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Introduction

Articular osteochondral repair and regeneration are a challenging problem worldwide
due to the extremely weak inherent regenerative capacity of the tissue. Currently, the
gold standard surgical procedures for treating chondral lesions are autologous cartilage
transplantation or autologous chondrocyte implantation, etc. However, this approach is
still not perfect due to limited resources of cartilage tissue. In addition, TGF-31 and
nano hydroxyapatite (nHA) play a crucial role in chondrogenesis and osteogenesis,
respectively. Here, we firstly prepared TGF-1 loaded PLGA nanoparticles (TPNPs) by
a coaxial electrospray method. Next, we fabricated 3D bioprinted gelatin methacrylate—
polyethylene glycol diacrylate (GelMA-PEGDA) scaffolds with biphasic TPNPs and nHA
distributions, and then investigated the effects of this scaffold on the growth and
osteochondral differentiation of human bone marrow mesenchymal stem cells
(hMSCs).
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Figure 1. Schematic diagram of the research
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Figure 4. (A-C) Confocal microscopy images (6 days) and (D) proliferation (2, 4 and 6 days) of
hMSCs grown on three types of scaffolds. The cytoskeleton and cell nuclei were stained with Texas
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Figure 3. (A-C) Scanning electron micrographs of upper and lower layer of three types of scaffolds with
biphasic structure, respectively. The inset images are photographs of the corresponding scaffolds. (D)
Schematic of the scaffold with biphasic structure. (E) Amplification image of biphasic beam in cross
section. (F) The elemental analysis of upper and lower layer of scaffold with biphasic structures.
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Figure 2. Transmission electron micrographs of (A) TPNPs and (B) blank PLGA nanoparticles. The inset

' images are particle sizes of the corresponding nanoparticles. (C) The loading capacity and encapsulation

efficiency of TPNPs in different mass ratios. (D) Controlled release profile of the scaffold containing
different TPNP ratios.
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Conclusion

Customizable 3D printed GelMA-PEGDA scaffolds with biphasic TPNPs and nHA
distributions structure were prepared successfully. The scaffolds provided an
excellent platform for h(MSC proliferation and osteochondral differentiation. The most
significant improvement in chondrogenic gene (Col Il a1, Sox-9, Aggrecan) and
osteogenesis gene (Col |, Osteocalcin, OPN, Runx-2, ALP) expressions were
observed on the 3D scaffolds. This study demonstrated that customizable 3D printed
scaffolds are excellent candidates for promoting osteochondral differentiation of
hMSCs, thus promising for future osteochondral regenerative medicine applications.
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