.000 1.000 1.000 1.000 

Chil-46 0.389 1.000 0.389 0.389 1.000 

Nica-47 0.136 0.674 0.201 0.136 0.136 

Per-48 0.135 0.834 0.162 0.135 0.152 

Fij-52 0.293 0.623 0.471 0.293 0.293 

Tuv-53 0.359 0.695 0.516 0.359 0.363 

Van-54 0.061 0.678 0.089 0.061 0.061 

Ken-55 0.196 1.000 0.196 0.196 1.000 

Ken-56 0.044 0.942 0.047 0.044 0.159 

Ken-57 0.054 1.000 0.054 0.054 1.000 

Ken-58 0.131 1.000 0.131 0.131 1.000 

Ken-59 0.093 1.000 0.093 0.093 1.000 



 
 
 

Ken-60 0.192 1.000 0.192 0.192 1.000 

In-61 0.086 1.000 0.086 0.086 0.128 

In-62 0.086 1.000 0.086 0.086 0.128 

Ma-63 0.142 0.823 0.173 0.142 0.142 

In-64 0.031 1.000 0.031 0.031 0.047 

In-65 0.046 1.000 0.046 0.046 0.058 

In-66 0.456 0.885 0.515 0.456 0.456 

In-67 0.284 0.925 0.307 0.284 0.284 

In-68 0.094 0.540 0.174 0.094 0.106 

In-69 0.062 1.000 0.062 0.062 0.093 

N-70 0.628 1.000 0.628 0.628 0.639 

N-71 0.329 1.000 0.329 0.329 0.335 

N-72 0.288 1.000 0.288 0.288 0.325 

N-73 0.267 1.000 0.267 0.267 0.314 

N-74 0.415 1.000 0.415 0.415 0.463 

Fij-75 0.086 0.794 0.108 0.086 0.166 

N-76 1.000 1.000 1.000 1.000 1.000 

CN-77 0.136 0.820 0.166 0.136 0.136 

Ken-78 0.203 0.968 0.210 0.203 0.233 

Ken-79 0.241 0.981 0.246 0.241 0.313 

Ug-80 0.095 0.810 0.117 0.095 0.095 

Ug-81 0.035 0.562 0.061 0.035 0.036 

Ug-82 0.139 1.000 0.139 0.139 0.304 

Ug-83 0.082 1.000 0.082 0.082 0.123 

Ug-84 0.142 0.668 0.212 0.142 0.142 

CV-85 0.108 0.661 0.164 0.108 0.150 

MM-86 0.298 0.955 0.312 0.298 0.363 

MM-87 0.393 0.966 0.407 0.393 0.501 

MM-88 0.226 0.924 0.244 0.226 0.251 

MM-89 0.270 0.952 0.284 0.270 0.325 

MM-90 0.319 0.943 0.338 0.319 0.373 

MM-91 0.368 0.976 0.377 0.368 0.495 

MM-92 0.402 0.972 0.414 0.402 0.529 



 
 
 

MM-93 0.356 0.971 0.366 0.356 0.466 

MM-94 0.599 1.000 0.599 0.599 1.000 

MM-95 0.297 0.953 0.312 0.297 0.358 

Tan-96 0.037 0.638 0.059 0.037 0.037 

Tan-97 0.050 1.000 0.050 0.050 0.075 

Tan-98 0.032 0.363 0.088 0.032 0.032 

Tan-99 0.073 0.781 0.093 0.073 0.073 

Tan-100 0.051 0.776 0.065 0.051 0.051 

Tan-101 0.156 1.000 0.156 0.156 0.179 

Tan-102 0.126 1.000 0.126 0.126 0.179 

Tan-103 0.058 0.676 0.086 0.058 0.058 

Nam-104 1.000 1.000 1.000 1.000 1.000 

 

5. DEA AND MINI-GRID PERFORMANCE 
BENCHMARKING: DISCUSSION 
For the selected set of mini-grid DMUs from Duran & Sahinyazan (2021a), the CCR 
and BCC model results above provide some insights into how the productive 
efficiency of mini-grids can be improved. There are also interesting differences in 
performance depending on the geographic region the mini-grid is located in, as 
well as the ownership model that the mini-grid uses. 

 

5.1 CCR, BCC & Scale Efficiency Discussion 

The CCR analysis produced only four efficient DMUs out of the sample of 81, which is 
significantly less than the number produced in the BCC analysis which produced 14 
efficient DMUs. While this is expected, the scale of inefficiency in mini-grids in the 
CCR model was not: the majority of plants scored below 0.4 in the CCR model, with 
only 12 of the 81 managing to score above this. This indicates that the majority of the 
mini-grids analysed are operating inefficiently, assuming constant returns-to-scale. 
The BCC analysis with its variable returns-to-scale assumption indicates that more 
mini-grids are operating efficiently, particularly in an input-oriented analysis, where 
the majority of mini-grids are above 0.6 efficiency rating. This indicates output 
efficiency is good among the corpus, however input efficiency, as shown by the 
output-oriented model, is worse overall, with the majority of plants scoring below 0.4. 
This indicates further input efficiency is needed, to minimise inputs for the specified 
output levels. More efficient DMUs being present in a variable returns-to-scale model 
is expected due to the model accounting for variable returns-to-scale. 



 
 
 
The scale efficiency results, however, show that there are significant efficiencies to 
be found in operating at more productive scale sizes. The output-oriented models 
suggest that overall scale efficiency across the corpus is acceptable, but there 
remain 33 DMUS with scale efficiencies below 0.8. With an input-oriented 
perspective, no DMUs apart from the four DMUs on the efficiency frontier in the CCR 
model have a scale efficiency above 0.8, indicating that scale size issues are the 
driver of inefficiency in these mini-grids. In terms of slacks also, both input and output 
slacks exist for the orientations of the two models used. Input slacks are most 
common in the capacity per person of the mini-grids, and output slacks exist for the 
cost per watt delivered in both input-oriented models. This indicates that even if 
mini-grids were operating at their most productive scale size, there are further 
efficiency improvements to be found in optimising the capacity per customer served 
in mini-grids. 

 

5.2 Geographic Differences in Mini-Grid Performance 

Of the mini-grids on the efficiency frontier in the CCR model, two are African mini-
grids and two are Latin/South American or Caribbean mini-grids. Specifically, one 
mini-grid from Nigeria and Namibia, and one mini-grid from Peru and Colombia are 
on the efficiency frontier under the CCR model, with no Asia-Pacific mini-grids being 
fully efficient. However, efficiency scores under the CCR model are higher in the 
Asia-Pacific mini-grids, with greater numbers of poorly-performing mini-grids in the 
other two global regions. Overall, however, CCR efficiency scores are low globally. 

For the BCC results, input- and output-oriented models will be considered separately, 
and exhibit different results. 9 out of the 31 African mini-grids exhibit input-oriented 
BCC efficiency scores of below 0.8, with 17 being on the efficiency frontier, the best-
performing region in this analysis. 11 of the 34 Asia-Pacific mini-grids are efficient 
under the input-oriented BCC model, with 8 out of the 34 having scores below 0.8, 
meaning overall efficiency scores are higher than African mini-grids, but peak scores 
are lower. 5 out of the 16 Latin/South American and Caribbean mini-grids are 
efficient under BCC-input, with 7 of the 16 having scores below 0.8. 

Similarly to the CCR analysis, output-oriented BCC scores are low for the majority of 
mini-grids, however all regions have some mini-grids on the efficiency frontier. 7 of 
the 31 African mini-grids are efficient under this analysis, compared to 3 of the 34 
Asia-Pacific mini-grids and 4 of the 16 Latin/South American and Caribbean mini-
grids. Percentage-wise, Latin/South America and the Caribbean performs best, 
however the Asia-Pacific mini-grids have the greatest number above 0.4, and 
between 0.2 and 0.4, while the majority of African mini-grids score below 0.2, and all 
other Latin/South American and Caribbean mini-grids score below 0.4, with 8 of 16 
below 0.2. This indicates that globally, output-oriented efficiency under the BCC 
model is low, with the Asia-Pacific region having a slight advantage, but all global 
regions assessed have room for improvement. 



 
 
 
5.3 Ownership Models and Mini-Grid Performance 

The original data set also allows us to perform some analysis of the relative 
efficiencies of different mini-grids by ownership model. Four different ownership 
models are represented in the sample, being privately-owned mini-grids, publicly-
owned, community-owned and public-private partnerships. PPPs are the least well-
represented in the dataset, with just five mini-grids under this ownership model, but 
otherwise the sample contains 21 publicly-owned mini-grids, 24 privately-owned and 
31 community-owned. Overall, community and privately-owned mini-grids perform 
best under the CCR model, with publicly-owned mini-grids performing less well 
overall. Under an input-oriented BCC model, privately-owned mini-grids perform the 
best, with every example in the sample being on the efficiency frontier under this 
orientation. Publicly-owned mini-grids also performed very well in this orientation, 
and while the overall performance of community mini-grids is still good, it was the 
worst-performing out of the three ownership types with sufficient sample sizes. 
However, community-owned mini-grids performed the worst in the output-oriented 
BCC model, with publicly-owned mini-grids performing the best. 

In terms of scale efficiency, a notable result is that community-owned mini-grids 
operate at their most productive scale size much more frequently that other 
ownership types under an output-oriented configuration, with 23 of the 31 sampled 
operating at above 0.8 scale efficiency, and 18 at the most productive scale size. 
This compares to 1 of 24 private mini-grids operating at their MPSS, and 3 of 21 public 
mini-grids. For an input-oriented configuration, scale efficiencies are low throughout, 
but community-owned mini-grids again show a performance advantage in terms of 
scale size. 19 of 31 community-owned mini-grids have a scale efficiency measure of 
0.2 or above, compared to 12 of 24 privately-owned mini-grids and just 5 of 21 
publicly-owned mini-grids. 

 

6. CONCLUSIONS 
This paper has used the open-access dataset from Duran & Sahinyazan (2021b) to 
perform a data envelopment analysis, determining the relative production 
efficiencies of mini-grids in developing countries across the world. Data for 81 mini-
grids was extracted, and two separate data envelopment analysis models were 
used to analyse the dataset. The Charnes, Cooper & Rhodes (CCR) model offered 
an analysis under a constant returns-to-scale assumption, while the Banker, Charnes 
and Cooper (BCC) model offered an analysis with a variable returns-to-scale 
assumption. This allowed for the determination of the most-productive-scale-size for 
the mini-grids analysed, by comparing the pure technical efficiency given by the 
BCC model with the technical and scale efficiency of the CCR model. Four inputs 
and one output variable were considered for this analysis, with the capacity per 
person served by the mini-grid, the renewable energy share of the mini-grid and the 
age of the mini-grid being used alongside a code for the ownership model of the 
mini-grid as inputs, and the cost per watt delivered as the single output. 



 
 
 
This analysis has shown that there are significant issues present with the productive 
efficiency of mini-grids in developing countries. Compared to their peers in the 
dataset, the majority of mini-grids are inefficient, with a large number of mini-grids 
being very inefficient compared to their peers. The input-oriented models in 
particular highlight this inefficiency: input-oriented scale efficiency is low across the 
corpus, indicating that the majority of mini-grids are operating far away from their 
most productive scale size. Moving forward, the mini-grid sector in developing 
countries needs to assess the scale of their operations, and determine whether 
increasing or decreasing returns to scale are present to expand or diversify their 
operations as appropriate. 

DEA as a methodology shows promise in the analysis of productive efficiency in the 
mini-grids sector. Few articles in the literature have addressed this topic to date, the 
notable exception being Aziz & Chowdhury (2021). Access to reliable quantitative 
data is a challenge: Aziz & Chowdhury (2021) addressed this barrier by investigating 
a context where a public utility is the primary developer of mini-grids, and thus has 
access to data as required to complete the analysis. Our secondary data analysis 
had to optimise for the data that was available, and diversified public and private-
sector developer contexts, such as much of Sub-Saharan Africa, present a 
challenge to the collection of reliable quantitative data. This presents barriers for 
implementing DEA as a methodology for productive efficiency analysis going 
forward, which need to be addressed if the sector is to become more efficient, 
deliver energy services on a more cost-effective and productive basis, and achieve 
the Sustainable Development Goals for energy access by 2030. 
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Annex 1: Mini-grid data extracted from the meta-analysis dataset. 

DMU-ID Ownership 
Installation 
date 

Capacity 
(W) 

RE 
share  

Cost (USD 
2020) population Capacity/person (W) 

RE 
Share Age Ownership 

cost/W 
(USD 
2020) 

H-5 private 2015 400 0.5 2,100,000 5500  72.72727273 0.5 5 1 5.25 

H-6 private 2016 2.7 1 19,902 250  10.8 1 4 1 7.371111 

AS-7 public 2016 1400 1 8,600,000 600  2333.333333 1 4 2 6.142857 

In-8 private 2014 1.2 1 9,341 375  3.2 1 6 1 7.784167 

In-9 private 2014 1 1 6,906 110  9.090909091 1 6 1 6.906 

In-10 private 2014 1.2 1 12,721 220  5.454545455 1 6 1 10.60083 

Ma-11 public 2012 2612 0.48 6,800,000 3746  697.2770956 0.48 8 2 2.603369 

CV-12 ppp 2011 24290 0.24 25,000,000 84229  288.3804865 0.24 9 3 1.02923 

MAU-13 public 2010 13400 0.08 1,700,000 37000  362.1621622 0.08 10 2 0.126866 

Per-16 public 2014 11.5 0.57 49,147 255  45.09803922 0.57 6 2 4.273652 

Niu-17 public 2018 3000 0.2 8,400,000 1624  1847.29064 0.2 2 2 2.8 

H-20 private 2015 123 0.76 1,500,000 2790  44.08602151 0.76 5 1 12.19512 

In-21 private 2014 100 1 492,819 2200  45.45454545 1 6 1 4.92819 

Ch-24 community 2010 175 0.14 982,419 105  1666.666667 0.14 10 4 5.613823 

Ton-34 public 2013 512 1 2,400,000 3000  170.6666667 1 7 2 4.6875 

Ton-36 public 2017 550 1 16,000,000 7212  76.26178591 1 3 2 29.09091 

Ind-37 community 2018 1200 1 8,800,000 1840  652.173913 1 2 4 7.333333 

Gua-38 community 2014 90 1 872,246 804  111.9402985 1 6 4 9.691622 

Dom-Hai-
39 community 2008 1300 1 17,000,000 20000  65 1 12 4 13.07692 



 
 
 

Col-40 public 2015 191 1 823,345 1853  103.0760928 1 5 2 4.310707 

Per-41 private 2017 20.55 1 445,199 1850  11.10810811 1 3 1 21.66418 

Ecu-42 community 2012 12.27 1 85,399 80  153.375 1 8 4 6.959984 

Mex-43 ppp 2013 187.5 1 3,600,000 30000  6.25 1 7 3 19.2 

Col-44 community 2016 8 1 59,896 76  105.2631579 1 4 4 7.487 

Col-45 community 2018 7.85 1 480,675 250  31.4 1 2 4 61.23248 

Chil-46 private 2000 27 0.56 340,601 213  126.7605634 0.56 20 1 12.61485 

Nica-47 community 2007 220 1 1,900,000 5900  37.28813559 1 13 4 8.636364 

Per-48 public 2016 20 1 129,054 200  100 1 4 2 6.4527 

Fij-52 community 2013 20 1 443,198 300  66.66666667 1 7 4 22.1599 

Tuv-53 public 2009 46 1 962,501 600  76.66666667 1 11 2 20.92393 

Van-54 community 2014 75 1 327,092 1300  57.69230769 1 6 4 4.361227 

Ken-55 ppp 2015 46.8 0.85 304,924 4000  11.7 0.85 5 3 6.51547 

Ken-56 public 2011 3400 0.15 2,900,000 41000  82.92682927 0.15 9 2 0.852941 

Ken-57 public 2013 3460 0.1 2,400,000 50400  68.65079365 0.1 7 2 0.693642 

Ken-58 public 2011 260 0.04 176,430 1350  192.5925926 0.04 9 2 0.678577 

Ken-59 public 2013 570 0.09 616,382 2520  226.1904762 0.09 7 2 1.081372 

Ken-60 public 2012 860 0.07 1,500,000 6890  124.8185776 0.07 8 2 1.744186 

In-61 private 2006 43 1 119,476 336  127.9761905 1 14 1 2.778512 

In-62 private 2006 150 1 416,777 178  842.6966292 1 14 1 2.778513 

Ma-63 community 2005 5 1 34,777 300  16.66666667 1 15 4 6.9554 

In-64 private 2010 50 1 50,478 436  114.6788991 1 10 1 1.00956 

In-65 private 2012 32 1 40,492 989  32.35591507 1 8 1 1.265375 

In-66 public 2002 2 1 35,233 179  11.17318436 1 18 2 17.6165 



 
 
 

In-67 public 2010 4.5 1 45,430 587  7.666098807 1 10 2 10.09556 

In-68 public 2005 120 1 730,016 1029  116.6180758 1 15 2 6.083467 

In-69 private 2012 32 1 64,787 553  57.86618445 1 8 1 2.024594 

N-70 private 2013 6 1 83,100 480  12.5 1 7 1 13.85 

N-71 private 2015 9 1 65,341 720  12.5 1 5 1 7.260111 

N-72 private 2015 34 1 239,583 1600  21.25 1 5 1 7.046559 

N-73 private 2015 40 1 272,254 1600  25 1 5 1 6.80635 

N-74 private 2015 24 1 240,909 1180  20.33898305 1 5 1 10.03788 

Fij-75 public 1997 290.6 0.31 1,000,000 2000  145.3 0.31 23 2 3.441156 

N-76 public 2006 3 1 106,268 5000  0.6 1 14 2 35.42267 

CN-77 ppp 2003 31.05 1 206,575 1800  17.25 1 17 3 6.652979 

Ken-78 community 2012 13.5 1 75,885 3000  4.5 1 8 4 5.621111 

Ken-79 community 2014 21.9 1 119,389 5000  4.38 1 6 4 5.451553 

Ug-80 community 2015 13.5 1 73,509 500  27 1 5 4 5.445111 

Ug-81 ppp 2012 32 1 91,623 172  186.0465116 1 8 3 2.863219 

Ug-82 private 2016 288.8 0.79 1,300,000 2000  144.4 0.79 4 1 4.501385 

Ug-83 private 2006 250 1 668,013 470  531.9148936 1 14 1 2.672052 

Ug-84 community 2014 40 1 424,306 615  65.04065041 1 6 4 10.60765 

CV-85 public 2012 60 0.67 421,584 450  133.3333333 0.67 8 2 7.0264 

MM-86 community 2016 9.76 1 80,659 977  9.989764585 1 4 4 8.264242 

MM-87 community 2016 9.76 1 96,683 1138  8.576449912 1 4 4 9.906045 

MM-88 community 2016 4.88 1 39,469 336  14.52380952 1 4 4 8.08791 

MM-89 community 2016 13 1 100,673 1237  10.50929669 1 4 4 7.744077 

MM-90 community 2016 10.8 1 106,018 925  11.67567568 1 4 4 9.816481 



 
 
 

MM-91 community 2016 6 1 50,047 836  7.177033493 1 4 4 8.341167 

MM-92 community 2016 7.2 1 68,624 931  7.733619764 1 4 4 9.531111 

MM-93 community 2016 12.96 1 110,018 1654  7.835550181 1 4 4 8.489043 

MM-94 community 2016 8.7 1 88,583 2170  4.00921659 1 4 4 10.18195 

MM-95 community 2016 6.48 1 54,667 625  10.368 1 4 4 8.436265 

Tan-96 community 2012 300 1 762,522 6199  48.3949024 1 8 4 2.54174 

Tan-97 private 2015 500 1 816,761 3789  131.9609396 1 5 1 1.633522 

Tan-98 community 2001 250 1 968,469 1390  179.8302403 1 19 4 3.873876 

Tan-99 community 2006 10 1 38,738 460  21.73913043 1 14 4 3.8738 

Tan-100 community 2015 210 1 668,013 5896  35.61736771 1 5 4 3.181014 

Tan-101 private 2013 44 1 170,387 1950  22.56410256 1 7 1 3.872432 

Tan-102 private 2013 35.2 1 136,310 800  44 1 7 1 3.872443 

Tan-103 community 2013 8.8 1 34,078 200  44 1 7 4 3.8725 

Nam-104 community 2006 1.6 1 207,337 8  200 1 14 4 129.5856 

 


