
T h e C h u c K M a n u a l

1.2.1.3

-->
http://chuck.cs.princeton.edu/
| http://chuck.stanford.edu/

Copyright 2007 © Ge Wang and Perry Cook

http://chuck.cs.princeton.edu/
http://chuck.stanford.edu/

=>

Authors of ChucK

Originated by:
Ge Wang
Perry R. Cook

Chief Architect and Designer:
Ge Wang

Lead Developers:
Ge Wang – ge@ccrma.stanford.edu | gewang@cs.princeton.edu
Perry R. Cook – prc@cs.princeton.edu
Spencer Salazar – ssalazar@cs.princeton.edu
Rebecca Fiebrink – fiebrink@cs.princeton.edu
Ananya Misra – amisra@cs.princeton.edu
Philip Davidson – philipd@alumni.princeton.edu
Ari Lazier – alazier@cs.princeton.edu

Documentation:
Adam Tindale – adam.tindale@acad.ca
Ge Wang
Rebecca Fiebrink
Philip Davidson
Ananya Misra
Spencer Salazar

Lead Testers:
The ChucK Development/User Community – http://chuck.cs.princeton.edu/community/
Ge Wang
Ajay Kapur – akapur@alumni.princeton.edu
Spencer Salazar
Philip Davidson

The ChucK Manual� i

=>

Thank You

Many people have further contributed to ChucK by suggesting great new ideas and improvements,
reporting problems, or submitting actual code. Here is a list of these people. Help us keep it
complete and exempt of errors.

� Andrew Appel
� Brian Kernighan
� Paul Lansky
� Roger Dannenberg
� Dan Trueman
� Ken Steiglitz
� Max Mathews
� Chris Chafe
� Szymon Rusinkiewicz
� Graham Coleman
� Scott Smallwood
� Mark Daly
� Kassen
� Kijjaz
� Gary Scavone
� Brad Garton
� Nick Collins
� Tom Briggs
� Paul Calamia
� Mikael Johanssons
� Magnus Danielson
� Rasmus Kaj
� Princeton Graphics Group
� Princeton Laptop Orchestra
� Stanford Laptop Orchestra
� CCRMA community
� Smule
� ChucK users community!!!

The ChucK Manual� ii

=>

ChucK Places

ChucK home page (Princeton):
http://chuck.cs.princeton.edu/

ChucK home page (Stanford):
http://chuck.stanford.edu/

ChucK Documentation + Tutorials:
http://chuck.cs.princeton.edu/doc/

For the most updated tutorial:
http://chuck.cs.princeton.edu/doc/learn/

For the ideas and design behind ChucK, read the papers at:
http://chuck.cs.princeton.edu/doc/publish/

ChucK PhD Thesis:
http://www.cs.princeton.edu/∼gewang/thesis.html

ChucK Community:
http://chuck.cs.princeton.edu/community/

ChucK Wiki
http://chuck.cs.princeton.edu/wiki

miniAudicle:
http://audicle.cs.princeton.edu/mini/

Audicle:
http://audicle.cs.princeton.edu/

Princeton Sound Lab:
http://soundlab.cs.princeton.edu/

Stanford University, CCRMA:
http://ccrma.stanford.edu/

The ChucK Manual� iii

http://chuck.cs.princeton.edu/
http://chuck.stanford.edu/
http://chuck.cs.princeton.edu/doc/
http://chuck.cs.princeton.edu/doc/learn/
http://chuck.cs.princeton.edu/doc/publish/
http://www.cs.princeton.edu/~gewang/thesis.html
http://chuck.cs.princeton.edu/community/
http://chuck.cs.princeton.edu/wiki
http://audicle.cs.princeton.edu/mini/
http://audicle.cs.princeton.edu/
http://soundlab.cs.princeton.edu/
http://ccrma.stanford.edu/

CONTENTS

Authors of ChucK . i

Thank You . ii

ChucK Places . iii

1 Intro-ChucK-tion 1

2 Installation 3

Binary Installation . 3

Source Installation . 6

3 ChucK Tutorials 8

A Chuck Tutorial . 8

Conventions . 13

On-the-fly-programming . 14

Modifying Basic Patches . 17

LFOs and Blackhole . 19

Working with MIDI . 21

Writing To Disk . 24

Stereo . 26

The ChucK Manual� iv

=> CONTENTS

Using OSC in ChucK . 27

4 Overview 31

running ChucK . 31

comments . 32

debug print . 33

reserved words . 34

5 Types, Values, and Variables 37

primitive types . 37

values (literals) . 38

variables . 38

reference types . 40

complex types . 40

6 Arrays 42

declaration . 42

multi-dimensional arrays . 43

lookup . 44

associative arrays . 46

array assignment . 47

7 Operators and Operations 50

cast . 53

8 Control Structures 56

if / else . 56

while . 57

until . 57

for . 58

The ChucK Manual� v

=> CONTENTS

break / continue . 58

9 Functions 60

writing . 60

calling . 61

overloading . 61

10 Concurrency and Shreds 63

sporking shreds (in code) . 64

the ’me’ keyword . 65

using Machine.add() . 66

inter-shred communication . 67

11 Time and Timing 68

time and duration . 68

operations on time and duration (arithmetic) . 69

the keyword ‘now’ . 71

advancing time . 71

12 Events 74

what they are . 74

use . 75

MIDI events . 76

OSC events . 77

creating custom events . 78

13 Objects 80

introduction . 80

built-in classes . 81

working with objects . 81

The ChucK Manual� vi

=> CONTENTS

writing a class . 82

members (instance data + functions) . 83

class constructors . 85

static (data + functions) . 85

inheritance . 86

Overloading . 89

14 The ChucK Compiler + Virtual Machine 90

15 Unit Analyzers 93

declaring . 94

connecting . 94

controlling (over time) . 95

representing metadata: the UAnaBlob . 98

representing complex data: the complex and polar types 100

performing analysis in UAna networks . 100

using events . 103

built–in unit analyzers . 103

creating . 103

16 UAna objects 104

17 On-the-fly Programming Commands 112

18 Standard Libraries API 115

19 Unit Generators 121

The ChucK Manual� vii

Getting Started

The ChucK Manual� viii

CHAPTER1
Intro-ChucK-tion

what is it: ChucK is a general-purpose programming language, intended for real-time audio syn-
thesis and graphics/multimedia programming. It introduces a truly concurrent programming model
that embeds timing directly in the program flow (we call this strongly-timed). Other potentially
useful features include the ability to write/change programs on-the-fly.

who it is for: audio/multimedia researchers, developers, composers, and performers

supported platforms:

� MacOS X (CoreAudio)

� Linux (ALSA/OSS/Jack)

� Windows/also Cygwin (DirectSound)

Strongly-timed

ChucK’s programming model provides programmers direct, precise, and readable control over time,
durations, rates, and just about anything else involving time. This makes ChucK a potentially fun
and highly flexible tools for describing, designing, and implementing sound synthesis and music-
making at both low and high levels.

The ChucK Manual� 1

=> Intro-ChucK-tion

On-the-fly Programming

On-the-fly programming is a style of programming in which the programmer/performer/composer
augments and modifies the program while it is running, without stopping or restarting, in order
to assert expressive, programmable control for performance, composition, and experimentation at
run-time. Because of the fundamental powers of programming languages, we believe the technical
and aesthetic aspects of on-the-fly programming are worth exploring.

The ChucK Manual� 2

CHAPTER2
Installation

We tried to make ChucK as easy as possible to build (if desired), install, and re-use. All sources files
- headers source for compiler, vm, and audio engine - are in the same directory. Platforms differences
are abstracted to the lowest level (in part thanks to Gary Scavone). None of the compiler/vm has
any OS-depedent code.

There are also pre-compiled executables available for OS X and Windows.

The classic ’chuck’ runs as a command line program. There are GUI-based integrated development
and performance environments as well that can be used as standalone chuck virtual machines, or in
conjunction with the command version of ’chuck’. GUI-based environments include the miniAudicle
(http://audicle.cs.princeton.edu/mini). This section deals mainly with the classic, command-line
version of chuck.

Binary Installation

The binary distributions include a directory called bin/ that contains the precompiled binary of
ChucK for your operating system. The binary distribution is a great way to dive into ChucK.

The ChucK Manual� 3

http://audicle.cs.princeton.edu/mini/

=> Installation

OS X

1. The terminal is located in the Utilities/ folder in the Applications/ folder of your hard drive.
Open terminal (create a shortcut to it in the dock if you want, since we will be using it a lot with
the command-line chuck). In the terminal go to the bin/ directory (replace chuck-x.x.x.x-exe with
the actual directory name):

%>cd chuck-x.x.x.x-exe/bin

2. Install it using the following command.

%>sudo cp chuck /usr/bin/

(enter password when prompted)

%>sudo chmod 755 /usr/bin/chuck

Now you should be able to run ’chuck’ from any directory.

3. Test to make sure it is was installed properly.

%>chuck

You should see the following message (which is the correct behavior):

[chuck]: no input files... (try –help)

Windows

1. Place chuck.exe (found in the ’bin’ folder) into c:\windows\system32\

2. Open a command window found in start->run

The ChucK Manual� 4

=> Installation

3. Type cmd and press return

4. Type chuck and press return, you should see:

%>chuck
[chuck]: no input files... (try –help)

The ChucK Manual� 5

=> Installation

Source Installation

To build chuck from the source (Windows users: it’s possible to build ChucK from both Visual
C++ 6.0 and from cygwin - this section describes the cygwin build):

1. Go to the src/ directory (replace chuck-x.x.x.x with the actual directory name):

%>cd chuck-x.x.x.x/src/

2. If you type ’make’ here, you should get the following message:

%>make
[chuck] : please use one of the following configurations:
make osx, make osx-ub, make win32,
make linux-oss, make linux-alsa, make linux-jack

Now, type the command corresponding to your platform...

for example, for MacOS X (universal binary):

%>make osx-ub

for example, for MacOS X (current):

%>make osx

for example, for Windows (under cygwin):

%>make win32

3. If you would like to install chuck (cp into /usr/bin by default). If you don’t like the destination,
edit the makefile under ‘install’, or skip this step altogether. (we recommend putting it somewhere
in your path, it makes on-the-fly programming easier)

(optional: edit the makefile first)
%>make install

You may need to have administrator privileges in order to install ChucK. If you have admin access
then you can use the sudo command to install.

The ChucK Manual� 6

=> Installation

%>sudo make install

4. If you haven’t gotten any egregious error messages up to this point, then you should be done!
There should be a ‘chuck’ executable in the current directory. For a quick sanity check, execute
the following (use ‘./chuck’ if chuck is not in your path), and see if you get the same output:

%>chuck [chuck]: no input files...

(if you do get error messages during compilation, or you run into some other problem - please let
us know and we will do our best to provide support)

You are ready to ChucK. If this is your first time programming in ChucK, you may want to look
at the documentation, or take the ChucK Tutorial (http://chuck.cs.princeton.edu/doc/).

ThanK you very much. Go forth and ChucK - email us for support or to make a suggestion or to
call us idiots.

Ge + Perry

The ChucK Manual� 7

http://chuck.cs.princeton.edu/doc

CHAPTER3
ChucK Tutorials

A Chuck Tutorial

Hello ChucK:

This tutorial was written for the command line version of ChucK (currently the most stable and
widely supported). Other ways of running ChucK include using the miniAudicle (download and
documentation at: http://audicle.cs.princeton.edu/mini/) and the Audicle (in pre-pre-alpha). The
ChucK code is the same, but the way to run them differs, depending the ChucK system.

The first thing we are going to do is do generate a sine wave and send it to the speaker so we can
hear it. We can do this easily in ChucK by connecting audio processing modules (unit generators)
and having them work together to compute the sound.

We start with a blank ChucK program and add the following line of code:

// connect sine oscillator to D/A convertor (sound card)
SinOsc s => dac;

NOTE: by default, a ChucK program starts executing from the first instruction in the top-level
(global) scope.

The above does several things:

The ChucK Manual� 8

http://audicle.cs.princeton.edu/mini/

=> ChucK Tutorials

1. it creates a new unit generator of type ‘SinOsc’ (sine oscillator), and stores its reference in
variable ‘s’.

2. ‘dac’ (D/A convertor) is a special unit generator (created by the system) which is our ab-
straction for the underlying audio interface.

3. we are using the ChucK operator (=>) to ChucK ‘s’ to ‘dac’. In ChucK, when one unit
generator is ChucKed to another, we connect them. We can think of this line as setting up a
data flow from ‘s’, a signal generator, to ‘dac’, the sound card/speaker. Collectively, we will
call this a ‘patch’.

The above is a valid ChucK program, but all it does so far is make the connection – if we ran this
program, it would exit immediately. In order for this to do what we want, we need to take care
of one more very important thing: time. Unlike many other languages, we don’t have to explicitly
say “play” to hear the result. In ChucK, we simply have to “allow time to pass” for data to be
computed. As we will see, time and audio data are both inextricably related in ChucK (as in
reality), and separated in the way they are manipulated. But for now, let’s generate our sine wave
and hear it by adding one more line:

// connect sine oscillator to D/A convertor (sound card)
SinOsc s => dac;

// allow 2 seconds to pass
2::second => now;

Let’s now run this (assuming you saved the file as ‘foo.ck’):

%>chuck foo.ck

This would cause the sound to play for 2 seconds (the :: operator simply multiplies the arguments),
during which time audio data is processed (and heard), after which the program exits (since it has
reached the end). For now, we can just take the second line of code to mean “let time pass for 2
seconds (and let audio compute during that time)”. If you want to play it indefinitely, we could
write a loop:

// connect sine oscillator to D/A convertor (sound card)
SinOsc s => dac;

// loop in time
while(true) {

2::second => now;
}

The ChucK Manual� 9

=> ChucK Tutorials

In ChucK, this is called a ‘time-loop’ (in fact this particular one is an ‘infinite time loop’). This
program executes (and generate/process audio) indefinitely. Try running this program.

IMPORTANT: perhaps more important than how to run ChucK is how to stop ChucK. To stop
a ongoing ChucK program from the command line, hit (ctrl c).

So far, since all we are doing is advancing time; it doesn’t really matter (for now) what value we
advance time by - (we used 2::second here, but we could have used any number of ‘ms’, ‘second’,
‘minute’, ‘hour’, ‘day’, and even ‘week’), and the result would be the same. It is good to keep in
mind from this example that almost everything in ChucK happens naturally from the timing.

Now, let’s try changing the frequency randomly every 100ms:

// make our patch
SinOsc s => dac;

// time-loop, in which the Osc’s frequency is changed every 100 ms
while(true) {

100::ms => now;
Std.rand2f(30.0, 1000.0) => s.freq;

}

This should sound like computer mainframes in old sci-fi movies. Two more things to note here.
(1) We are advancing time inside the loop by 100::ms durations. (2) A random value between 30.0
and 1000.0 is generated and ’assigned’ to the oscillator’s frequency, every 100::ms.

Go ahead and run this (again replace foo.ck with your filename):

%>chuck foo.ck

Play with the parameters in the program. Change 100::ms to something else (like 50::ms or 500::ms,
or 1::ms, or 1::samp(every sample)), or change 1000.0 to 5000.0.

Run and listen:

%>chuck foo.ck

Once things work, hold on to this file - we will use it again soon.

Concurrency in ChucK:

Now let’s write another (slightly longer) program:

The ChucK Manual� 10

=> ChucK Tutorials

// impulse to filter to dac
Impulse i => BiQuad f => dac;
// set the filter’s pole radius
.99 => f.prad;
// set equal gain zero’s
1 => f.eqzs;
// initialize float variable
0.0 => float v;

// infinite time-loop
while(true)
{

// set the current sample/impulse
1.0 => i.next;
// sweep the filter resonant frequency
Std.fabs(Math.sin(v)) * 4000.0 => f.pfreq;
// increment v
v + .1 => v;
// advance time
100::ms => now;

}

Name this moe.ck, and run it:

%>chuck moe.ck

Now, make two copies of moe.ck - larry.ck and curly.ck. Make the following modifications:

1. change larry.ck to advance time by 99::ms (instead of 100::ms).

2. change curly.ck to advance time by 101::ms (instead of 100::ms).

3. optionally, change the 4000.0 to something else (like 400.0 for curly).

Run all three in parallel:

%>chuck moe.ck larry.ck curly.ck

What you hear (if all goes well) should be ’phasing’ between moe, larry, and curly, with curly
emitting the lower-frequency pulses.

ChucK supports sample-synchronous concurrency via the ChucK timing mechanism. Given any
number of source files that uses the timing mechanism above, the ChucK VM can use the timing

The ChucK Manual� 11

=> ChucK Tutorials

information to automatically synchronize all of them. Furthermore, the concurrency is ’sample-
synchronous’, meaning that inter-process audio timing is guaranteed to be precise to the sample.
The audio samples generated by our three stooges in this examples are completely synchronized.
Note that each process do not need to know about each other - it only has to deal with time locally.
The VM will make sure things happen correctly and globally.

The ChucK Manual� 12

=> ChucK Tutorials

Conventions

ChucK is supported under many different operating systems. While ChucK code is intended to be
truly ”platform-independent”, each different OS has their own “features” that make the experience
of working with ChucK slightly different. This chapter will outline some of these differences.

ChucK is used as a terminal application in this tutorial, so you will need to know how to access
and navigate in the terminal. Here are some hints about getting started with the terminal on your
operating system.

OS X

The terminal is located in the Utilities/ folder in the Applications/ folder of your hard drive. Double
click on Terminal. You can click and hold on the icon in the Dock and select the “Keep in Dock”
option. Now the Terminal application will be conveniently located in the Dock.

http://www.macdevcenter.com/pub/ct/51

http://www.atomiclearning.com/macosxterminalx.shtml

Windows

The terminal is accessed by clicking on the Start Menu and then clicking on run. In the window
that opens type cmd.

http://www.c3scripts.com/tutorials/msdos/

http://www.ss64.com/nt/

Linux

No hints needed here.

The ChucK Manual� 13

http://www.macdevcenter.com/pub/ct/51
http://www.atomiclearning.com/macosxterminalx.shtml
http://www.c3scripts.com/tutorials/msdos/
http://www.ss64.com/nt/

=> ChucK Tutorials

On-the-fly-programming

by Adam Tindale

Navigate to the examples folder in the ChucK distribution then run the following command:

%>chuck moe.ck

In this case, ChucK will run whatever is in moe.ck. You can replace moe.ck with the name of
another ChucK file. If this script is a just a loop that never ends then we need to stop ChucK
eventually. Simply press CTRL-C (hold control and press c). This is the ”kill process” hotkey in
the terminal.

Some first things to try is to test the concurrency (running multiple ChucK files in parallel) are
moe, larry, and curly. First, run them each individually (run chuck on moe.ck, larry.ck, or
curly.ck as shown above). Then, run them all in parallel, like this:

%>chuck moe.ck larry.ck curly.ck

They are written to go in and out of phase with each other. Again, if any of these scripts will go
on forever then you have to use CTRL-C to halt ChucK. Give it a try.

Also try the improved versions of our little friends: larry++.ck curly++.ck moe++.ck

Two Window ChucK

Now lets roll up our sleeves a little bit and see some real ChucK power! We are going to run two
window ChucK, and on-the-fly! This section will walk you through a ChucK session.

The ChucK Manual� 14

=> ChucK Tutorials

Here is what you do: open another terminal window just like this one. In this new window type:

%>chuck - -loop

This will start ChucK running. ChucK is now waiting for something to do. Go back to your original
window where you are in your ChucK home. Be careful. If you type chuck test1.ck you will start
a second ChucK running test1.ck. What we want to do is add a script to the ChucK that we set
running in our second window. We will use the + operator to add a script to our ChucK and the
- operator to remove a script.

%>chuck + test1.ck
%>chuck - 1
%>chuck test.ck
%>chuck test.ck
%>chuck test.ck

What happened? That is the power of on-the-fly programming. We added test1.ck. It was added
as the first shred in our ChucK. Since we knew it was shred 1 we removed it by typing chuck - 1.
Great. Next we added three copies of the same script! Isn’t that cool? You can also do this chuck
+ test1.ck test1.ck test1.ck How do you keep track of shreds?

You can ask ChucK how he is doing by typing chuck - -status The shortcut is chuck ĈhucK will
answer in the other window where we left him running. He will tell you what shreds there are and
what their id numbers are. He will also tell you how long he has been running.

When you have had enough of ChucK you can go to the other window and use your fancy CTRL-C
trick or you can type chuck - -kill in your original window.

The ChucK Manual� 15

=> ChucK Tutorials

%>chuck - -kill

One Window ChucK

So you think you are pretty good? One window ChucK is only for the hardest of hardcore.1 You
have been warned.

The concept is pretty similar to two window ChucK: first, you start a ChucK going, then you
manage the adding and removal of scripts to it. How do you start a ChucK and get the command
prompt to return, you ask? In your shell you can add an ampersand (&) after the command and
that will tell the shell to run the command as a background process and give you the prompt back.

%>chuck - -loop &

The rest is as it should be. You will have to be careful when writing your patches to not put too
many print statements. When you print you will temporarily lose control of the prompt as the
shell prints. This can be bad when are you are printing MIDI input. The same applies when you
use the - -status command to ChucK. It can also be fun to fight for your command line. Who will
win?

1As one adventurous Windows user has noted, due to its reliance on launching background processes, it is in fact
only for the hardest of hardcore Mac and Linux users, or those valiant Windows traitors employing Cygwin or similar
Unix-like interfaces.

The ChucK Manual� 16

=> ChucK Tutorials

Modifying Basic Patches

by Adam Tindale

We have a basic patch running in ChucK but it still doesn’t sound very good. In this chapter we will
cover some simple ways to rectify that problem. ChucK allows one to quickly make modifications
to patches that can drastically change the sound.

First what we can do is change the type of our oscillator. There are many different oscillators
available to use: SinOsc (sine wave), SawOsc (sawtooth), SqrOsc (square wave) and PulseOsc
(pulse wave). We can simply change the type of oscillator just like below.

SawOsc s => dac;

Try changing the oscillator to all of the different types and a get a feel for how they sound. When
changing the different Ugens always be sure to check the rest of your patches so that the parameter
calls are valid. If you were to use the .width method of PulseOsc and others on a SinOsc ChucK
will complain. You can comment out lines that are temporarily broken by using double slashes
(//).

Now let’s add some effects to our patch. ChucK has many different standard effects that can be
added to Ugen chains. The simplest effect we can add is an amplifier. In ChucK, this object is
Gain.

SawOsc s => Gain g => dac;

Now we can change the parameters of our effect. Gain has a parameter .gain that can be used to
change the gain of signals passing through the object. Let’s go about changing the gain.

.5 => g.gain;

This is redundant. All Ugens have the ability to change their gain in a similar manner. (See the
UGEN section in Reference for more information about UGEN parameters.)

.5 => s.gain;

However, this is useful when we have multiple Ugens connect to one place. If we were to connect
2 oscillators to the dac then we will get distortion. By default, these oscillators oscillate between
-1 and 1. When they are connected to the same input they are added, so now they go between -2
and 2. This will clip our output. What to do? Gain to the rescue!

The ChucK Manual� 17

=> ChucK Tutorials

SinOsc s1 => Gain g => dac;
SinOsc s2 => g;
.5 => g.gain;

Now our oscillators are scaled between -1 and 1 and everything is right in the world.

More effects were promised, now you will see some in action. Again, one of the wonders of ChucK
is how easy it is to change Ugens. We can take the above patch and change ‘Gain’ for ‘PRCRev’.

SinOsc s1 => PRCRev g => dac;
SinOsc s2 => g;
.5 => g.gain;

The Gain Ugen has been replaced by a reverb and the output is scaled by using the ‘.gain’ parameter
that all Ugens posess. Now we can add a few spices to the recipe. ‘PRCRev’ has a ‘.mix’ parameter
that can be changed between 0. and 1. If we wanted to have this parameter set to the same value
as what we are ChucKing to g.gain we can chain it along. After assignment a Ugen will return the
value that was ChucKed to it. We can use this method to propogate paramters to our oscillators.

.5 => g.gain => g.mix;
500 => s1.freq => s2.freq;

Another technique for setting parameters is to read a parameter, then modify it and then ChucK
it back to itself. Accessing parameters requires the addition of brackets () after the name of the
parameter. Here is an example of doubling the frequency of an oscillator.

s1.freq() * 2 => s1.freq;

Let’s change the type of oscillators for some more fun. We can simply replace ‘SinOsc’ with any
other type of oscillator. Check the Ugen section in the reference for ideas. Try changing the
frequency of the oscillators and the mix parameter of the reverb for each type of oscillator you try.
Endless hours of fun!

The ChucK Manual� 18

=> ChucK Tutorials

LFOs and Blackhole

by Adam Tindale

A common technique to add variation to synthesis is modulation. Modulation is the process of
changing someting, usually the parameter of a signal like frequency. A Low Frequency Oscillator
(LFO) is typically used for this task because the variations are fast enough to be interesting, yet
slow enough to be perceptable. When a signal is modulated quickly (ie. over 20Hz or so) it tends
to alter the timbre of the signal rather than add variation.

Ok, let’s use this idea. What we need to do is set up two oscillators and have one modulate a
paremeter of another. ChucK does not support the connection of Ugen signal outputs to parameter
inputs. This piece of code will not work:

SinOsc s => dac;
SinOsc lfo => s.freq;

Foiled. What we need to do is poll our lfo at some rate that we decide on, for now we will update
the frequency of s every 20 milliseconds. Remember that a SinOsc oscillates between -1 and 1, so if
we just put that directly to the frequency of s we wouldn’t be able to hear it (unless you are using
ChucK in a tricked out civic...). What we are going to do is multiply the output of the lfo by 10
and add it to the frequency 440. The frequency will now oscillate between 430 and 450.

SinOsc s => dac;
SinOsc lfo;

// set the frequency of the lfo
5 => lfo.freq;

while (20::ms => now){
(lfo.last() * 10) + 440 => s.freq;

}

ChucK is a smart little devil. This didn’t work and now we will look into the reason. Why? Ugens
are connected in a network and usually passed to the dac. When a patch is compiled ChucK looks
at what is connected to the dac and as each sample is computed ChucK looks through the network
of Ugens and grabs the next sample. In this case, we don’t want our Ugen connected to the dac,
yet we want ChucK to grab samples from it. Enter blackhole: the sample sucker. If we connect
our lfo to blackhole everything will work out just fine.

SinOsc lfo => blackhole;

The ChucK Manual� 19

=> ChucK Tutorials

Play around with this patch in its current form and find interesting values for the poll rate, lfo
frequency and the lfo amount. Try changing the Ugens around for more interesting sounds as well.

The ChucK Manual� 20

=> ChucK Tutorials

Working with MIDI

by Adam Tindale

Adding a MIDI controller is a great way to add variety to your ChucK patches. Conversely, ChucK
offers a simple and powerful way to utilize a MIDI controller for making music.

The first thing to do when working with MIDI is to make sure that ChucK sees all of your devices.
You can do this by using the - -probe start flag. Like this:

%>chuck - -probe

ChucK will display a list of the connected audio and MIDI devices and their reference ID. We will
assume that your controller is found to have and ID of 0. First, we must open a connection between
ChucK and the port. We can accomplish this by creating a MidiIn object and then connecting it
to a port.

//create object
MidiIn min;

//connect to port 0
min.open(0);

If you want to send MIDI out of ChucK you use the MidiOut object and then open a port.

//create object
MidiOut mout;

//connect to port 0
mout.open(0);

When opening ports it is suggested that you check whether the .open function returns properly. In
some situations it doesn’t make any sense for the shred to live on if there is no MIDI data available
to be sent along. You can check the return value of the .open function and then exit the shred
using the me keyword with the exit() function.

MidiIn min;
min.open(0) => int AmIOpen;

if(!AmIOpen) { me.exit(); }

The ChucK Manual� 21

=> ChucK Tutorials

We can do this in fewer lines of code. We can put the min.open(0) in the condition of the if
statement. This way min.open will return true or false (which is represented as ints with a value
of 1 or 0). The ! will give the opposite return value of min.open. Now the statement will mean if
min.open doesn’t return true then exit. Yeah?

if(!min.open(0)) { me.exit(); }

Getting MIDI

In order to receive any of the juicy data you are piping into ChucK we need to ceate a MidiMsg
object. This object is used to hold data that can be input into ChucK or output to a MIDI port.
Unless you are high skilled at managing the state of these messages (or you enjoy the headache you
get from debugging) it is recommended that you create a minimum of one MidiMsg for each port
you are using.

What we need to do is get the data from the MidiIn object into a message that we can use inside
of ChucK. The MidiMsg object is just a container with three slots: data1, data2 and data3. We
fill these slots up by putting our message in the .recv(MidiMsg) function of a MidiIn object.
MidiIn keeps its messages in a queue so that you can poll it for messages and it will keep giving
messages until it is empty. The .recv(MidiMsg) function returns true and false so we can put it
in a while loop and it will continue to run through the loop until there are no more messages left.

// check for messages every 10 milliseconds
while(10::ms => now){

//
while(min.recv(msg)){

<<<msg.data1,msg.data2,msg.data3,"MIDI Message">>>;
}

}

The Event system makes life a little easier and also makes sure that MIDI input is dealt with as
soon as ChucK receives it. All that has to be done is to ChucK the MidiIn object to now and it
will wait until a message is received to go further in the program.

while(true){
// Use the MIDI Event from MidiIn
min => now;
while(min.recv(msg)){

<<<msg.data1,msg.data2,msg.data3,"MIDI Message">>>;
}

}

The ChucK Manual� 22

=> ChucK Tutorials

Midi Output

If you have a synthesizer that you want to trigger from ChucK you can send MIDI messages to it
simply. All you have to do is have a MidiMsg that will serve as the container for your data and
then you will hand it to MidiOut using the .send(MidiMsg) function.

MidiOut mout;
MidiMsg msg;
// check if port is open
if(!mout.open(0)) me.exit();

// fill the message with data
144 => msg.data1;
52 => msg.data2;
100 => msg.data3;
// bugs after this point can be sent
// to the manufacturer of your synth
mout.send(msg);

The ChucK Manual� 23

=> ChucK Tutorials

Writing To Disk

by Adam Tindale and Ge Wang

Here is a brief tutorial on writing to disk...

— 1. recording your ChucK session to file is easy!

example: you want to record the following:

%>chuck foo.ck bar.ck

all you’s got to do is ChucK a shred that writes to file:

%>chuck foo.ck bar.ck rec.ck

no changes to existing files are necessary. an example rec.ck can be found in examples/basic/, this
guy/gal writes to “foo.wav”. edit the file to change. if you don’t want to worry about overwriting
the same file everytime, you can:

%>chuck foo.ck bar.ck rec-auto.ck

rec-auto.ck will generate a file name using the current time. You can change the prefix of the
filename by modifying

"data/session" => w.autoPrefix;

w is the WvOut in the patch.

Oh yeah, you can of course chuck the rec.ck on-the-fly...

from terminal 1

%>chuck - -loop

from terminal 2

%>chuck + rec.ck

— 2. silent mode

you can write directly to disk without having real-time audio by using - -silent or -s

The ChucK Manual� 24

=> ChucK Tutorials

%>chuck foo.ck bar.ck rec2.ck -s

this will not synchronize to the audio card, and will generate samples as fast as it can.

— 3. start and stop

you can start and stop the writing to file by:

1 => w.record; // start
0 => w.record; // stop

as with all thing ChucKian, this can be done sample-synchronously.

— 4. another halting problem

what if I have infinite time loop, and want to terminate the VM, will my file be written out
correctly? the answer:

Ctrl-C works just fine.

ChucK STK module keeps track of open file handles and closes them even upon abnormal termi-
nation, like Ctrl-C. Actually for many, Ctrl-C is the natural way to end your ChucK session. At
any rate, this is quite ghetto, but it works. As for seg-faults and other catastrophic events, like
computer catching on fire from ChucK exploding, the file probably is toast.

hmmmm, toast...

— 5. the silent sample sucker strikes again

as in rec.ck, one patch to write to file is:

dac => Gain g => WvOut w => blackhole;

the blackhole drives the WvOut, which in turns sucks samples from Gain and then the dac. The
WvOut can also be placed before the dac:

Noise n => WvOut w => dac;

The WvOut writes to file, and also pass through the incoming samples.

The ChucK Manual� 25

=> ChucK Tutorials

Stereo

by Adam Tindale

At long last, ChucK is stereo! Accessing the stereo capabilities of ChucK is relatively simple. dac
now has three access points.

UGen u;
// standard mono connection
u => dac;

// simple enough!
u => dac.left;
u => dac.right;

adc functionality mirrors dac.

// switcheroo
adc.right => dac.left;
adc.left => dac.right;

If you have your great UGen network going and you want to throw it somewhere in the stereo field
you can use Pan2. You can use the .pan function to move your sound between left (-1) and right
(1).

// this is a stereo connection to the dac
SinOsc s => Pan2 p => dac;
1 => p.pan;
while(1::second => now){

// this will flip the pan from left to right
p.pan() * -1. => p.pan;

}

You can also mix down your stereo signal to a mono signal using the Mix2 object.

adc => Mix2 m => dac.left;

If you remove the Mix2 in the chain and replace it with a Gain object it will act the same way.
When you connect a stereo object to a mono object it will sum the inputs. You will get the same
effect as if you connect two mono signals to the input of another mono signal.

The ChucK Manual� 26

=> ChucK Tutorials

Using OSC in ChucK

by Rebecca Fiebrink

To send OSC:

Host
Decide on a host to send the messages to. E.g., ”splash.local” if sending to computer named
”Splash,” or ”localhost” to send to the same machine that is sending.

Port
Decide on a port to which the messages will be sent. This is an integer, like 1234.

Message ”address”
For each type of message you’re sending, decide on a way to identify this type of message, formatted
like a web URL e.g., ”conductor/downbeat/beat1” or ”Rebecca/message1”

Message contents
Decide on whether the message will contain data, which can be 0 or more ints, floats, strings, or
any combination of them.

For each sender:

//Create an OscSend object:
OscSend xmit;
//Set the host and port of this object:
xmit.setHost("localhost", 1234);

For every message, start the message by supplying the address and format of contents, where ”f”
stands for float, ”i” stands for int, and ”s” stands for string:

//To send a message with no contents:
xmit.startMsg("conductor/downbeat");
//To send a message with one integer:
xmit.startMsg("conductor/downbeat, i");
//To send a message with a float, an int, and another float:
xmit.startMsg("conductor/downbeat, f, i, f");

For every piece of information in the contents of each message, add this information to the message:

//to add an int:

The ChucK Manual� 27

=> ChucK Tutorials

xmit.addInt(10);
//to add a float:
xmit.addFloat(10.);
//to add a string:
xmit.addString("abc");

Once all parts of the message have been added, the message will automatically be sent.

To receive OSC:

Port:
Decide what port to listen on. This must be the same as the port the sender is using. Message
address and format of contents: This must also be the same as what the sender is using; i.e., the
same as in the sender’s startMsg function.

Code: for each receiver

//Create an OscRecv object:
OscRecv orec;
//Tell the OscRecv object the port:
1234 => orec.port;
//Tell the OscRecv object to start listening for OSC messages on that port:
orec.listen();

For each type of message, create an event that will be used to wait on that type of message, using
the same argument as the sender’s startMsg function: e.g.,

orec.event("conductor/downbeat, i") @=> OscEvent myDownbeat;

To wait on an OSC message that matches the message type used for a particular event e, do

e => now;

(just like waiting for regular Events in chuck)

To process the message: Grab the message out of the queue (mandatory!)

e.nextMsg(); For every piece of information in the message, get the data out. You must call these
functions in order, according to your formatting string used above.

e.getInt() => int i;
e.getFloat() => float f;
e.getString() => string s;

The ChucK Manual� 28

=> ChucK Tutorials

If you expect you may receive more than one message for an event at once, you should process
every message waiting in the cue:

while (e.nextMsg() != 0)
{
//process message here (no need to call nextMsg again
}

The ChucK Manual� 29

Reference

The ChucK Manual� 30

CHAPTER4
Overview

ChucK is a strongly-typed, strongly-timed, concurrent audio and multimedia programming lan-
guage. It is compiled into virtual instructions, which is immediately run in the ChucK Virtual
Machine. This guide documents the features of the Language, Compiler, and Virtual Machine for
a ChucK programmer.

running ChucK

Some quick notes:

� you can install ChucK (see build instructions) or run it from a local directory.
� ChucK is a command line application called chuck. (also see the Audicle)
� use command line prompt/terminal to run ChucK: (e.g. Terminal or xterm on OS X, cmd or

cygwin on Windows, on Linux, you surely have your preferred terminal.)
� this is a quick overview, see VM options for a more complete guide to command line options.

To run ChucK with a program/patch called foo.ck simply run chuck and then the name of the file:

%>chuck foo.ck

To run ChucK with multiple patches concurrently (or the same one multiple times):

The ChucK Manual� 31

=> Overview

%>chuck foo.ck bar.ck bar.ck boo.ck

There are several flags you can specify to control how ChucK operates, or to find out about the
system. For example,the following probes the audio system and prints out all available audio
devices and MIDI devices. You may then refer to them (by number usually) from the command
line or from your program. (again, see VM Options for a complete list)

%>chuck - -probe

ChucK can be run in a different terminal as a host/listener that patches may be sent to. The server
should invoke the –loop flag to specify that the virtual machine should not halt automatically (when
the current programs exit).

%>chuck - -loop

(See the guide to On-the-fly Programming for more information)

If a ChucK listener is running, we can (from a second terminal) send a program/patch to to the
listener by using the + command line option:

%>chuck + foo.ck

Similarly, you can use - and = to remove/replace a patch in the listener, and use t̂o find out the
status. Again, see On-the-fly Programming for more information.

To run most of the code or examples in this language specification, you only need to use the basic
chuck program.

comments

Comments are sections of code that are ignored by a compiler. These help other programmers (and
yourself) interpret and document your code. Double slashes indicate to the compiler to skip the
rest of the line.

// this is a comment
int foo; // another comment

Block comments are used to write comments that last more than one line, or less than an entire
line. A slash followed by an asterisk starts a block comment. The block comment continues until
the next asterisk followed by a slash.

The ChucK Manual� 32

=> Overview

/* this
is a
block
comment */

int /* another block comment */ foo;

Comments can also be used to temporarily disable sections of your program, without deleting it
entirely. ChucK code that is commented-out will be ignored by the compiler, but can easily be
brought back if you change your mind later. In the following example, the PRCRev UGen will be
ignored, but we could easily re-insert it by deleting the block comment delimiters.

SinOsc s => /* PRCRev r => */ dac;

debug print

ChucK currently lacks a comprehensive system for writing to files or printing to the console. In its
place we have provided a debug print syntax:

// prints out value of expression
<<< expression >>>;

This will print the values and types of any expressions placed within them. This debug print
construction may be placed around any non-declaration expression (non l-value) and will not
affect the execution of the code. Expressions which represent an object will print the value of that
object’s reference address:

// assign 5 to a newly declared variable
5 => int i;
// prints "5 : (int)"
<<<i>>>;

// prints "hello! : (string)"
<<<"hello!">>>; //prints "hello! : (string)"

// prints "3.5 : (float)"
<<<1.0 + 2.5 >>>=> float x;

For more formatted data output, a comma-separated list of expressions will print only their respec-
tive values (with one space between):

The ChucK Manual� 33

=> Overview

// prints "the value of x is 3.5" (x from above)
<<<"the value of x is" , x >>>;

// prints "4 + 5 is 9"
<<<"4 + 5 is", 4 + 5>>>;

// prints "here are 3 random numbers ? ? ?"
<<<"here are 3 random numbers",

Std.rand2(0,9),
Std.rand2(0,9),
Std.rand2(0,9) >>>;

reserved words

(primitive types)

� int
� float
� time
� dur
� void
� same (unimplemented)

(control structures)

� if
� else
� while
� until
� for
� repeat
� break
� continue
� return
� switch (unimplemented)

(class keywords)

� class
� extends

The ChucK Manual� 34

=> Overview

� public
� static
� pure
� this
� super (unimplemented)
� interface (unimplemented)
� implements (unimplemented)
� protected (unimplemented)
� private (unimplemented)

(other chuck keywords)

� function
� fun
� spork
� const
� new

(special values)

� now
� true
� false
� maybe
� null
� NULL
� me
� pi

(special : default durations)

� samp
� ms
� second
� minute
� hour
� day
� week

(special : global ugens)

� dac

The ChucK Manual� 35

=> Overview

� adc
� blackhole

(operators)

� +
� -
� *
� /
� %
� =>
� =<
� !=>
� ||
� &&
� ==
� ∧
� &
� |
� ˜
� ::
� ++
� – –
� >
� >=
� <
� <=
� @=>
� +=>
� -=>
� *=>
� /=>
� %=>

The ChucK Manual� 36

CHAPTER5
Types, Values, and Variables

ChucK is a strongly-typed language, meaning that types are resolved at compile-time. However,
it is not quite statically-typed, because the compiler/type system is a part of the ChucK virtual
machine, and is a runtime component. This type system helps to impose precision and clarity in
the code, and naturally lends to organization of complex programs. At the same time, it is also
dynamic in that changes to the type system can take place (in a well-defined manner) at runtime.
This dynamic aspect forms the basis for on-the-fly programming.

This section deals with types, values, and the declaration and usage of variables. As in other
strongly-typed programming languages, we can think of a type as associated behaviors of data.
(For example, an ’int’ is a type that means integer, and adding two integer is defined to produce a
third integer representing the sum.) Classes and objects allow us to extend the type system with
our own custom types, but we won’t cover them in this section. We will focus mainly on primitive
types here, and leave the discussion of more complex types for classes and objects.

primitive types

The primitive, or intrinsic types are those which are simple datatypes (they have no additional
data attributes). Objects are not primitive types. Primitive types are passed by value. Primitive
types cannot be extended. The primitive types in ChucK are:

� int : integer (signed)

The ChucK Manual� 37

=> Types, Values, and Variables

� float : floating point number (in ChucK, a float is by default double-precision)
� time : ChucKian time
� dur : ChucKian duration
� void : (no type)

For a summary of operations on these types, go to operations and operators.

All other types are derived from ’object’, either as part of the ChucK standard library, or as a new
class that you create. For specification, go to classes and objects.

values (literals)

Literal values are specified explicitly in code and are assigned a type by the compiler. The following
are some examples of literal values:

int:

42

int (hexidecimal):

0xaf30

float:

1.323

dur:

5.5::second

In the above code, second is an existing duration variable. For more on durations, see the manip-
ulating time section.

variables

Variables are locations in memory that hold data. Variables have to be declared in ChucK before
they are used. For example, to declare a variable of type int called foo:

The ChucK Manual� 38

=> Types, Values, and Variables

// declare an ’int’ called ’foo’
int foo;

We can assign a value to an existing variable by using the ChucK operator (=>). This is one of
the most commonly used operators in ChucK, it’s the way to do work and take action! We will
discuss this family of operators in operators and operations.

// assign value of 2 to ’foo’
2 => foo;

It is possible to combine the two statements into one:

// assign 2 to a new variable ’foo’ of type ’int’
2 => int foo;

To use a variable, just refer to it by name:

// debug-print the value of foo
<<< foo >>>;

To update the value of foo, for example:

// multiply ’foo’ by 10, assign back to ’foo’
foo * 10 => foo;

You can also do the above using a *=>(mult-chuck):

// multiply ’foo’ by 10, and then assign to ’foo’
10 *=> foo;

Here is an example of a duration:

// assign value of ’5 seconds’ to new variable bar
5::second => dur bar;

Once you have bar, you can inductively use it to construct new durations:

// 4 bar, a measure?
4::bar => dur measure;

Since time is central to programming ChucK, it is important to understand time, dur, the relation-
ship and operations between them. There is more information in the manipulating time section.

The ChucK Manual� 39

=> Types, Values, and Variables

reference types

Reference types are types which inherit from the object class. Some default reference types include:

� Object : base type that all classes inherit from (directly or indirectly)
� array : N-dimensional ordered set of data (of the same type)
� Event : fundamental, extendable, synchronization mechanism
� UGen : extendable unit generator base class
� string : string (of characters)

New classes can be created. All classes are reference types. We will leave the full discussion to the
objects and classes section.

complex types

Two special primitive types are available to to represent complex data, such as the output of an
FFT: complex and polar. A complex number of the form a + bi can be declared as

#(2,3) => complex cmp; //cmp is now 2 + 3i

where the #(...) syntax explicitly denotes a complex number in rectangular form. Similarly, explicit
complex numbers can be manipulated directly:

#(5, -1.5) => complex cmp; // cmp is 5 - 1.5i
#(2,3) + #(5,6) + cmp => complex sum; // sum is now 12 + 7.5i

The (floating point) real and imaginary parts of a complex number can be accessed with the .re
and .im components of a complex number:

#(2.0,3.5) => complex cmp;
cmp.re => float x; // x is 2.0
cmp.im => float y; //y is 3.5

The polar type offers an equivalent, alternative representation of complex numbers in terms of a
magnitude and phase value. A polar representation of a complex number can be declared as

%(2, .5*pi) => polar pol; // pol is 2-V.5p

The magnitude and phase values can be accessed via .mag and .phase:

The ChucK Manual� 40

=> Types, Values, and Variables

%(2, .5*pi) => polar pol;
pol.mag => float m; // m is 2
pol.phase => float p; //p is .5p

polar and complex representations can be cast to each other and multiplied/ added/assigned/etc.:

%(2, .5*pi) => polar pol;
#(3, 4) => complex cmp;
pol $ complex + #(10, 3) + cmp => complex cmp2;
cmp $ polar + %(10, .25*pi) - pol => polar pol2;

The ChucK Manual� 41

CHAPTER6
Arrays

Arrays are used represent N-dimensional ordered sets of data (of the same type). This sections
specifies how arrays are declared and used in ChucK. Some quick notes:

� arrays can be indexed by integer (0-indexed).
� any array can also be used as an associative map, indexed by strings.
� it is important to note that the integer-indexed portion and the associative portion of an

array are stored in separate namespaces
� arrays are objects (see objects and classes), and will behave similarly under reference assign-

ment and other operations common to objects.

declaration

Arrays can be declared in the following way:

// declare 10 element array of int, called foo
int foo[10];

// since array of int (primitive type), the contents
// are automatically initialized to 0

Arrays can also be initialized:

The ChucK Manual� 42

=> Arrays

// chuck intializer to array reference
[1, 1, 2, 3, 5, 8] @=> int foo[];

In the above code, there are several things to note.

� initializers must contain the same or similar types. the compiler will attempt to find the
highest common base type of all the elements. if no such common element is found, an error
is reported.

� the type of the initializer [1, 1, 2, 3, 5, 8] is int[]. the intializer is an array that can be used
directly when arrays are expected.

� the at-chuck operator (@=>) means assignment, and is discussed at length in operators and
operations.

� int foo[] is declaring an empty reference to an array. the statement assigns the initializer
array to foo.

� arrays are objects.

When declaring an array of objects, the objects inside the array are automatically instantiated.

// objects in arrays are automatically instantiated
Object group[10];

If you only want an array of object references:

// array of null object references
Object @ group[10];

Check here more information on object declaration and instantation in Chuck.

The above examples are 1-dimensional arrays (or vectors). Coming up next are multi-dimensional
arrays!

multi-dimensional arrays

It is possible (and equally easy) to declare multi-dimensional arrays:

// declare 4 by 6 by 8 array of float
float foo3D[4][6][8];

Initializers work in similar ways:

The ChucK Manual� 43

=> Arrays

// declare 2 by 2 array of int
[[1,3], [2,4]] @=> int bar[][];

In the above code, note the two [][] since we make a matrix.

lookup

Elements in an array can be accessed using [] (in the appropriate quantities).

// declare an array of floats
[3.2, 5.0, 7] @=> float foo[];

// access the 0th element (debug print)
<<< foo[0] >>>; // hopefully 3.2

// set the 2nd element
8.5 => foo[2];

Looping over the elements of an array:

// array of floats again
[1, 2, 3, 4, 5, 6] @=> float foo[];

// loop over the entire array
for(0 => int i; i < foo.cap(); i++)
{

// do something (debug print)
<<< foo[i] >>>;

}

Accessing multi-dimensional array:

// 2D array
int foo[4][4];

// set an element
10 => foo[2][2];

If the index exceeds the bounds of the array in any dimension, an exception is issued and the
current shred is halted.

The ChucK Manual� 44

=> Arrays

// array capacity is 5
int foo[5];

// this should cause ArrayOutOfBoundsException
// access element 6 (index 5)
<<< foo[5] >>>;

a longer program: otf 06.ck from examples:

// the period
.5::second => dur T;
// synchronize to period (for on-the-fly synchronization)
T - (now % T) => now;

// our patch
SinOsc s => JCRev r => dac;
// initialize
.05 => s.gain;
.25 => r.mix;

// scale (pentatonic; in semitones)
[0, 2, 4, 7, 9] @=> int scale[];

// infinite time loop
while(true)
{

// pick something from the scale
scale[Math.rand2(0,4)] => float freq;
// get the final freq
Std.mtof(69 + (Std.rand2(0,3)*12 + freq)) => s.freq;
// reset phase for extra bandwidth
0 => s.phase;

// advance time
if(Std.randf() > -.5) .25::T => now;
else .5::T => now;

}

The ChucK Manual� 45

=> Arrays

associative arrays

Any array can be used also as an associative array, indexed on strings. Once the regular array is
instantiated, no further work has to be done to make it associative as well - just start using it as
such.

// declare regular array (capacity doesn’t matter so much)
float foo[4];

// use as integer-indexed array
2.5 => foo[0];

// use as associative array
4.0 => foo["yoyo"];

// access as associative (print)
<<< foo["yoyo"] >>>;

// access empty element
<<< foo["gaga"] >>>; // -> should print 0.0

It is important to note (again), that the address space of the integer portion and the associative
portion of the array are completely separate. For example:

// declare array
int foo[2];

// put something in element 0
10 => foo[0];

// put something in element "0"
20 => foo["0"];

// this should print out 10 20
<<< foo[0], foo["0"] >>>;

The capacity of an array relates only to the integer portion of it. An array with an integer portion
of capacity 0, for example, can still have any number of associative indexes.

// declare array of 0 capacity
int foo[0];

The ChucK Manual� 46

=> Arrays

// put something in element "here"
20 => foo["here"];

// this should print out 20
<<< foo["here"] >>>

// this should cause an exception
<<< foo[0] >>>

Note: The associative capacity of an array is not defined, so objects used in the associative names-
pace must be explicitly instantiated, in contrast to those in the integer namespace

Accessing an uninstantiated element of the associate array will return a null reference. Please check
the class documentation page for an explanation of ChucK objects and references.

class Item {
float weight;

}

Item box[10];

// integer indices (up to capacity) are pre-instantiated.
1.2 => box[1].weight;

// instantiate element "lamp";
new Item @=> box["lamp"];

// access allowed to "lamp"
2.0 => box["lamp"].weight;

// access causes a NullPointerException
2.0 => box["sweater"].weight;

array assignment

Arrays are objects. So when we declare an array, we are actually (1) declaring a reference to array
(reference variable) and (2) instantiating a new array and reference assigned to the variable. A
(null) reference is a reference variable that points to no object or null. A null reference to an array
can be created in this fasion:

// declare array reference (by not specifying a capacity)

The ChucK Manual� 47

=> Arrays

int foo[];

// we can now assign any int[] to foo
[1, 2, 3] @=> foo;

// print out 0th element
<<< foo[0] >>>;

This is also useful in declaring functions that have arrays as arguments or return type.

// our function
fun void print(int bar[])
{

// print it
for(0 => int i; i < bar.cap(); i++)

<<< bar[0] >>>;
}

// we can call the function with a literal
print([1, 2, 3, 4, 5]);

// or can we can pass a reference variable
int foo[10];
print(foo);

Like other objects, it is possible make multiple references to a single array. Like other objects, all
assignments are reference assignments, meaning the contents are NOT copied, only a reference to
array is duplicated.

// our single array
int the_array[10];

// assign reference to foo and bar
the_array => int foo[] => int bar[];

// (the_array, foo, and bar now all reference the same array)

// we change the_array and print foo...
// they reference the same array, changing one is like changing the other
5 => the_array[0];
<<< foo[0] >>>; // should be 5

It is possible to reference sub-sections of multi-dimensional arrays.

The ChucK Manual� 48

=> Arrays

// a 3D array
int foo3D[4][4][4];

// we can make a reference to a sub-section
foo3D[2] => int bar[][];

// (note that the dimensions must add up!)

The ChucK Manual� 49

CHAPTER7
Operators and Operations

Operations on data are achieved through operators. This sections defines how operators behave
on various datatypes. You may have seen many of the operators in other programming languages
(C/Java). Some others are native to ChucK. We start with the family of ChucK operators.

=> (the ChucK operator)

The ChucK operator (=>) is a massively overloaded operator that, depending on the types in-
volved, performs various actions. It denotes action, can be chained, and imposes and clarifies order
(always goes from left to right). The ChucK operator is the means by which work is done in ChucK.
Furthermore, the ChucK operator is not a single operator, but a family of operators.

=> (foundational ChucK operator)

We start with the standard, plain-vanilla ChucK operator (=>). It is left-associative (all ChucK
operators are), which allows us to specify any ordered flow of data/tasks/modules (such as unit
generator connection) from left-to-right, as in written (English) text. What => does depends on
the context. It always depends on the type of the entity on the left (the chucker) and the one on
the right (the chuckee), and it sometimes also depends on the nature of the entity (such as whether
it is a variable or not).

Some examples:

// a unit generator patch - the signal flow is apparent
// (in this case, => connects two unit generators)

The ChucK Manual� 50

=> Operators and Operations

SinOsc b => Gain g => BiQuad f => dac;

// add 4 to foo, chuck result to new ’int’ variable ’bar’
// (in this case, => assigns a value to a variable (int)
4 + foo => int bar;

// chuck values to a function == function call
// (same as Math.rand2f(30, 1000))
(30, 1000) => Math.rand2f;

There are many other well-defined uses of the ChucK operator, depending on the context.

@=> (explicit assignment ChucK operator)

In ChucK, there is no stardard assignment operator (=), found in many other programming lan-
guages. Assignment is carried out using ChucK operators. In the previous examples, we have used
=> for assignment:

// assign 4 to variable foo
4 => int foo;

// assign 1.5 to variable bar
1.5 => float bar;

// assign duration of 100 millisecond to duh
100::ms => dur duh;

// assign the time "5 second from now" to later
5::second + now => time later;

The @=> explicit assignment ChucK operator behaves exactly the same for the above types (int,
float, dur, time). However, the difference is that @=> can also be used for reference assignments
of objects (see objects and classes) whereas => only does assignment on primitive types (int, float,
dur, time). The behavior of => on objects is completely context-dependent.

// using @=> is same as => for primitive types
4 @=> int foo;

// assign 1.5 to variable bar
1.5 @=> float bar;

// (only @=> can perform reference assignment on objects)

The ChucK Manual� 51

=> Operators and Operations

// reference assign moe to larry
// (such that both moe and larry reference the same object)
Object moe @=> Object @ larry;

// array initialization
[1, 2] @=> int ar[];

// using new
new Object @=> moe;

In its own screwed-up way, this is kind of nice because there is no confusion between assignment
(@=> or =>) and equality (==). In fact the following is not a valid ChucK statement:

// not a valid ChucK statement!
int foo = 4;

+=> -=> *=> /=> etc. (arithmetic ChucK operators)

These operators are used with variables (using ’int’ and ’float’) to perform one operation with
assignment.

// add 4 to foo and assign result to foo
foo + 4 => foo;

// add 4 to foo and assign result to foo
4 +=> foo;

// subtract 10 from foo and assign result to foo
// remember this is (foo-10), not (10-foo)
10 -=> foo;

// 2 times foo assign result to foo
2 *=> foo;

// divide 4 into foo and assign result to foo
// again remember this is (foo/4), not (4/foo)
4 /=> foo;

It is important to note the relationship between the value and variable when using -=>and /=>,
since these operations are not commutative.

// mod foo by T and assign result to foo

The ChucK Manual� 52

=> Operators and Operations

T %=> foo;

// bitwise AND 0xff and bar and assign result to bar
0xff &=> bar;

// bitwise OR 0xff and bar and assign result to bar
0xff |=> bar;

That’s probably enough operator abuse for now...

+ - * / (arithmetic)

Can you add, subtract, multiply and divide? So can ChucK!

// divide (and assign)
16 / 4 => int four;

// multiply
2 * 2 => four;

// add
3 + 1 => four;

// subtract
93 - 89 => four;

cast

ChucK implicitly casts int values to float when float is expected, but not the other around. The
latter could result in a loss of information and requires an explicit cast.

// adding float and int produces a float
9.1 + 2 => float result;

// however, going from float to int requires cast
4.8 $ int => int foo; // foo == 4

// this function expects two floats
Math.rand2f(30.0, 1000.0);

// this is ok because of implicit cast
Math.rand2f(30, 1000);

The ChucK Manual� 53

=> Operators and Operations

% (modulo)

The modulo operator % computes the remainder after integer, floating point, duration, and time/duration
division.

// 7 mod 4 (should yield 3)
7 % 4 => int result;

// 7.3 mod 3.2 floating point mod (should yield .9)
7.3 % 3.2 => float resultf;

// duration mod
5::second % 2::second => dur foo;

// time/duration mod
now % 5::second => dur bar;

the latter (time/duration mod) is one of many ways to dynamically synchronize timing in shreds.
the examples otf 01.ck through otf 07.ck (see under examples) make use of this to on-the-fly syn-
chronize its various parts, no matter when each shred is added to the virtual machine:

// define period (agreed upon by several shreds)
.5::second => dur T;

// compute the remainder of the current period ...
// and advance time by that amount
T - (now % T) => now;

// when we reach this point, we are synchronized to T period boundary

// the rest of the code
// ...

This is one of many ways to compute and reason about time in ChucK. The appropriate solution(s)
in each case depends on the intended functionality. Have fun!

&& || == != <= > >= (logic)

Logical operators - each of these need two operands. The result is an integer value of 0 or 1.

� && : and
� ||: or
� == : equals

The ChucK Manual� 54

=> Operators and Operations

� != : does not equal
� >: greater than
� >= : greater than or equal to
� <: less than
� <= : less than or equal to

// test some universal truths
if(1 <= 4 && true)

<<<"horray">>>;

>> << & | ˆ (bitwise)

These are used on int values at the bit level, often for bit masking.

� >>: shift bits right (8 >>1 = 4)
� <<: shift bits left (8 <<1 = 16)
� & : bitwise AND
� |: bitwise OR
� ˆ: bitwise XOR

++ - - (inc / dec)

Values may be incremented or decremented by appending the ++ or - -operators.

4 => int foo;
foo++;
foo--;

! + - new (unary)

These operators come before one operand.

// logical invert
if(!true == false)

<<<"yes">>>;

// negative
-1 => int foo;

// instantiate object
new object @=> object @ bar;

The ChucK Manual� 55

CHAPTER8
Control Structures

ChucK includes standard control structures similar to those in most programming languages. A
condition (of type ’int’) is evaluated and then a proceeding block is potentially executed. Blocks
are separated either by semicolons or by curly brackets .

if / else

The if statement executes a block if the condition is evaluated as non-zero.

if(condition)
{

// insert code here
}

In the above code, condition is any expression that evaluates to an int.

The else statement can be put after the if block to handle the case where the condition evaluates
to 0.

if(condition)
{

// your code here

The ChucK Manual� 56

=> Control Structures

}
else
{

// your other code here
}

If statements can be nested.

while

The while statement is a loop that repeatedly executes the body as long as the condition evaluates
as non-zero.

// here is an infinite loop
while(true)
{

// your code loops forever!

// (sometimes this is desirable because we can create
// infinite time loops this way, and because we have
// concurrency)

}

The while loop will first check the condition, and executes the body as long as the condition
evaluates as non-zero. To execute the body of the loop before checking the condition, you can use
a do/while loop. This guarantees that the body gets executed as least once.

do {
// your code executes here at least once

} while(condition);

A few more points:

� while statements can be nested.
� see break/continue for additional control over your loops

until

The until statement is the opposite of while, semantically. A until loop repeatedly executes the
body until the condition evaluates as non-zero.

The ChucK Manual� 57

=> Control Structures

// an infinite loop
until(false)
{

// your great code loops forever!
}

The while loop will first check the condition, and executes the body as long as the condition
evaluates as zero. To execute the body of the loop before checking the condition, you can use a
do/until loop. This guarantees that the body gets executed as least once.

do {
// your code executes here at least once

} until(condition);

A few more points:

� until statements can be nested.
� see break/continue for additional control over your loops

for

A loop that iterates a given number of times. A temporary variable is declared that keeps track of
the current index and is evaluated and incremented at each iteration.

// for loop
for(0 => int foo; foo < 4 ; foo++)
{

// debug-print value of ’foo’
<<<foo>>>;

}

break / continue

Break allows the program flow to jump out of a loop.

// infinite loop
while(1)
{

if(condition)

The ChucK Manual� 58

=> Control Structures

break;
}

Continue allows a loop to continue looping but not to execute the rest of the block for the iteration
where continue was executed.

// another infinite loop
while(1)
{

// check condition
if(condition)

continue;

// some great code that may get skipped (if continue is taken)
}

The ChucK Manual� 59

CHAPTER9
Functions

Functions provide ways to break up code/common tasks into individual units. This helps to promote
code re-usability and readability.

writing

Declare functions with the keyword fun (or function) followed by the return type and then the
name of the function. After the name of the function parentheses must be opened to declare the
types of the input arguments.

// define function call ’funk’
fun void funk(int arg)
{

// insert code here
}

The above function returns no values (the return type is void). If the function is declared to return
any other type of values, the function body must return a value of the appropriate type.

// define function ’addOne’
fun int addOne(int x)

The ChucK Manual� 60

=> Functions

{
// result
return x + 1;

}

calling

To call a function use the name of the function with appropriate arugments.

// define ’hey’
fun int hey(int a, int b)
{

// do something
return a + b;

}

// call the function; store result
hey(1, 2) => int result;

You can also use the ChucK operator to call functions!

// call hey
(1, 2) => hey => int result;

// same
hey(1, 2) => int result;

// several in a row
(10, 100) => Std.rand2 => Std.mtof => float foo;

// same
Std.mtof(Std.rand2(10, 100)) => float foo;

overloading

Overloading a function allows functions with the same name to be defined with different arguments.
The function must be written in separate instances to handle the input, and the return type must
agree.

// funk(int)

The ChucK Manual� 61

=> Functions

fun int add(int x)
{

return x + x;
}

// funk(int, int)
fun int add(int x, int y)
{

return x + y;
}

// compiler automatically choose the right one to call
add(1) => int foo;
add(1, 2) => int bar;

The ChucK Manual� 62

CHAPTER10
Concurrency and Shreds

ChucK is able to run many processes concurrently (the process behave as if they are running in
parallel). A ChucKian process is called a shred. To spork a shred means creating and adding a
new process to the virtual machine. Shreds may be sporked from a variety of places, and may
themselves spork new shreds.

ChucK supports sample-synchronous, non-preemptive concurrency. Via the timing mechanism.
any number of programs/shreds can be automatically shreduled and synchronized use the timing
information. A shreduler in the virtual machine does the shreduling. The concurrency is ’sample-
synchronous’, meaning that inter-process audio timing is guaranteed to be precise to the sample.
Note that each process/shred does not necessarily need to know about each other - it only has to
deal with time locally. The virtual machine will make sure things happen correctly ”across the
board”. Finally, concurrency - like timing - is deterministic in ChucK.

The simplest way to to run shreds concurrently is to specify them on the command line:

%>chuck foo.ck bar.ck boo.ck

The above command runs chuck on foo.ck, bar.ck, and boo.ck concurrently. There are other ways
to run shreds concurrently (see on-the-fly programming commands). Next, we show how to create
new shreds from within ChucK programs.

The ChucK Manual� 63

=> Concurrency and Shreds

sporking shreds (in code)

To spork means to shredule a new shred.

To spork a shred, use the spork keyword/operator:

� spork dynamically sporks shred from a function call
� this operation is sample-synchronous, the new shred is shreduled to execute immediately
� the parent shred continues to execute, until time is advanced (see manipulating time) or until

the parent explicitly yields (see next section).
� in the current implementation, when a parent shred exits, all child shreds all exit (this behavior

will be enhanced in the future.)
� sporking a functions returns reference to the new shred, note that this operation does not

return what functions returns - the ability to get back the return value at some later point
in time will be provided in a future release.

// define function go()
fun void go()
{

// insert code
}

// spork a new shred to start running from go()
spork ~ go();

// spork another, store reference to new shred in offspring
spork ~ go() => Shred @ offspring;

a slightly longer example:

// define function
fun void foo(string s)
{

// infinite time loop
while(true)
{

// print s
<<< s >>>;
// advance time
500::ms => now;

}
}

The ChucK Manual� 64

=> Concurrency and Shreds

// spork shred, passing in "you" as argument to foo
spork ~ foo("you");
// advance time by 250 ms
250::ms => now;
// spork another shred
spork ~ foo("me");

// infinite time loop - to keep child shreds around
while(true)

1::second => now;

also see function section for more information on working with functions.

the ’me’ keyword

The me keyword (type Shred) refers the current shred.

Sometimes it is useful to suspend the current shred without advancing time, and let other shreds
shreduled for the current time to execute. me.yield() does exactly that. This is often useful
immediately after sporking a new shred, and you would like for that shred to have a chance to run
but you do not want to advance time yet for yourself.

// spork shred
spork ~ go();

// suspend the current shred ...
// ... give other shreds (shreduled for ’now’) a chance to run
me.yield();

It may also be useful to exit the current shred. For example if a MIDI device fails to open, you
may exit the current shred.

// make a MidiIn object
MidiIn min;

// try to open device 0 (chuck --probe to list all device)
if(!min.open(0))
{

// print error message
<<< "can’t open MIDI device" >>>;

The ChucK Manual� 65

=> Concurrency and Shreds

// exit the current shred
me.exit();

}

You can get the shred id:

// print out the shred id
<<< me.id(); >>>;

These functions are common to all shreds, but yield() and exit() are commonly used with the
current shred.

using Machine.add()

Machine.add(string path) takes the path to a chuck program, and sporks it. Unlike spork , there
is no parent-child relationship between the shred that calls the function and the new shred that is
added. This is useful for dynamically running stored programs.

// spork "foo.ck"
Machine.add("foo.ck");

Presently, this returns the id of the new shred, not a reference to the shred. This will likely be
changed in the future.

Similarly, you can remove shreds from the virtual machine.

// add
Machine.add("foo.ck") => int id;

// remove shred with id
Machine.remove(id);

// add
Machine.add("boo.ck") => id

// replace shred with "bar.ck"
Machine.replace(id, "bar.ck");

The ChucK Manual� 66

=> Concurrency and Shreds

inter-shred communication

Shreds sporked in the same file can share the same global variables. They can use time and events to
synchronize to each other. (see events) Shreds sporked from different files can share data (including
events). For now, this is done through a public class with static data (see classes). Static data is
not completely implemented! We will fix this very soon!

The ChucK Manual� 67

CHAPTER11
Time and Timing

ChucK is a strongly-timed language, meaning that time is fundamentally embedded in the lan-
guage. ChucK allows the programmer to explicitly reason about time from the code. This gives
extremely flexible and precise control over time and (therefore) sound synthesis.

In ChucK:

� time and duration are native types in the language
� keyword now holds the current logical time
� time is advanced (and can only be advanced) by explicitly manipulating now
� you have flexible and precise control

time and duration

Time and duration are native types in ChucK. time represents an absolute point in time (from the
beginning of ChucK time). dur represents a duration (with the same logical units as time).

// a duration of one second
1::second => dur foo;

// a point in time (duration of foo from now)
now + foo => time later;

The ChucK Manual� 68

=> Time and Timing

Later in this section, we outline the various arithmetic operations to perform on time and duration.

Durations can be used to construct new durations, which then be used to inductively construct yet
other durations. For example:

// .5 second is a quarter
.5::second => dur quarter;

// 4 quarters is whole
4::quarter => dur whole;

By default, ChucK provides these preset duration values:

� samp : duration of 1 sample in ChucK time
� ms : duration of 1 millisecond
� second : duration of 1 second
� minute : 1 minute
� hour : 1 hour
� day : 1 day
� week : 1 week

Use these to represent any duration.

// the duration of half a sample
.5::samp => dur foo;

// 20 weeks
20::week => dur waithere;

// use in combination
2::minute + 30::second => dur bar;

// same value as above
2.5::minute => dur bar;

operations on time and duration (arithmetic)

In ChucK, there are well-defined arithmetic operations on values of type time and dur.

example 1 (time offset):

The ChucK Manual� 69

=> Time and Timing

// time + dur yields time
now + 10::second => time later;

example 2 (time subtraction):

// time - time yields dur
later - now => dur D;

example 3 (addition):

// dur + dur yields dur
10::second + 100::samp => dur foo;

example 4 (subtraction):

// dur - dur yields dur
10::second - 100::samp => dur bar;

example 5 (division):

// dur / dur yields float
10::second / 20::ms => float n;

example 6 (time mod):

// time mod dur yields dur
now % 1::second => dur remainder;

example 7 (synchronize to period):

// synchronize to period of .5 second
.5::second => dur T;
T - (now % T) => now;

example 8 (comparison on time):

// compare time and time
if(t1 < t2)

// do something...

example 9 (comparison on duration):

// compare dur and dur
if(900::ms < 1::second)

<<< "yay!" >>>;

The ChucK Manual� 70

=> Time and Timing

the keyword ‘now’

The keyword now is the key to reasoning about and controlling time in ChucK.

Some properties of now include:

� now is a special variable of type time.
� now holds the current ChucK time (when read).
� modifying now has the side effects of:
� advancing time (see below);
� suspending the current process (called shred) until the desired time is reached - allowing other
� shreds and audio synthesis to compute;
� the value of now only changes when it is explicitly modified.

(also see next section on advancing time).

Example:

// compute value that represents "5 seconds from now"
now + 5::second => time later;

// while we are not at later yet...
while(now < later)
{

// print out value of now
<<< now >>>;

// advance time by 1 second
1::second => now;

}

advancing time

Advancing time allows other shreds (processes) to run and allows audio to be computed in a
controlled manner. There are three ways of advancing time in ChucK:

� chucking (=>) a duration to now: this will advance time by that duration.
� chucking (=>) a time to now: this will advance time to that point. (note that the desired

time must be later than the current time, or at least be equal to it.)
� chucking (=>) an Event to now: time will advance until the event is triggered. (also see

event)

The ChucK Manual� 71

=> Time and Timing

advancing time by duration

// advance time by 1 second
1::second => now;

// advance time by 100 millisecond
100::ms => now;

// advance time by 1 samp (every sample)
1::samp => now;

// advance time by less than 1 samp
.024::samp => now;

advancing time by absolute time

// figure out when
now + 4::hour => time later;

// advance time to later
later => now;

A time chucked to now will have ChucK wait until the appointed time. ChucK never misses an
appointment (unless it crashes)! Again, the time chucked to now must be greater than or equal to
now, otherwise an exception is thrown.

advancing time by event

// wait on event
e => now;

See events for a more complete discussion of using events!

The advancement of time can occur at any point in the code.

// our patch: sine oscillator -> dac
SinOsc s => dac;

// infinite time loop
while(true)
{

The ChucK Manual� 72

=> Time and Timing

// randomly choose frequency from 30 to 1000
Std.rand2f(30, 1000) => s.freq;

// advance time by 100 millisecond
100::ms => now;

}

Furthermore, there are no restrictions (other than underlying floating point precision) on how much
time is advanced. So it is possible to advance time by a microsecond, a samp, 2 hours, or 10 years.
The system will behave accordingly and deterministically.

This mechanism allows time to be controlled at any desired rate, according to any programmable
pattern. With respect to sound synthesis, it is possible to control any unit generator at literally
any rate, even sub-sample rate.

The power of the timing mechanism is extended by the ability to write parallel code, which is
discussed in concurrency and shreds.

The ChucK Manual� 73

CHAPTER12
Events

In addition to the built-in timing mechanisms for internal control, ChucK has an event class to
allow exact synchronization across an arbitrary number of shreds.

what they are

ChucK events are a native class within the ChucK language. We can create an event objects, and
then chuck (=¿) that event to now. The event places the current shred on the event’s waiting list,
suspends the current shred (letting time advance from that shred’s point of view). When the the
event is triggered, one or more of the shreds on its waiting list is shreduled to run immediately.
This trigger may originate from another ChucK shred, or from activities taking place outside the
Virtual Machine (MIDI, OSC, or IPC).

// declare event
Event e;

// function for shred
fun void eventshred(Event event, string msg)
{

// infinite loop
while (true)

The ChucK Manual� 74

=> Events

{
// wait on event
event => now;
// print
<<<msg>>>;

}
}

// create shreds
spork ~ eventshred (e, "fee");
spork ~ eventshred (e, "fi");
spork ~ eventshred (e, "fo");
spork ~ eventshred (e, "fum");

// infinite time loop
while (true)
{

// either signal or broadcast
if(maybe)
{

<<<"signaling...">>>;
e.signal();

}
else
{

<<<"broadcasting...">>>;
e.broadcast();

}

// advance time
0.5::second => now;

}

use

Chucking an event to now suspends the current shred, letting time advance:

// declare Event
Event e;

// ...

The ChucK Manual� 75

=> Events

// wait on the event
e => now;

// after the event is trigger
<<< "I just woke up" >>>;

as shown above, events can be triggered in two ways, depending on the desired behavior.

// signal one shred waiting on the event e
e.signal();

signal() releases the first shred in that event’s queue, and shredule it to run at the current time,
respecting the order in which shreds were added to the queue.

// wake up all shreds waiting on the event e
e.broadcast();

broadcast() releases all shreds queued by that event, in the order they were added, and at the same
instant in time

The released shreds are shreduled to run immediately. But of course they will respect other shreds
also shreduled to run at the same time. Furthermore, the shred that called signal() or broadcast()
will continue to run until it advances time itself, or yield the virtual machine without advancing
time. (see me.yield() under concurrency)

MIDI events

ChucK contains built-in MIDI classes to allow for interaction with MIDI based software or devices.

MidiIn min;
MidiMsg msg;

// open midi receiver, exit on fail
if (!min.open(0)) me.exit();

while(true)
{

// wait on midi event
min => now;

The ChucK Manual� 76

=> Events

// receive midimsg(s)
while(min.recv(msg))
{

// print content
<<< msg.data1, msg.data2, msg.data3 >>>;

}
}

...

MidiIn is a subclass of Event, as as such can be ChucKed to now. MidiIn then takes a MidiMsg
object to its .recv() method to access the MIDI data. As a default, MidiIn events trigger the
broadcast() event behavior.

OSC events

In addition to MIDI, ChucK has OSC communication classes as well:

...

// create our OSC receiver
OscRecv orec;
// port 6449
6449 => orec.port;
// start listening (launch thread)
orec.listen();

function void rate_control_shred()
{

// create an address in the receiver
// and store it in a new variable.
orec.event("/sndbuf/buf/rate,f") @=> OscEvent oscdata;

while (true)
{

oscdata => now; //wait for events to arrive.

// grab the next message from the queue.
while(oscdata.nextMsg() != 0)
{

// getFloat fetches the expected float

The ChucK Manual� 77

=> Events

// as indicated in the type string ",f"
buf.rate(oscdata.getFloat());
0 => buf.pos;

}
}

}

...

The OscRecv class listens for incoming OSC packets on the specified port. Each instance of OscRecv
can create OscEvent objects using its event() method to listen for packets at any valid OSC address
pattern.

An OscEvent event can then be ChucKed to now to wait for messages to arrive, after which the
nextMsg() and get{Float|String|Int}() methods can be used to fetch message data.

creating custom events

Events, like any other class, can be subclassed to add functionality and transmit data:

// extended event
class TheEvent extends Event
{

int value;
}

// the event
TheEvent e;

// handler
fun int hi(TheEvent event)
{

while(true)
{

// wait on event
event => now;
// get the data
<<<e.value>>>;

}
}

The ChucK Manual� 78

=> Events

// spork
spork ~ hi(e);
spork ~ hi(e);
spork ~ hi(e);
spork ~ hi(e);

// infinite time loop
while(true)
{

// advance time
1::second => now;

// set data
Math.rand2(0, 5) => e.value;

// signal one waiting shred
e.signal();

}

The ChucK Manual� 79

CHAPTER13
Objects

introduction

Chuck implements an object system that borrows from both C++ and Java conventions. In our
case this means:

� You can define custom classes as new types and instantiate objects
� ChucK supports polymorphic inheritance (this is the same model used in Java, and also known

as virtual inheritance in C++)
� All object variables are references (like Java), but instantiation resembles C++. We will

discuss this in detail below.
� There is a default class library.
� All objects inherit from the Object class (as in Java)

For the sake of clarity we will define these terms:

� a class is an abstraction of data (members) and behavior (methods)
� a class is a type.
� an object is an instantiation of that class
� a reference variable refers indirectly to an object - it is not the object itself. All ChucK object

variables are reference variables (like in Java).

The ChucK Manual� 80

=> Objects

� similarly, reference assignment duplicates a reference to an object and assigns the reference
to a reference variable. The object itself is not duplicated. All ChucK object assignments are
reference assignments.

built-in classes

ChucK has a number of classes defined within the language.

� Object : base class to all ChucK objects.
� Event : ChucK’s basic synchronization mechanism; may be extended to create custom Event

functionality (discussed here).
� Shred : basic abstraction for a non-premptive ChucK process.
� UGen : base unit generator class (discussed here).

These are some of the more commonly used classes in ChucK.

working with objects

Let’s begin with some examples. For these examples, let’s assume Foo is a defined class.

// create a Foo object; stored in reference variable bar
Foo bar;

The above code does two things:

� a reference variable bar is declared; its type is Foo.
� a new instance of Foo is created, and its reference is assigned to bar.

Note that in contrast to Java, this statement both declares a reference variable and instantiates a
instance of that class and assigns the reference to the variable. Also note that in contrast to C++,
bar is a reference, and does not represent the object itself.

To declare a reference variable that refers to nothing (also called a null reference):

// create a null reference to a Foo object
Foo @ bar;

The ChucK Manual� 81

=> Objects

The above code only declare a reference and initializes it to null. (random note: the above statement
may be read as ”Foo at bar”)

We can assign a new instance to the reference variable:

// assign new instance of Foo to bar
new Foo @=> Foo @ bar;

// (this statement is equivalent to ’Foo bar’, above)

The code above is exactly equivalent to Foo bar; as shown above. The new operator creates an
instance of a class, in this case Foo. The @=¿ operator performs the reference assignment. (see
Operators chapter for more information on @=¿)

It is possible to make many references to same object:

// make a Foo
Foo bar;

// reference assign to duh
bar @=> Foo @ duh;

// (now both bar and duh points to the same object)

ChucK objects are reference counted and garbage collection takes place automatically. (note: this
is still being implemented!)

As stated above, a classes may contain data and behavior, in the form of member variables and mem-
ber functions, respectively. Members are accessed by using ’dot notation’ - reference.memberdata
and reference.memberfunc(). To invoke a member function of an object (assuming class Foo has a
member function called compute that takes two integers and returns an integer):

// make a Foo
Foo bar;

// call compute(), store result in boo
bar.compute(1, 2) => int boo;

writing a class

If a class has already been defined in the ChucK virtual machine (either in the same file or as a
public class in a different file) then it can be instantiated similar to primitive types.

The ChucK Manual� 82

=> Objects

Unless declared public, class definitions are scoped to the shred and will not conflict with identically
named classes in other running shreds.

Classes encapsulate a set of behaviors and data. To define a new object type, the keyword class is
used followed by the name of that class.

// define class X
class X
{

// insert code here
}

If a class is defined as public, it is integrated into the central namespace (instead of the local one),
and can be instantiated from other programs that are subsequently compiled. There can be at
most one public class per file.

// define public class MissPopular
public class MissPopular
{

// ...
}

// define non-public class Flarg
class Flarg
{

// ...
}

// both MissPopular and Flarg can be used in this file
// only MissPopular can be used from another file

We define member data and methods to specify the data types and functionality required of the
class. Members, or instance data and instance functions are associated with individual instances
of a class, whereas static data and functions are only associated with the class (and shared by the
instances).

members (instance data + functions)

Instance data and methods are associated with an object.

The ChucK Manual� 83

=> Objects

// define class X
class X
{

// declare instance variable ’m_foo’
int m_foo;
// another instance variable ’m_bar’
float m_bar;
// yet another, this time an object
Event m_event;

// function that returns value of m_foo
fun int getFoo() { return m_foo; }

// function to set the value of m_foo
fun void setFoo(int value) { value => m_foo; }

// calculate something
fun float calculate(float x, float y)
{

// insert code
}

// print some stuff
fun void print()
{

<<< m_foo, m_bar, m_event >>>;
}

}

// instantiate an X
X x;

// set the Foo
x.setFoo(5);
// print the Foo
<<< x.getFoo() >>>;

// call print
x.print();

The ChucK Manual� 84

=> Objects

class constructors

In the initial release, we do not support constructors yet. However, we have a single pre-constructor.
The code immediately inside a class definiton (and not inside any functions) is run every time an
instance of that class is created.

// define class X
class X
{

// we can put any ChucK statements here as pre-constructor

// initialize an instance data
109 => int m_foo;

// loop over stuff
for(0 => int i; i < 5; i++)
{

// print out message how silly
<<< "part of class pre-constructor...", this, i >>>;

}

// function
fun void doit()
{

// ...
}

}

// when we instantiate X, the pre-constructor is run
X x;

// print out m_foo
<<< x.m_foo >>>;

static (data + functions)

Static data and functions are associated with a class, and are shared by all instances of that class
– in fact,static elements can be accessed without an instance, by using the name of the class:
Classname.element.

// define class X

The ChucK Manual� 85

=> Objects

class X
{

// static data
static int our_data;

// static function
fun static int doThatThing()
{

// return the data
return our_data;

}
}

// do not need an instance to access our_data
2 => X.our_data;
// print out
<<< X.our_data >>>;
// print
<<< X.doThatThing() >>>;

// create instances of X
X x1;
X x2;

// print out their static data - should be same
<<< x1.our_data, x2.our_data >>>;

// change use one
5 => x1.our_data;

// the other should be changed as well
<<< x1.our_data, x2.our_data >>>;

inheritance

Inheritance in object-oriented code allows the programmer to take an existing class and extend or
alter its functionality. In doing so we can create a taxonomy of classes that all share a specific set
of behaviors, while implementing those behaviors in different, yet well-defined, ways. We indicate
that a new class inherits from another class using the extends keyword. The class from which we
inherit is referred to as the parent class, and the inheriting class is the child class. The Child class
receives all of the member data and functions from the parent class, although functions from the

The ChucK Manual� 86

=> Objects

parent class may be overridden (below). Because the children contain the functionality of the
parent class, references to instances of a child class may be assigned to a parent class reference
type.

For now, access modifiers (public, protected, private) are included but not fully implemented.
Everything is public by default.

// define class X
class X
{

// define member function
fun void doThatThing()
{

<<<"Hallo">>>;
}

// define another
fun void hey()
{
<<<"Hey!!!">>>;
}

// data
int the_data;

}

// define child class Y
class Y extends X
{

// override doThatThing()
fun void doThatThing()
{

<<<"No! Get away from me!">>>;
}

}

// instantiate a Y
Y y;

// call doThatThing
y.doThatThing();

// call hey() - should use X’s hey(), since we didn’t override

The ChucK Manual� 87

=> Objects

y.hey();

// data is also inherited from X
<<< y.the_data >>>;

Inheritance provides us a way of efficiently sharing code between classes which perform similar
roles. We can define a particular complex pattern of behavior, while changing the way that certain
aspects of the behavior operate.

// parent class defines some basic data and methods
class Xfunc
{

int x;

fun int doSomething(int a, int b) {
return 0;

}
}

// child class, which overrides the doSomething function with an addition operation
class Xadds extends Xfunc
{

fun int doSomething (int a, int b)
{

return a + b ;
}

}

// child class, which overrides the doSomething function with a multiply operation
class Xmuls extends Xfunc
{

fun int doSomething (int a, int b)
{

return a * b;
}

}

// array of references to Xfunc
Xfunc @ operators[2];

// instantiate two children and assign reference to the array
new Xadds @=> operators[0];

The ChucK Manual� 88

=> Objects

new Xmuls @=> operators[1];

// loop over the Xfunc
for(0 => int i; i < operators.cap(); i++)
{

// doSomething, potentially different for each Xfunc
<<< operators[i].doSomething(4, 5) >>>;

}

because Xmuls and Xadds each redefine doSomething(int a, int b) with their own code, we say
that they have overridden the behavior of the parent class. They observe the same interface, but
have potentially different implementation. This is known as polymorphism.

Overloading

Function overloading in classes is similar to that of regular functions. see functions.

The ChucK Manual� 89

CHAPTER14
The ChucK Compiler + Virtual Machine

Let’s start with the compiler/virtual machine, both of which runs in the same process. By now, you
should have built/installed ChucK (guide), and perhaps taken the tutorial. This guide is intended
to be more complete and referential than the tutorial.

SYNOPSIS (a man-esque page)

usage:

chuck - - [options|commands] [+-=ˆ] file1 file2 file3 ...
[options] = halt|loop|audio|silent|dump|nodump|about|

srate<N>|bufsize<N>|bufnum<N>|dac<N>|adc<N>|
remote<hostname>|port<N>|verbose<N>|probe re-

mote<hostname>|port<N>
[commands] = add|remove|replace|status|time|kill
[+-=ˆ] = shortcuts for add, remove, replace, status

DESCRIPTION

[source ChucK files] : ChucK can run 1 or more processes in parallel and interactively. The
programmer only needs to specify them all on the command line, and they will be compiled and
run in the VM. Each input source file (.ck suffix by convention) will be run as a separate ’shred’
(user-level ChucK threads) in the VM. They can ’spork’ additional shreds and interact with existing

The ChucK Manual� 90

=> The ChucK Compiler + Virtual Machine

shreds. Thanks to the ChucK timing mechanism, shreds don’t necessarily need to know about each
other in order to be precisely ’shreduled’ in time - they only need to keep track of they own time,
so to speak.

Addtionally, more shreds can be added/removed/replaced manually at run-time, using on-the-fly
programming [Wang and Cook 2004] - (see publications and http://on-the-fly.cs.princeton.edu/).

[options] :

- -halt / -h
(on by default) - tells the vm to halt and exit if there are no more shreds in the VM.

- -loop / -l
tells the ChucK VM to continue executing even if there no shreds currently in the VM. This is
useful because shreds can be added later on-the-fly. Furthermore, it is legal to specify this option
without any input files. For example:

%>chuck - -loop

the above will ’infinite time-loop’ the VM, waiting for incoming shreds.

- -audio / -a
(on by default) - enable real-time audio output

- -silent / -s
disable real-time audio output - computations in the VM is not changed, except that the actual
timing is no longer clocked by the real-time audio engine. Timing manipulations (such as operations
on ’now’) still function fully. This is useful for synthesizing audio to disk or network. Also, it is
handy for running a non-audio program.

- -dump / +d
dump the virtual instructions emitted to stderr, for all the files after this flag on the command line,
until a ’nodump’ is encountered (see below). For example:

%>chuck foo.ck +d bar.ck

will dump the virtual ChucK instructions for bar.ck (only), with argument values, to stderr. - -dump
can be used in conjunction with - -nodump to selectively dump files.

- -nodump / -d
(default state) cease the dumping of virtual instructions for files that comes after this flag on the
command line, until a ’dump’ is encountered (see above). For example:

%>chuck +d foo.ck -d bar.ck +d doo.ck

The ChucK Manual� 91

=> The ChucK Compiler + Virtual Machine

will dump foo.ck, then doo.ck - but not bar.ck.

These are useful for debug ChucK itself, and for other entertainment purposes.

- -srate(N)
set the internal sample rate to (N) Hz. by default, ChucK runs at 44100Hz on OS X and Windows,
and 48000Hz on linux/ALSA. even if the VM is running in - -silent mode, the sample rate is still
used by some unit generaters to compute audio, this is important for computing samples and writing
to file. Not all sample rates are supported by all devices!

- -bufsize(N)
set the internal audio buffer size to (N) sample frames. larger buffer size often reduce audio artifacts
due to system/program timing. smaller buffers reduce audio latency. The default is 512. If (N) is
not a power of 2, the next power of 2 larger than (N) is used. For example:

%>chuck - -bufsize950

sets the buffer size to 1024.

- -dac(N)
opens audio output device #(N) for real-time audio. by default, (N) is 0.

- -adc(N)
opens audio input device #(N) for real-time audio input. by default, (N) is 0.

- -chan(N) / -c(N)
opens N number of input and output channels on the audio device. by default, (N) is 2.

- -in(N) / -i(N)
opens N number of input channels on the audio device. by default (N) is 2.

- -out(N) -o(N)
opens N number of output channels on the audio device. by default (N) is 2.

- -about / - -help
prints the usage message, with the ChucK URL

- -callback
Utilizes a callback for buffering (default).

- -blocking
Utilizes blocking for buffering.

The ChucK Manual� 92

CHAPTER15
Unit Analyzers

Unit Analyzers (UAnae) are analyis building blocks, similar in concept to unit generators. They
perform analysis functions on audio signals and/or metadata input, and produce metadata analysis
results as output. Unit analyzers can be linked together and with unit generators to form anal-
ysis/synthesis networks. Like unit generators, several unit analyzers may run concurrently, each
dynamically controlled at different rates. Because data passed between UAnae is not necessarily
audio samples, and the relationship of UAna computation to time is fundamentally different than
that of UGens (e.g., UAnae might compute on blocks of samples, or on metadata), the connections
between UAnae have a different meaning from the connections between UGens formed with the
ChucK operator, => .This difference is reflected in the choice of a new connection operator, the
upChucK operator: =ˆ . Another key difference between UGens and UAnae is that UAnae perform
analysis (only) on demand, via the upchuck() function (see below). Some more quick facts about
ChucK unit analyzers:

� All ChucK unit analyzers are objects (not primitive types). (see objects)

� All ChucK unit analyzers inherit from the UAna class. The operation foo =ˆ yah, where foo
and yah are UAnae, connects foo to yah.

� Unit analyzer parameters and behaviors are controlled by calling / chucking to member
functions over time, just like unit generators.

� Analysis results are always stored in an object called a UAnaBlob. The UAnaBlob con-
tains a time-stamp indicating when it was computed, and it may store an array of floats

The ChucK Manual� 93

=> Unit Analyzers

and/or complex values. Each UAna specifies what information is present in the UAnaBlob it
produces.

� All unit analyzers have the function upchuck(), which when called issues a cascade of analysis
computations for the unit analyzer and any ”upstream” unit analyzers on which its analysis
depends. In the example of foo =ˆ yah, yah.upchuck() will result in foo first performing its
analysis (possibly requesting analysis results from unit analyzers further upstream), then yah,
using foo’s analysis results in its computation. upchuck() returns the analysis results in the
form of a UAnaBlob.

� Unit analyzers are specially integrated into the virtual machine such that each unit analyzer
performs its analysis on its input whenever it or a downstream UAna is upchuck()-ed. There-
fore, we have the ability to assert control over the analysis process at any point in time and
at any desired control rate.

declaring

Unit analyzers (UAnae) are objects, and they need to be instantiated before they can be used. We
declare unit analyzers the same way we declare UGens and other objects.

// instantiate an FFT, assign reference to variable f
FFT f;

connecting

The upChucK operator (=ˆ) is only meaningful for unit analyzers. Similar to the behavior of the
ChucK operator between UGens, using =ˆ to connect one UAna to another connects the analysis
results of the first to the analysis input of the second.

// instantiate FFT and flux objects,
// connect to allow computation of spectrum and spectral flux on adc input
adc => FFT fft =^ Flux flux => blackhole;

Note that the last UAna in any chain must be chucked to the blackhole or dac to ”pull” audio
samples from the aaddcc or other unit generators upstream. It is also possible to linearly chain
many UAnae together in a single statement. In the example below, the analysis of flux capacitor
depends on the results of flux, so the flux object will always perform its analysis computation before
the computation of flux capacitor.

// Set up analysis on adc, via an FFT object, a spectral flux object, and a

The ChucK Manual� 94

=> Unit Analyzers

// made-up object called a FluxCapacitor that operates on the flux value.
adc => FFT f =^ Flux flux =^ FluxCapacitor flux_capacitor => blackhole;

Very importantly, it is possible to create connection networks containing both UAane and UGens.
In the example below, an FFT transforms two (added) sinusoidal inputs, one of which has reverb
added. An IFFT transforms the spectrum back into the time domain, and the result is processed
with a third sinusoid by a gain object before being played through the dac. (No, this example is
not supposed to do anything musically interesting, only help you get a feel for the syntax. Notice
that any connection through which audio samples are passed is denoted with the => operator, and
the connection through which spectral data is passed (from the FFT to the IFFT) is denoted with
the =ˆ operator.

//Chain a sine into a reverb, then perform FFT, then IFFT, then apply gain,
then output
SinOsc s => JCRev r => FFT f =^ IFFT i => Gain g => dac;
// Chuck a second sine into the FFT
SinOsc s2 => f;
// Chuck a third sine into the final gain
SinOsc s3 => g;

FFT, IFFT, and other UAnae that perform transforms between the audio domain and another
domain play a special role, as illustrated above. FFT takes audio samples as input, so unit gen-
erators connect to it with the ChucK operator => . However, it outputs analysis results in the
spectral domain, so it connects to other UAnae with the upChucK operator =ˆ . Conversely, UA-
nae producing spectral domain output connect to the IFFT using => , and IFFT can connect to
the ddaacc or other UGens using => . This syntax allows the programmer to clearly reason about
the expected behavior of an analysis/synthesis network, while it hides the internal mechanics of
ChucK timing and sample buffering from the programmer. Finally, just as with unit generators, it
is possible to dynamically disconnect unit analyzers, using the UnChucK operator (!=> or =<).

controlling (over time)

In any ChucK program, it is necessary to advance time in order to pull audio samples through
the UGen network and create sound. Additionally, it is necessary to trigger analysis computations
explicitly in order for any analysis to be performed, and for sound synthesis that depends on
analysis results (e.g., IFFT) to be performed. To explicitly trigger computation at a point in time,
the UAna’s upchuck() member function is called. In the example below, an FFT computation is
triggered every 1024 samples.

adc => FFT fft => dac;

The ChucK Manual� 95

=> Unit Analyzers

// set the FFT to be of of size 2048 samples
2048 => fft.size;

while (true) {
// let 1024 samples pass
1024::samp => now;

// trigger the FFT computation on the last 2048 samples (the FFT size)
fft.upchuck();
}

In the example above, because the FFT size is 2048 samples, the while-loop causes a standard
”sliding-window” FFT to be computed, where the hop size is equal to half a window. However,
ChucK allows you to perform analysis using nonstandard, dynamically set, or even multiple hop
sizes with the same object. For example, in the code below, the FFT object fft performs computa-
tion every 5 seconds as triggered by shred1, and it additionally performs computation at a variable
rate as triggered by shred2.

adc => FFT fft => dac;
2048 => fft.size;

// spork two shreds: shred1 and shred2
spork ~shred1();
spork ~shred2();

// shred1 computes FFT every 5 seconds
shred1() {
while (true) {
5::second => now;
fft.upchuck();
}
}

// shred2 computes FFT every n seconds, where n is a random number between 1
and 10
shred2() {
while (true) {
Std.Rand2f(1, 10)::second => now;
fft.upchuck();
}
}

The ChucK Manual� 96

=> Unit Analyzers

Parameters of unit analyzers may be controlled and altered at any point in time and at any control
rate. We only have to assert control at the appropriate points as we move through time, by setting
various parameters of the unit analyzer. To set the a value for a parameter of a UAna, a value of
the proper type should be ChucKed to the corresponding control function.

// connect the input to an FFT
adc => FFT fft => blackhole;

//start with a size of 1024 and a Blackman-Harris window
1024 => fft.size;
Windowing.blackmanHarris(512) => fft.window;

//advance time and compute FFT
1::minute => now;
fft.upchuck();

// change window to Hamming
Windowing.hamming(512) => fft.window;

// let time pass... and carry on.

Since the control functions are member functions of the unit analyzer, the above syntax is equilavent
to calling functions. For example, the line below could alternatively be used to change the FFT
window to a Hamming window, as above.

fft.window(Windowing.hamming(512));

For a list of unit analyzers and their control methods, consult UAna reference. Just like unit
generators, to read the current value of certain parameters of a Uana, we may call an overloaded
function of the same name. Additionally, assignments can be chained together when assigning one
value to multiple targets.

// connect adc to FFT
adc => FFT fft => blackhole;

// store the current value of the FFT size
fft.size() => int fft_size;

What if a UAna that performs analysis on a group of audio samples is upchuck()- ed before its
internal buffer is filled? This is possible if an FFT of size 1024 is instantiated, then upchuck()-ed

The ChucK Manual� 97

=> Unit Analyzers

after only 1000 samples, for example. In this case, the empty buffer slots are treated as 0’s (that
is, zero-padding is applied). This same behavior will occur if the FFT object’s size is increased
from 1024 to 2048, and then only 1023 samples pass after this change is applied; the last sample in
the new (larger) buffer will be 0. Keep in mind, then, that certain analysis computations near the
beginning of time and analysis computations after certain parameters have changed will logically
involve a short ”transient” period.

// connect adc to FFT to blackhole
adc => FFT fft => blackhole;
// set the FFT size to 1024 samples
1024 => fft.size;

// allow 1000 samples to pass
1000::samp => now;

// compute the FFT: the last 24 spots in the FFT buffer haven’t been filled, so they are zero-ed out
// the computation is nevertheless valid and proceeds.
fft.upchuck();

1::minute => now; // let time pass for a while

// increase the size of the FFT, and therefore the size of the sample buffer it uses
2048 => fft.size;

// let 1023 samples pass
1023::samp => now;

// at this point, only 2047 of the 2048 buffer spots have been filled
// the following computation therefore zeros out the last audio buffer spot
fft.upchuck();

1::minute => now; //let time pass for a while

// now the buffer is happy and full
fft.upchuck(); // proceeds normally on a full buffer

representing metadata: the UAnaBlob

It is great to be able to trigger analysis computations like we’ve been doing above, but what if
you want to actually use the analysis results? Luckily, calling the upchuck() function on a UAna
returns a reference to an object that stores the results of any UAna analysis, called a UanaBlob.

The ChucK Manual� 98

=> Unit Analyzers

UanaBlobs can contain an array of floats, and/or an array of complex numbers (see the next
section). The meaning and formatting of the UanaBlob fields is different for each UAna subtype.
FFT, for example (see specification), fills in the complex array with the spectrum and the floating
point array with the magnitude spectrum. Additionally, all UanaBlobs store the time when the
blob was last computed.

The example below demonstrates how one might access the results of an FFT:

adc => FFT fft => blackhole;
// ... set FFT parameters here ...

UAnaBlob blob;

while (true) {
50::ms => now; // use hop size of 50 ms

fft.upchuck() @=> blob; // store the result in blob.
blob.fvals @=> float mag_spec[]; // get the magnitude spectrum as float array
blob.cvals @=> complex spec[]; // get the whole spectrum as complex array
mag_spec[0] => float first_mag; // get the first bin of the magnitude spectrum
blob.fvals(0) => float first_mag2; // equivalent way to get first bin of mag spectrum
fft.upchuck().fvals(0) => float first_mag3 // yet another equivalent way

fft.upchuck().cvals(0) => float first_spec // similarly, get 1st spectrum bin

blob.when => time when_computed; // get the time it was computed
}

Beware: whenever a UAna is upchuck()-ed, the contents of its previous UAnaBlob are overwritten.
In the following code, blob1 and blob2 refer to the same UAnaBlob. When fft.upchuck() is called
the second time, the contents of the UAnaBlob referred to by blob1 are overwritten.

adc => FFT fft => blackhole;

UAnaBlob blob1, blob2;
1::minute => now; //let time pass for a while
fft.upchuck() @=> blob1; // blob1 points to the analysis results
1::minute => now; // let time pass again
fft.upchuck() @=> blob2; // now both blob1 and blob2 refer to the same object: the new results!

Also beware: if time is not advanced between subsequent upchuck()s of a UAna, any upchuck()
after the first will not re-compute the analysis, even if UAna parameters have been changed. After
the code below, blob refers to a UAnaBlob that is the result of computing the first (size 1024) FFT.

The ChucK Manual� 99

=> Unit Analyzers

adc => FFT fft => blackhole;
1024 => fft.size;

UAnaBlob blob;
1::minute => now; //let time pass for a while
fft.upchuck() @=> blob; // blob holds the result of the FFT

512 => fft.size;
fft.upchuck() @=> blob; // time hasn’t advanced since the last computation, so no re-computation is done

representing complex data: the complex and polar types

In order to represent complex data, such as the output of an FFT, two new datatypes have been
added to ChucK: complex and polar. These types are described with examples here.

performing analysis in UAna networks

Often, the computation of one UAna will depend on the computation results of ”upstream” UAnae.
For example, in the UAna network below, the spectral flux is computed using the results of an FFT.

adc => FFT fft =^ Flux flux => blackhole;

The flow of computation in UAna networks is set up so that every time a UAna aa is upchuck()-ed,
each UAna whose output is connected to aa’s input via =ˆ is upchuck()-ed first, passing the results
to aa for it to use. For example, a call to flux.upchuck() will first force fft to compute an FFT on
the audio samples in its buffer, then flux will use the UanaBlob from fft to compute the spectral
flux. This flow of computation is handled internally by ChucK; you should understand the flow of
control, but you don’t need to do fft.upchuck() explicitly. Just writing code like that below will do
the trick:

adc => FFT fft =^ Flux flux => blackhole;
UAnaBlob blob;
while (true) {
100::ms => now;
flux.upchuck() @=> blob; // causes fft to compute, then computes flux and
stores result in blob
}

Additionally, each time a UAna upchuck()s, its results are cached until time passes. This means
that a UAna will only perform its computation once for a particular point in time.

The ChucK Manual� 100

=> Unit Analyzers

adc => FFT fft =^ Flux flux => blackhole;
fft =^ Centroid c => blackhole;

UAnaBlob blob, blob2;
while (true) {
100::ms => now;
flux.upchuck() @=> blob; // causes fft to compute, then computes flux and stores result in blob
c.upchuck() @=> blob2; // uses cached fft results from previous line to compute centroid
}

When no upchuck() is performed on a UAna, or on UAnae that depend on it, it will not do
computation. For example, in the network below, the flux is never computed.

adc => FFT fft =^ Flux flux => blackhole;
UAnaBlob blob;
while (true) {
100::ms => now;
fft.upchuck() @=> blob; // compute fft only
}

The combination of this ”compute-on-demand” behavior and UAna caching means that different
UAnae in a network can be upchuck()-ed at various/varying control rates, with maximum efficiency.
In the example below, the FFT, centroid, and flux are all computed at different rates. When the
analysis times for flux and fft or centroid and fft overlap, fft is computed just once due to its internal
caching. When it is an analysis time point for fft but not for flux, flux will not be computed.

adc => FFT fft =^ Flux flux => blackhole;
fft =^ Centroid c => blackhole;
UAnaBlob blob1, blob2, blob3;

spork ~do_fft();
spork ~do_flux();
spork ~do_centroid();

do_fft() {
while (true) {
50::ms => now;
fft.upchuck() @=> blob1;
}
}

The ChucK Manual� 101

=> Unit Analyzers

do_flux() {
while (true) {
110::ms => now;
flux.upchuck() @=> blob2;
}
}
do_centroid() {
while (true) {
250::ms => now;
c.upchuck() @=> blob3;
}
}

An easy way to synchronize analysis of many UAnae is to upchuck() an ”agglomerator” UAna.
In the example below, agglom.upchuck() triggers analysis of all upstream UAnae in the network.
Because agglom is only a member of the UAna base class, it does no computation of its own.
However, after agglom.upcuck() all other UAnae will have up-to-date results that are synchronized,
computed, and cached so that they are available to be accessed via upchuck()on each UAna (possibly
by a different shred waiting for an event- - see below).

adc => FFT fft =^ Flux flux =^ UAna agglom => blackhole;
fft =^ Centroid centroid => agglom;
// could add abitrarily many more UAnae that connect to agglom via =^

while (true) {
100::ms => now;

agglom.upchuck(); // forces computation of both centroid and flux (and
therefore fft, too)
}

Because of the dependency and caching behavior of upchuck()-ing in UAna networks, UAna feed-
back loops should be used with caution. In the network below, each time cc is upchuck()-ed, it
forces bb to compute, which forces aa to compute, which then recognizes that bb has been traversed
in this upChucK path but has not been able to complete its computation– thereby recognizing a
loop in the network. aa then uses bb’s last computed UAnaBlob to perform its computation. This
may or may not be desirable, so be careful.

adc => UAna a =^ UAna b =^ Uana c => blackhole;
b =^ a; // creates a feedback loop

while (true) {

The ChucK Manual� 102

=> Unit Analyzers

100::ms => now;
c.upchuck(); // involves a using b’s analysis results from 100 ms ago
}

using events

When a UAna is upchuck()-ed, it triggers an event. In the example below, a separate shred prints
the results of FFT whenever it is computed.

adc => FFT fft => blackhole;
spork ~printer(); // spork a printing shred
while (true) {
50::ms => now; // perform FFT every 50 ms
fft.upchuck();
}

printer() {
UAnaBlob blob;

while (true) {
// wait until fft has been computed
fft => now;
fft.upchuck() @=> blob; // get (cached) fft result
for (int i = 0; i < blob.fvals().cap(); i++)
<<< blob.fvals(i) >>>;
}
}

built–in unit analyzers

ChucK has a number of built-in UAna classes. These classes perform many basic transform func-
tions (FFT, IFFT) and feature extraction methods (both spectral and time-domain features). A
list of built-in ChucK unit analyzers can be found here.

creating

(someday soon you will be able to implement your own unit analyzers!)

The ChucK Manual� 103

CHAPTER16
UAna objects

UAna

� Unit Analyzer base class

Base class from which all unit analyzers (UAnae) inherit; UAnae (note
plural form) can be interconnected via => (standard chuck operator) or via
=^ (upchuck operator), specify the the types of and when data is passed
between UAnae and UGens. When .upchuck() is invoked on a given UAna,
the UAna-chain (UAnae connected via =^) is traversed backwards from the
upchucked UAna, and analysis is performed at each UAna along the chain;
the updated analysis results are stored in UAnaBlobs.

extends UGen

[function] UAnaBlob .upchuck()
initiate analysis at the UAna returns result.

[object]:UAnaBlob

� Unit Analyzer blob for contain of data

The ChucK Manual� 104

=> UAna objects

This object contains results associated with UAna analysis. There is a
UAnaBlob associated with every UAna. As a UAna is upchucked, the result
is stored in the UAnaBlob’s floating point vector and/or complex vector.
The intended interpretation of the results depends on the specific UAna.

[function] float .fval(int index)
get blob’s float value at index

[function] complex .cval(int index)
get blob’s complex value at index

[function] float[] .fvals()
get blob’s float array

[function] complex[] .cvals()
get blob’s complex array

[function] time .when()
get the time when blob was last upchucked

[object]: Windowing

� Helper class for generating transform windows

This class contains static methods for generating common transform
windows for use with FFT/IFFT. The windows are returned in a static
array associated with the Windowing class (note: do not use the returned
array for anything other than reading/setting windows in FFT/IFFT).

[function] float[] .rectangle(int length)
generate a rectangular window

[function] float[] .triangle(int length)
generate a triangular (or Barlett) window

[function] float[] .hann(int length)
generate a Hann window

[function] float[] .hamming(int length)
generate a Hamming window

[function] float[] .blackmanHarris(int length)
generate a blackmanHarris window

examples: win.ck

The ChucK Manual� 105

=> UAna objects

domain transformations

[uana]: FFT

� Fast Fourier Transform

This object contains results associated with UAna analysis. There is a
UAnaBlob associated with every UAna. As a UAna is upchucked, the result
is stored in the UAnaBlob’s floating point vector and/or complex vector.
The intended interpretation of the results depends on the specific UAna.
This UAna computes the Fast Fourier Transform on incoming audio samples,
and outputs the result via its UAnaBlob as both the complex spectrum and
the magnitude spectrum. A buffering mechanism maintains the previous
FFTsize # of samples, allowing FFT’s to be taken at any point in time,
on demand (via .upchuck() or by upchucking a downstream UAna;
The window size (along with an arbitry window shape) is controlled
via the .window method. The hop size is complete dynamic, and is throttled
by how time is advanced.

extends UAna

[function] .size (float, READ/WRITE)
get/set the FFT size

[function] .window() (float[], READ/WRITE)
get/set the transform window/size (also see AAA Windowing)

[function] .windowSize (int, READ only)
get the current window size

[function] .transform (float[], WRITE only)
manually take FFT (as opposed to using .upchuck() / upchuck operator)

[function] .spectrum (complex[], READ only)
manually retrieve the results of a transform

(UAna input/output)

[function] input: audio samples from an incoming UGen

[function] output spectrum in complex array, magnitude spectrum in float array

The ChucK Manual� 106

=> UAna objects

examples: fft.ck, fft2.ck, fft3.ck win.ck

[uana]: IFFT

� Inverse Fast Fourier Transform

This UAna computes the inverse Fast Fourier Transform on incoming spectral
frames (on demand), and overlap-adds the results into its internal buffer,
ready to be sent to other UGen’s connected via =>. The window size
(along with an arbitry window shape) is controlled via the .window method.

extends UAna

[function] .size - (float, READ/WRITE)
get/set the IFFT size

[function] .window() - (float[], READ/WRITE)
get/set the transform window/size (also see AAA Windowing)

[function] .windowSize - (int, READ only)
get the current window size

[function] .transform - (complex[], WRITE only)
manually take IFFT (as opposed to using .upchuck() / upchuck operator)

[function] .samples - (float[], READ only)
manually retrieve the result of the previous IFFT

(UAna input/output)

[function] input: complex spectral frames (either via UAnae connected via =ˆ , or manullay via
.transform())

[function] output audio samples (overlap-added and streamed out to UGens connected via =>)

examples: ifft.ck, fft2.ck, ifft3.ck

[uana]: DCT

� Discrete Cosine Transform

This UAna computes the Discrete Cosine Transform on incoming audio
samples, and outputs the result via its UAnaBlob as real values in the

The ChucK Manual� 107

=> UAna objects

D.C. spectrum. A buffering mechanism maintains the previous DCT size #
of samples, allowing DCT to be taken at any point in time, on demand (via
.upchuck() or by upchucking a downstream UAna; The window size (along
with an arbitry window shape) is controlled via the .window method. The
hop size is complete dynamic, and is throttled by how time is advanced.

extends UAna

[function] .size - (float, READ/WRITE)
get/set the DCT size

[function] .window() - (float[], READ/WRITE)
get/set the transform window/size (also see AAA Windowing)

[function] .windowSize - (int, READ only)
get the current window size

[function] .transform - (float[], WRITE)
manually take DCT (as opposed to using .upchuck() / upchuck operator)

[function] .spectrum - (float[], READ only)
manually retrieve the results of a transform

(UAna input/output)

[function] input: audio samples (either via UAnae connected via =ˆ , or manullay via .trans-
form())

[function] output discrete cosine spectrum

examples: dct.ck

[uana]: IDCT

� Inverse Discrete Cosine Transform

This UAna computes the inverse Discrete Cosine Transform on incoming
spectral frames (on demand), and overlap-adds the results into its
internal buffer, ready to be sent to other UGen’s connected via =>.
The window size (along with an arbitry window shape) is controlled via
the .window method.

extends UAna

The ChucK Manual� 108

=> UAna objects

[function] .size - (float, READ/WRITE)
get/set the IDCT size

[function] .window() - (float[], READ/WRITE)
get/set the transform window/size (also see AAA Windowing)

[function] .windowSize - (int, READ only)
get the current window size

[function] .transform - (float[], WRITE)
manually take IDCT (as opposed to using .upchuck() / upchuck operator)

[function] .samples - (float[], WRITE)
manually get result of previous IDCT

(UAna input/output)

[function] input: real-valued spectral frames (either via UAnae connected via =ˆ , or manullay
via .transform())

[function] output audio samples (overlap-added and streamed out to UGens connected via =>)

examples: idct.ck

feature extractors

[uana]: Centroid

� Spectral Centroid

This UAna computes the spectral centroid from a magnitude spectrum (either
from incoming UAna or manually given), and outputs one value in its blob.

extends UAna

[function] float .compute(float[])
manually computes the centroid from a float array

(UAna input/output)

[function] input: complex spectral frames (e.g., via UAnae connected via =ˆ)

[function] output the computed Centroid value is stored in the blob’s floating point vector,
accessible via .fval(0). This is a normalized value in the range (0,1), mapped to the frequency
range 0Hz to Nyquist

The ChucK Manual� 109

=> UAna objects

examples: centroid.ck

[uana]: Flux

� Spectral Flux

This UAna computes the spectral flux between successive magnitude spectra
(via incoming UAna, or given manually), and outputs one value in its blob.

extends UAna

[function] void .reset()
reset the extractor

[function] float .compute(float[] f1, float[] f2)
manually computes the flux between two frames

[function] float .compute(float[] f1, float[] f2, float[] diff)
manually computes the flux between two frames, and stores the difference in a third array

(UAna input/output)

[function] input: complex spectral frames (e.g., via UAnae connected via =ˆ)

[function] output the computed Flux value is stored in the blob’s floating point vector, accessible
via .fval(0)

examples: flux.ck, flux0.ck

[uana]: RMS

� Spectral RMS

This UAna computes the RMS power mean from a magnitude spectrum (either
from an incoming UAna, or given manually), and outputs one value in
its blob.

extends UAna

[function] float .compute(float[])
manually computes the RMS from a float array

The ChucK Manual� 110

=> UAna objects

(UAna input/output)

[function] input: complex spectral frames (e.g., via UAnae connected via =ˆ)

[function] output the computed RMS value is stored in the blob’s floating point vector, accessible
via .fval(0)

examples: rms.ck

[uana]: RollOff

� Spectral RollOff

This UAna computes the spectral rolloff from a magnitude spectrum (either
from incoming UAna, or given manually), and outputs one value in its blob.

extends UAna

[function] float .percent((float val))
set the percentage for computing rolloff

[function] float .percent(())
get the percentage specified for the rolloff

[function] float .compute(float[])
manually computes the rolloff from a float array

(UAna input/output)

[function] input: complex spectral frames (e.g., via UAnae connected via =ˆ)

[function] output the computed rolloff value is stored in the blob’s floating point vector, accessible
via .fval(0). This is a normalized value in the range [0,1), mapped to the frequency range 0 to nyquist
frequency.
examples: rolloff.ck

The ChucK Manual� 111

CHAPTER17
On-the-fly Programming Commands

These are used for on-the-fly programming (see http://on-the-fly.cs.princeton.edu). By default, this
requires that a ChucK virtual machine be already running on the localhost. It communicates via
sockets to add/remove/replace shreds in the VM, and to query VM state. The simplest way to set
up a ChucK virtual machine to accept these commands is by starting an empty VM with - -loop:

%>chuck - -loop

this will start a VM, looping (and advancing time), waiting for incoming commands. Successive
invocations of ‘chuck’ with the appropriate commands will communicate with this listener VM.

(for remote operations over TCP, see below)

- -add / +
adds new shreds from source files to the listener VM. this process then exits. for example:

%>chuck + foo.ck bar.ck

integrates foo.ck and bar.ck into the listener VM. the shreds are internally responsible for finding
about the timing and other shreds via the timing mechanism and vm interface.

- -remove / -
removes existing shreds from the VM by ID. how to find out about the id? (see - -status below) for
example:

The ChucK Manual� 112

=> On-the-fly Programming Commands

%>chuck - 2 3 8

removes shred 2, 3, 8.

- -replace / =
replace existing shred with a new shred. for example:

%>chuck = 2 foo.ck

replaces shred 2 with foo.ck

- -status / ˆ
queries the status of the VM - output on the listener VM. for example:

%>chuck ˆ

this prints the internal shred start at the listener VM, something like:

[chuck](VM): status (now == 0h:2m:34s) ...
[shred id]: 1 [source]: foo.ck [sporked]: 21.43s ago
[shred id]: 2 [source]: bar.ck [sporked]: 28.37s ago

- -time
prints out the value of now on the listener VM. for example:

%>chuck - -time

something like:

[chuck](VM): the value of now: now = 403457 (samp)
= 9.148685 (second)
= 0.152478 (minute)
= 0.002541 (hour)
= 0.000106 (day)
= 0.000015 (week)

- -kill
semi-gracefully kills the listener VM - removes all shreds first.

- -remote /
specifies where to send the on-the-fly command. must appear in the command line before any
on-the-fly commands. for example:

The ChucK Manual� 113

=> On-the-fly Programming Commands

%>chuck @192.168.1.1 + foo.ck bar.ck
(or)

%>chuck @foo.bar.com -p8888 + foo.ck bar.ck

sends foo.ck and bar.ck to VM at 192.168.1.1 or foo.bar.com:8888

The ChucK Manual� 114

CHAPTER18
Standard Libraries API

ChucK Standard Libraries API these libraries are provide by default with ChucK - new ones can
also be imported with ChucK dynamic linking (soon to be documented...). The existing libraries
are organized by namespaces in ChucK. They are as follows.

namespace: Std
Std is a standard library in ChucK, which includes utility functions, random number generation,
unit conversions and absolute value.

[example]

/* a simple example... */
// infinite time-loop
while(true)
{

// generate random float (and print)
<<< Std.rand2f(100.0, 1000.0) >>>;
// wait a bit
50::ms => now;

}

[function] int abs (int value);
returns absolute value of integer

The ChucK Manual� 115

=> Standard Libraries API

[function] float fabs (float value);
returns absolute value of floating point number

[function] int rand ();
generates random integer

[function] int rand2 (int min, int max);
generates random integer in the range [min, max]

[function] float randf ();
generates random floating point number in the range [-1, 1]

[function] float rand2f (float min, float max);
generates random floating point number in the range [min, max]

[function] float srand (int value)
seeds value for random number generation

[function] float sgn (float value);
computes the sign of the input as -1.0 (negative), 0 (zero), or 1.0 (positive)

[function] int system (string cmd);
pass a command to be executed in the shell

[function] int atoi (string value);
converts ascii (string) to integer (int)

[function] float atof (string value);
converts ascii (string) to floating point value (float)

[function] string getenv (string value);
returns the value of an environment variable, such as of ”PATH”

[function] int setenv (string key, string value);
sets environment variable named ’key’ to ’value’

[function] float mtof (float value);
converts a MIDI note number to frequency (Hz)
note the input value is of type ’float’ (supports fractional note number)

The ChucK Manual� 116

=> Standard Libraries API

[function] float ftom (float value);
converts frequency (Hz) to MIDI note number space

[function] float powtodb (float value);
converts signal power ratio to decibels (dB)

[function] float rmstodb (float value);
converts linear amplitude to decibels (dB)

[function] float dbtopow (float value);
converts decibels (dB) to signal power ratio

[function] float dbtorms (float value);
converts decibles (dB) to linear amplitude

namespace: Machine
Machine is ChucK runtime interface to the virtual machine. this interface can be used to manage
shreds. They are similar to the On-the-fly Programming Commands, except these are invoked from
within a ChucK program, and are subject to the timing mech anism.

[example]

//add a file foo.ck to the VM
machine.add("foo.ck");
//check the virtual machine like chuck ^
machine.status();
//wait a week and cause ChucK to crash
1::week => now;
machine.crash();

[function] int add (string path);
compile and spork a new shred from file at ’path’ into the VM now
returns the shred ID
(see example/machine.ck)

[function] int spork (string path);
same as add/+

The ChucK Manual� 117

=> Standard Libraries API

[function] int remove (int id);
remove shred from VM by shred ID (returned by add/spork)

[function] int replace (int id, string path);
replace shred with new shred from file
returns shred ID , or 0 on error

[function] int status ();
display current status of VM
same functionality as status/ˆ
(see example/status.ck)

[function] void crash ();
iterally causes the VM to crash. the very last resort; use with care. Thanks.

namespace: Math
Math contains the standard math functions. all trignometric functions expects angles to be in
radians.

[example]

// print sine of pi/2
<<<< Math.sin(pi / 2.0) >>>;

[function] float sin (float x);
computes the sine of x

[function] float cos (float x);
computes the cosine of x

[function] float tan (float x);
computes the tangent of x

[function] float asin (float x);
computes the arc sine of x

[function] float acos (float x);
computes the arc cosine of x

[function] float atan (float x);
computes the arc tangent of x

The ChucK Manual� 118

=> Standard Libraries API

[function] float atan2 (float x);
computes the principal value of the arc tangent of y/x, using the signs of both arguments to
determine the quadrant of the return value

[function] float sinh (float x);
computes the hyperbolic sine of x

[function] float cosh (float x);
computes the hyperbolic cosine of x

[function] float tanh (float x);
computes the hyperbolic tangent of x

[function] float hypot (float x, float y);
computes the euclidean distance of the orthogonal vectors (x,0) and (0,y)

[function] float pow (float x, float y);
computes x taken to the y-th power

[function] float sqrt (float x);
computes the nonnegative square root of x (x must be ¿= 0)

[function] float exp (float x);
computes ex̂, the base-e exponential of x

[function] float log (float x);
computes the natural logarithm of x

[function] float log2 (float x);
computes the logarithm of x to base 2

[function] float log10 (float x);
computes the logarithm of x to base 10

[function] float floor (float x);
round to largest integral value (returned as float) not greater than x

[function] float ceil (float x);
round to smallest integral value (returned as float) not less than x

The ChucK Manual� 119

=> Standard Libraries API

[function] float round (float x);
round to nearest integral value (returned as float)

[function] float trunc (float x);
round to largest integral value (returned as float) no greater in magnitude than x

[function] float fmod (float x, float y);
computes the floating point remainder of x / y

[function] float remainder (float x, float y);
computes the value r such that r = x - n * y, where n is the integer nearest the exact value of x
/ y. If there are two integers closest to x / y, n shall be the even one. If r is zero, it is given the
same sign as x

[function] float min (float x, float y);
choose lesser of two values

[function] float max (float x, float y);
choose greater of two values

[function] int nextpow2 (int n);
computes the integeral (returned as int) smallest power of 2 greater than the value of x

[function] int isinf (float x);
is x infinity?

[function] int isnan (float x)
is x ”not a number”?

[function] float pi ;
(currently disabled - use pi)

[function] float twopi ;
(currently disabled)

[function] float e ;
(currently disabled - use Math.exp(1))

The ChucK Manual� 120

CHAPTER19
Unit Generators

Unit generators (ugens) can be connected using the ChucK operator (=>)

[example]

adc => dac;

the above connects the ugen ‘adc’ (a/d convertor, or audio input) to ‘dac’ (d/a convertor, or audio
output).

Ugens can also unlinked (using =<) and relinked (see examples/unchuck.ck).

A unit generator may have 0 or more control parameters. A Ugen’s parameters can be set also
using the ChucK operator (=> , or ->)

[example]

//connect sine oscillator to dac
SinOsc osc => dac;
// set the Osc’s frequency to 60.0 hz
60.0 => osc.freq;

(see examples/osc.ck)

The ChucK Manual� 121

=> Unit Generators

All ugen’s have at least the following four parameters:

[ctrl param]

� .gain - (float, READ/WRITE) - set gain
� .op - (int, READ/WRITE) - set operation type

– 0: stop - always output 0
– 1: normal operation, add all inputs (default)
– 2: normal operation, subtract all inputs starting from the earliest connected
– 3: normal operation, multiply all inputs
– 4: 4 : normal operation, divide inputs starting from the earlist connected
– -1: passthru - all inputs to the ugen are summed and passed directly to output

� .last - (float, READ/WRITE) - the last sample computed by the unit generator
� .channels - (int, READ only) - the number channels on the UGen
� .chan - (int) - returns a reference on a channel (0 ->N-1)

Multichannel UGens are adc, dac, Pan2, Mix2

[example]

Pan2 p;
// assumes you called chuck with at least --chan5 or -c5
p.chan(1) => dac.chan(4);

The ChucK Manual� 122

=> Unit Generators

audio output

dac

� digital/analog converter
� abstraction for underlying audio output device

[ctrl param]

� .left - (UGen) - input to left channel
� .right - (UGen) - input to right channel
� .chan(int n) - (UGen) - input to channel N on the device (0 ->N-1)
� .channels - (int, READ only) - returns the number of channels open on device

adc

� analog/digital converter
� abstraction for underlying audio input device

[ctrl param]

� .left - (UGen) - output to left channel
� .right - (UGen) - output to right channel
� .chan(int n) - (UGen) - output to channel N on the device (0 ->N-1)
� .channels - (int, READ only) - returns the number of channels open on device

blackhole

� sample rate sample sucker
� (like dac, ticks ugens, but no more)
� see examples/pwm.ck

Gain

� gain control
� (NOTE - all unit generators can themselves change their gain)

The ChucK Manual� 123

=> Unit Generators

� (this is a way to add N outputs together and scale them)
� used in examples/i-robot.ck

[ctrl param]

� .gain - (float, READ/WRITE) - set gain (all ugen’s have this)

[example]

Noise n => Gain g => dac;
SinOsc s => g;
.3 => g.gain;
while(true) { 100::ms => now; }

wave forms

Noise

� white noise generator
� see examples/noise.ck examples/powerup.ck

Impulse

� pulse generator - can set the value of the next sample
� default for each sample is 0 if not set

[ctrl param]

� .next - (float, READ/WRITE) - set value of next sample

[example]

Impulse i => dac;
while(true) {

1.0 => i.next;
100::ms => now;

}

The ChucK Manual� 124

=> Unit Generators

Step

� step generator - like Impulse, but once a value is set, it is held for all following samples, until
value is set again

� see examples/step.ck

[ctrl param]

� .value - (float, READ/WRITE) - set the current value
� .next - (float, READ/WRITE) - set the step value

[example]

Step s => dac;
-1.0 => float amp;
// square wave using step
while(true) {
-amp => amp => s.next;

800::samp => now;
}

basic signal processing

HalfRect

� half wave rectifier
� for half-wave rectification

FullRect

� full wave rectifier

ZeroX

� zero crossing detector
� emits a single pulse at the the zero crossing in the direction of the zero crossing

The ChucK Manual� 125

=> Unit Generators

� (see examples/zerox.ck)

filters

BiQuad

� BiQuad (two-pole, two-zero) filter class.

This protected Filter subclass implements a
two-pole, two-zero digital filter. A method
is provided for creating a resonance in the
frequency response while maintaining a constant
filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .b2 (float, READ/WRITE) filter coefficient
� .b1 (float, READ/WRITE) filter coefficient
� .b0 (float, READ/WRITE) filter coefficient
� .a2 (float, READ/WRITE) filter coefficient
� .a1 (float, READ/WRITE) filter coefficient
� .a0 (float, READ only) filter coefficient
� .pfreq (float, READ/WRITE) set resonance frequency (poles)
� .prad (float, READ/WRITE) pole radius (¡= 1 to be stable)
� .zfreq (float, READ/WRITE) notch frequency
� .zrad (float, READ/WRITE) zero radius
� .norm (float, READ/WRITE) normalization
� .eqzs (float, READ/WRITE) equal gain zeroes

OnePole

� STK one-pole filter class.

This protected Filter subclass implements
a one-pole digital filter. A method is
provided for setting the pole position along

The ChucK Manual� 126

=> Unit Generators

the real axis of the z-plane while maintaining
a constant peak filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .a1 (float, READ/WRITE) filter coefficient
� .b0 (float, READ/WRITE) filter coefficient
� .pole (float, READ/WRITE) set pole position along real axis of z-plane

TwoPole

� STK two-pole filter class.
� see examples/powerup.ck

This protected Filter subclass implements
a two-pole digital filter. A method is
provided for creating a resonance in the
frequency response while maintaining a nearly
constant filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .a1 (float, READ/WRITE) filter coefficient
� .a2 (float, READ/WRITE) filter coefficient
� .b0 (float, READ/WRITE) filter coefficient
� .freq (float, READ/WRITE) filter resonance frequency
� .radius (float, READ/WRITE) filter resonance radius
� .norm (float, READ/WRITE) toggle filter normalization

OneZero

� STK one-zero filter class.

This protected Filter subclass implements

The ChucK Manual� 127

=> Unit Generators

a one-zero digital filter. A method is
provided for setting the zero position
along the real axis of the z-plane while
maintaining a constant filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .zero (float, READ/WRITE) set zero position
� .b0 (float, READ/WRITE) filter coefficient
� .b1 (float, READ/WRITE) filter coefficient

TwoZero

� STK two-zero filter class.

This protected Filter subclass implements
a two-zero digital filter. A method is
provided for creating a "notch" in the
frequency response while maintaining a
constant filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .b0 (float, READ/WRITE) filter coefficient
� .b1 (float, READ/WRITE) filter coefficient
� .b2 (float, READ/WRITE) filter coefficient
� .freq (float, READ/WRITE) filter notch frequency
� .radius (float, READ/WRITE) filter notch radius

PoleZero

� STK one-pole, one-zero filter class.

This protected Filter subclass implements

The ChucK Manual� 128

=> Unit Generators

a one-pole, one-zero digital filter. A
method is provided for creating an allpass
filter with a given coefficient. Another
method is provided to create a DC blocking filter.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .a1 (float, READ/WRITE) filter coefficient
� .b0 (float, READ/WRITE) filter coefficient
� .b1 (float, READ/WRITE) filter coefficient
� .blockZero (float, READ/WRITE) DC blocking filter with given pole position
� .allpass (float, READ/WRITE) allpass filter with given coefficient

Filter

� STK filter class.

This class implements a generic structure which
can be used to create a wide range of filters.
It can function independently or be subclassed
to provide more specific controls based on a
particular filter type.

In particular, this class implements the standard
difference equation:

a[0]*y[n] = b[0]*x[n] + ... + b[nb]*x[n-nb] -
a[1]*y[n-1] - ... - a[na]*y[n-na]

If a[0] is not equal to 1, the filter coeffcients
are normalized by a[0].

The \e gain parameter is applied at the filter
input and does not affect the coefficient values.
The default gain value is 1.0. This structure
results in one extra multiply per computed sample,
but allows easy control of the overall filter gain.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

The ChucK Manual� 129

=> Unit Generators

[ctrl param]

� .coefs (string, WRITE only)

LPF

� Resonant low pass filter. 2nd order Butterworth. (In the future, this class may be expanded
so that order and type of filter can be set.)

extends FilterBasic

[ctrl param]

� .freq (float, READ/WRITE) cutoff frequency (Hz)
� .Q (float, READ/WRITE) resonance (default is 1)
� .set (float, float WRITE only) set freq and Q

HPF

� Resonant high pass filter. 2nd order Butterworth. (In the future, this class may be expanded
so that order and type of filter can be set.)

extends FilterBasic

[ctrl param]

� .freq (float, READ/WRITE) cutoff frequency (Hz)
� .Q (float, READ/WRITE) resonance (default is 1)
� .set (float, float WRITE only) set freq and Q

BPF

� Band pass filter. 2nd order Butterworth. (In the future, this class may be expanded so that
order and type of filter can be set.)

extends FilterBasic

[ctrl param]

� .freq (float, READ/WRITE) center frequency (Hz)

The ChucK Manual� 130

=> Unit Generators

� .Q (float, READ/WRITE) Q (default is 1)
� .set (float, float WRITE only) set freq and Q

BRF

� Band reject filter. 2nd order Butterworth. (In the future, this class may be expanded so that
order and type of filter can be set.)

extends FilterBasic

[ctrl param]

� .freq (float, READ/WRITE) center frequency (Hz)
� .Q (float, READ/WRITE) Q (default is 1)
� .set (float, float WRITE only) set freq and Q

ResonZ

� Resonance filter. Same as BiQuad with equal gain zeros.

extends FilterBasic

[ctrl param]

� .freq (float, READ/WRITE) center frequency (Hz)
� .Q (float, READ/WRITE) Q (default is 1)
� .set (float, float WRITE only) set freq and Q

FilterBasic

� base class, don’t instantiate.

[ctrl param]

� .freq (float, READ/WRITE) cutoff/center frequency (Hz)
� .Q (float, READ/WRITE) resonance/Q
� .set (float, float WRITE only) set freq and Q

The ChucK Manual� 131

=> Unit Generators

sound files

SndBuf

� sound buffer (now interpolating)
� reads from a variety of file formats
� see examples/sndbuf.ck

[ctrl param]

� .read - (string, WRITE only) - loads file for reading
� .chunks - (int, READ/WRITE) - size of chunk (# of frames) to read on-demand; 0 implies

entire file, default; must be set before reading to take effect.
� .write - (string, WRITE only) - loads a file for writing (currently unimplemented)
� .pos - (int, READ/WRITE) - set position (0 <p <.samples)
� .valueAt - (int, READ only) - returns the value at sample index
� .loop - (int, READ/WRITE) - toggle looping
� .interp - (int, READ/WRITE) - set interpolation (0=drop, 1=linear, 2=sinc)
� .rate - (float, READ/WRITE) - playback rate (relative to the file’s natural speed)
� .play - (float, READ/WRITE) - play (same as rate)
� .freq - (float, READ/WRITE) - playback rate (file loops/second)
� .phase - (float, READ/WRITE) - set phase position (0-1)
� .channel - (int, READ/WRITE) - select channel (0 <x <.channels)
� .phaseOffset - (float, READ/WRITE) - set a phase offset
� .samples - (int, READ only) - fetch number of samples
� .length - (dur, READ only) - fetch length as duration
� .channels - (int, READ only) - fetch number of channels

oscillators

Phasor

� simple ramp generator (0 to 1)
� this can be fed into other oscillators (with sync mode of 2)
� as a phase control. see examples/sixty.ck for an example

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)

The ChucK Manual� 132

=> Unit Generators

� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth
� .width (float, READ/WRITE) set duration of the ramp in each cycle. (default 1.0)

SinOsc

� sine oscillator
� (see examples/osc.ck)

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth

Blit

� band limited sine wave oscillator

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .phase (float, READ/WRITE) current phase
� .harmonics (int, READ/WRITE) number of harmonics

[example]

Impulse i => dac;
while(true) {

1.0 => i.next;
100::ms => now;

}

PulseOsc

The ChucK Manual� 133

=> Unit Generators

� pulse oscillators
� a pulse wave oscillator with variable width.

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth
� .width (float, WRITE) length of duty cycle (0 - 1)

SqrOsc

� square wave oscillator

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth
� .width (float, WRITE) fixed duty cycle of 0.5

BlitSquare

� band limited square wave oscillator

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .phase (float, READ/WRITE) current phase
� .harmonics (int, READ/WRITE) number of harmonics

TriOsc

� triangle wave oscillator

The ChucK Manual� 134

=> Unit Generators

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth
� .width (float, READ/WRITE) control midpoint of triangle (0 - 1)

SawOsc

� sawtooth wave oscillator (triangle, width forced to 0.0 or 1.0)

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .sfreq (float, READ/WRITE) oscillator frequency (Hz), phase-matched
� .phase (float, READ/WRITE) current phase
� .sync (int, READ/WRITE) (0) sync frequency to input, (1) sync phase to input, (2) fm

synth
� .width (float, READ/WRITE) increasing (w >0.5) or decreasing (w <0.5)

BlitSaw

� band limited sawtooth wave oscillator

[ctrl param]

� .freq (float, READ/WRITE) oscillator frequency (Hz)
� .phase (float, READ/WRITE) current phase
� .harmonics (int, READ/WRITE) number of harmonics

network

netout

� UDP-based network audio transmitter

The ChucK Manual� 135

=> Unit Generators

[ctrl param]

� .addr (string, READ/WRITE) target address
� .port (int, READ/WRITE) target port
� .size (int, READ/WRITE) packet size
� .name (string, READ/WRITE) name

netin

� UDP-based network audio receiver

[ctrl param]

� .port (int, READ/WRITE) set port to receive
� .name (string, READ/WRITE) name

mono <- ->stereo

Pan2

� spread mono signal to stereo
� see examples/stereo/moe2.ck

[ctrl param]

� .left (UGen) left (mono) channel out
� .right (UGen) right (mono) channel out
� .pan (float, READ/WRITE) pan location value (-1 to 1)

Mix2

� mix stereo input down to mono channel

[ctrl param]

� .left - (UGen) left (mono) channel in
� .right - (UGen) right (mono) channel in
� .pan - (float, READ/WRITE) mix parameter value (0 - 1)

The ChucK Manual� 136

=> Unit Generators

STK - Instruments

StkInstrument
(Imported from Instrmnt)

� Super-class for STK instruments

The following UGens subclass StkInstrument:
- BandedWG
- BlowBotl
- BlowHole
- Bowed
- Brass
- Clarinet
- Flute
- FM (and all its subclasses: BeeThree, FMVoices,

HevyMetl, PercFlut, Rhodey, TubeBell, Wurley)
- Mandolin
- ModalBar
- Moog
- Saxofony
- Shakers
- Sitar
- StifKarp
- VoicForm

[ctrl param]

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change - numbers are instrument

specific, value range: [0.0 - 128.0]

BandedWG

� Banded waveguide modeling class

This class uses banded waveguide techniques to

The ChucK Manual� 137

=> Unit Generators

model a variety of sounds, including bowed
bars, glasses, and bowls. For more
information, see Essl, G. and Cook, P. "Banded
Waveguides: Towards Physical Modelling of Bar
Percussion Instruments", Proceedings of the
1999 International Computer Music Conference.
Control Change Numbers:

- Bow Pressure = 2
- Bow Motion = 4
- Strike Position = 8 (not implemented)
- Vibrato Frequency = 11
- Gain = 1
- Bow Velocity = 128
- Set Striking = 64
- Instrument Presets = 16
- Uniform Bar = 0
- Tuned Bar = 1
- Glass Harmonica = 2
- Tibetan Bowl = 3

by Georg Essl, 1999 - 2002.
Modified for Stk 4.0 by Gary Scavone.

extends StkInstrument

[ctrl param]

� .bowPressure (float, READ/WRITE) bow pressure [0.0 - 1.0]
� .bowMotion (float, READ/WRITE) bow motion [0.0 - 1.0]
� .bowRate (float, READ/WRITE) strike Position
� .strikePosition (float, READ/WRITE) strike Position
� .integrationConstant - (float , READ/WRITE) - ?? [0.0 - 1.0]
� .modesGain (float, READ/WRITE) amplitude for modes [0.0 - 1.0]
� .preset (int, READ/WRITE) instrument presets (0 - 3, see above)
� .pluck (float, READ/WRITE) pluck instrument [0.0 - 1.0]
� .startBowing (float, READ/WRITE) start bowing [0.0 - 1.0]
� .stopBowing (float, READ/WRITE) stop bowing [0.0 - 1.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)

The ChucK Manual� 138

=> Unit Generators

� .controlChange - (int number, float value) - assert control change

BlowBotl

� STK blown bottle instrument class

This class implements a helmholtz resonator
(biquad filter) with a polynomial jet
excitation (a la Cook).

Control Change Numbers:
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .noiseGain - (float , READ/WRITE) - noise component gain [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .volume - (float , READ/WRITE) - yet another volume knob [0.0 - 1.0]
� .startBlowing (float, READ/WRITE) begin blowing [0.0 - 1.0]
� .stopBlowing (float, READ/WRITE) stop blowing [0.0 - 1.0]
� .rate (float, READ/WRITE) - rate of attack (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

BlowHole

� STK clarinet physical model with one register hole and one tonehole.

The ChucK Manual� 139

=> Unit Generators

register hole and one tonehole.

This class is based on the clarinet model,
with the addition of a two-port register hole
and a three-port dynamic tonehole
implementation, as discussed by Scavone and
Cook (1998).

In this implementation, the distances between
the reed/register hole and tonehole/bell are
fixed. As a result, both the tonehole and
register hole will have variable influence on
the playing frequency, which is dependent on
the length of the air column. In addition,
the highest playing freqeuency is limited by
these fixed lengths.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.

Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Tonehole State = 11
- Register State = 1
- Breath Pressure = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .reed (float, READ/WRITE) reed stiffness [0.0 - 1.0]
� .noiseGain - (float , READ/WRITE) - noise component gain [0.0 - 1.0]
� .vent (float, READ/WRITE) vent frequency [0.0 - 1.0]
� .pressure (float, READ/WRITE) pressure [0.0 - 1.0]
� .tonehole (float, READ/WRITE) tonehole size [0.0 - 1.0]
� .startBlowing (float, READ/WRITE) start blowing [0.0 - 1.0]
� .stopBlowing (float, READ/WRITE) stop blowing [0.0 - 1.0]
� .rate (float, READ/WRITE) rate of change (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on

The ChucK Manual� 140

=> Unit Generators

� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Bowed

� STK bowed string instrument class.

This class implements a bowed string model, a
la Smith (1986), after McIntyre, Schumacher,
Woodhouse (1983).

This is a digital waveguide model, making its
use possibly subject to patents held by
Stanford University, Yamaha, and others.

Control Change Numbers:
- Bow Pressure = 2
- Bow Position = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .bowPressure - (float , READ/WRITE) - bow pressure [0.0 - 1.0]
� .bowPosition - (float , READ/WRITE) - bow position [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .volume - (float , READ/WRITE) - volume [0.0 - 1.0]
� .startBowing (float, READ/WRITE) begin bowing [0.0 - 1.0]
� .stopBowing (float, READ/WRITE) stop bowing [0.0 - 1.0]
� .rate (float, READ/WRITE) - rate of attack (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off

The ChucK Manual� 141

=> Unit Generators

� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Brass

� STK simple brass instrument class.

This class implements a simple brass instrument
waveguide model, a la Cook (TBone, HosePlayer).

This is a digital waveguide model, making its
use possibly subject to patents held by
Stanford University, Yamaha, and others.

Control Change Numbers:
- Lip Tension = 2
- Slide Length = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Volume = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .lip - (float , READ/WRITE) - lip tension [0.0 - 1.0]
� .slide - (float , READ/WRITE) - slide length [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .volume - (float , READ/WRITE) - volume [0.0 - 1.0]
� .clear - (float , WRITE only) - clear instrument
� .startBlowing (float, READ/WRITE) start blowing [0.0 - 1.0]
� .stopBlowing (float, READ/WRITE) stop blowing [0.0 - 1.0]
� .rate (float, READ/WRITE) rate of change (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)

The ChucK Manual� 142

=> Unit Generators

� .controlChange - (int number, float value) - assert control change

Clarinet

� STK clarinet physical model class.

This class implements a simple clarinet
physical model, as discussed by Smith (1986),
McIntyre, Schumacher, Woodhouse (1983), and
others.

This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.

Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .reed - (float , READ/WRITE) - reed stiffness [0.0 - 1.0]
� .noiseGain - (float , READ/WRITE) - noise component gain [0.0 - 1.0]
� .clear - () - clear instrument
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .pressure - (float , READ/WRITE) - pressure/volume [0.0 - 1.0]
� .startBlowing - (float , WRITE only) - start blowing [0.0 - 1.0]
� .stopBlowing - (float , WRITE only) - stop blowing [0.0 - 1.0]
� .rate - (float , READ/WRITE) - rate of attack (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off

The ChucK Manual� 143

=> Unit Generators

� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Flute

� STK flute physical model class.

This class implements a simple flute
physical model, as discussed by Karjalainen,
Smith, Waryznyk, etc. The jet model uses
a polynomial, a la Cook.

This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.

Control Change Numbers:
- Jet Delay = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .jetDelay - (float , READ/WRITE) - jet delay [...] —item .jetReflection - (float ,
READ/WRITE) - jet reflection [...]

� .endReflection - (float , READ/WRITE) - end delay [...]
� .noiseGain - (float , READ/WRITE) - noise component gain [0.0 - 1.0]
� .clear - () - clear instrument
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .pressure - (float , READ/WRITE) - pressure/volume [0.0 - 1.0]
� .startBlowing (float, READ/WRITE) begin bowing [0.0 - 1.0]
� .stopBlowing (float, READ/WRITE) stop bowing [0.0 - 1.0]
� .rate (float, READ/WRITE) - rate of attack (sec)

(inherited from StkInstrument)

The ChucK Manual� 144

=> Unit Generators

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Mandolin

� STK mandolin instrument model class.
� see examples/mand-o-matic.ck

This class inherits from PluckTwo and uses
"commuted synthesis" techniques to model a
mandolin instrument.

This is a digital waveguide model, making its
use possibly subject to patents held by
Stanford University, Yamaha, and others.
Commuted Synthesis, in particular, is covered
by patents, granted, pending, and/or
applied-for. All are assigned to the Board of
Trustees, Stanford University. For
information, contact the Office of Technology
Licensing, Stanford University.

Control Change Numbers:
- Body Size = 2
- Pluck Position = 4
- String Sustain = 11
- String Detuning = 1
- Microphone Position = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .bodySize (float, READ/WRITE) body size (percentage)
� .pluckPos (float, READ/WRITE) pluck position [0.0 - 1.0]
� .stringDamping (float, READ/WRITE) string damping [0.0 - 1.0]
� .stringDetune (float, READ/WRITE) detuning of string pair [0.0 - 1.0]
� .afterTouch (float, READ/WRITE) aftertouch (currently unsupported)

The ChucK Manual� 145

=> Unit Generators

� .pluck - (float , WRITE only) - pluck instrument [0.0 - 1.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

ModalBar

� STK resonant bar instrument class.
� see examples/modalbot.ck

This class implements a number of different
struck bar instruments. It inherits from the
Modal class.

Control Change Numbers:
- Stick Hardness = 2
- Stick Position = 4
- Vibrato Gain = 11
- Vibrato Frequency = 7
- Direct Stick Mix = 1
- Volume = 128
- Modal Presets = 16
- Marimba = 0
- Vibraphone = 1
- Agogo = 2
- Wood1 = 3
- Reso = 4
- Wood2 = 5
- Beats = 6
- Two Fixed = 7
- Clump = 8

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .stickHardness - (float , READ/WRITE) - stick hardness [0.0 - 1.0]

The ChucK Manual� 146

=> Unit Generators

� .strikePosition - (float , READ/WRITE) - strike position [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .directGain - (float , READ/WRITE) - direct gain [0.0 - 1.0]
� .masterGain - (float , READ/WRITE) - master gain [0.0 - 1.0]
� .volume - (float , READ/WRITE) - volume [0.0 - 1.0]
� .preset - (int , READ/WRITE) - choose preset (see above)
� .strike - (float , WRITE only) - strike bar [0.0 - 1.0]
� .damp - (float , WRITE only) - damp bar [0.0 - 1.0]
� .clear - () - reset [none]
� .mode - (int , READ/WRITE) - select mode [0.0 - 1.0]
� .modeRatio - (float , READ/WRITE) - edit selected mode ratio [...]
� .modeRadius - (float , READ/WRITE) - edit selected mode radius [0.0 - 1.0]
� .modeGain - (float , READ/WRITE) - edit selected mode gain [0.0 - 1.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Moog

� STK moog-like swept filter sampling synthesis class
� see examples/moogie.ck

This instrument uses one attack wave, one
looped wave, and an ADSR envelope (inherited
from the Sampler class) and adds two sweepable
formant (FormSwep) filters.

Control Change Numbers:
- Filter Q = 2
- Filter Sweep Rate = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Gain = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

The ChucK Manual� 147

=> Unit Generators

extends StkInstrument [ctrl param]

� .filterQ - (float , READ/WRITE) - filter Q value [0.0 - 1.0]
� .filterSweepRate - (float , READ/WRITE) - filter sweep rate [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .afterTouch - (float , WRITE only) - aftertouch [0.0 - 1.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Saxofony

� STK faux conical bore reed instrument class.

This class implements a "hybrid" digital
waveguide instrument that can generate a
variety of wind-like sounds. It has also been
referred to as the "blowed string" model. The
waveguide section is essentially that of a
string, with one rigid and one lossy
termination. The non-linear function is a
reed table. The string can be "blown" at any
point between the terminations, though just as
with strings, it is impossible to excite the
system at either end. If the excitation is
placed at the string mid-point, the sound is
that of a clarinet. At points closer to the
"bridge", the sound is closer to that of a
saxophone. See Scavone (2002) for more details.

This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.

Control Change Numbers:

The ChucK Manual� 148

=> Unit Generators

- Reed Stiffness = 2
- Reed Aperture = 26
- Noise Gain = 4
- Blow Position = 11
- Vibrato Frequency = 29
- Vibrato Gain = 1
- Breath Pressure = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .stiffness - (float , READ/WRITE) - reed stiffness [0.0 - 1.0]
� .aperture - (float , READ/WRITE) - reed aperture [0.0 - 1.0]
� .blowPosition - (float , READ/WRITE) - lip stiffness [0.0 - 1.0]
� .noiseGain - (float , READ/WRITE) - noise component gain [0.0 - 1.0]
� .vibratoFreq - (float , READ/WRITE) - vibrato frequency (Hz)
� .vibratoGain - (float , READ/WRITE) - vibrato gain [0.0 - 1.0]
� .clear - () - clear instrument
� .pressure - (float , READ/WRITE) - pressure/volume [0.0 - 1.0]
� .startBlowing (float, READ/WRITE) begin blowing [0.0 - 1.0]
� .stopBlowing (float, READ/WRITE) stop blowing [0.0 - 1.0]
� .rate (float, READ/WRITE) - rate of attack (sec)

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Shakers

� PhISEM and PhOLIES class.
� see examples/shake-o-matic.ck

PhISEM (Physically Informed Stochastic Event
Modeling) is an algorithmic approach for
simulating collisions of multiple independent
sound producing objects. This class is a

The ChucK Manual� 149

=> Unit Generators

meta-model that can simulate a Maraca, Sekere,
Cabasa, Bamboo Wind Chimes, Water Drops,
Tambourine, Sleighbells, and a Guiro.

PhOLIES (Physically-Oriented Library of
Imitated Environmental Sounds) is a similar
approach for the synthesis of environmental
sounds. This class implements simulations of
breaking sticks, crunchy snow (or not), a
wrench, sandpaper, and more.

Control Change Numbers:
- Shake Energy = 2
- System Decay = 4
- Number Of Objects = 11
- Resonance Frequency = 1
- Shake Energy = 128
- Instrument Selection = 1071
- Maraca = 0
- Cabasa = 1
- Sekere = 2
- Guiro = 3
- Water Drops = 4
- Bamboo Chimes = 5
- Tambourine = 6
- Sleigh Bells = 7
- Sticks = 8
- Crunch = 9
- Wrench = 10
- Sand Paper = 11
- Coke Can = 12
- Next Mug = 13
- Penny + Mug = 14
- Nickle + Mug = 15
- Dime + Mug = 16
- Quarter + Mug = 17
- Franc + Mug = 18
- Peso + Mug = 19
- Big Rocks = 20
- Little Rocks = 21
- Tuned Bamboo Chimes = 22

The ChucK Manual� 150

=> Unit Generators

by Perry R. Cook, 1996 - 1999.

extends StkInstrument [ctrl param]

� .preset - (int , READ/WRITE) - select instrument (0 - 22; see above)
� .energy - (float , READ/WRITE) - shake energy [0.0 - 1.0]
� .decay - (float , READ/WRITE) - system decay [0.0 - 1.0]
� .objects - (float , READ/WRITE) - number of objects [0.0 - 128.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

Sitar

� STK sitar string model class.

This class implements a sitar plucked string
physical model based on the Karplus-Strong
algorithm.

This is a digital waveguide model, making its
use possibly subject to patents held by
Stanford University, Yamaha, and others.
There exist at least two patents, assigned to
Stanford, bearing the names of Karplus and/or
Strong.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .pluck (float, WRITE only) pluck string [0.0 - 1.0]
� .clear () reset

(inherited from StkInstrument)

The ChucK Manual� 151

=> Unit Generators

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

StifKarp

� STK plucked stiff string instrument.
� see examples/stifkarp.ck

This class implements a simple plucked string
algorithm (Karplus Strong) with enhancements
(Jaffe-Smith, Smith, and others), including
string stiffness and pluck position controls.
The stiffness is modeled with allpass filters.

This is a digital waveguide model, making its
use possibly subject to patents held by
Stanford University, Yamaha, and others.

Control Change Numbers:
- Pickup Position = 4
- String Sustain = 11
- String Stretch = 1

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .pickupPosition - (float , READ/WRITE) - pickup position [0.0 - 1.0]
� .sustain - (float , READ/WRITE) - string sustain [0.0 - 1.0]
� .stretch - (float , READ/WRITE) - string stretch [0.0 - 1.0]
� .pluck - (float , WRITE only) - pluck string [0.0 - 1.0]
� .baseLoopGain - (float , READ/WRITE) - ?? [0.0 - 1.0]
� .clear - () - reset instrument

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off

The ChucK Manual� 152

=> Unit Generators

� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

VoicForm

� Four formant synthesis instrument.
� see examples/voic-o-form.ck

This instrument contains an excitation singing
wavetable (looping wave with random and
periodic vibrato, smoothing on frequency,
etc.), excitation noise, and four sweepable
complex resonances.

Measured formant data is included, and enough
data is there to support either parallel or
cascade synthesis. In the floating point case
cascade synthesis is the most natural so
that’s what you’ll find here.

Control Change Numbers:
- Voiced/Unvoiced Mix = 2
- Vowel/Phoneme Selection = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Loudness (Spectral Tilt) = 128

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends StkInstrument [ctrl param]

� .phoneme (string, READ/WRITE) select phoneme (above)
� .phonemeNum - (int , READ/WRITE) - select phoneme by number [0.0 - 128.0]
� .speak (float, WRITE only) start singing [0.0 - 1.0]
� .quiet (float, WRITE only) stop singing [0.0 - 1.0]
� .voiced (float, READ/WRITE) set mix for voiced component [0.0 - 1.0]
� .unVoiced (float, READ/WRITE) set mix for unvoiced componenet [0.0 - 1.0]
� .pitchSweepRate (float, READ/WRITE) pitch sweep [0.0 - 1.0]
� .voiceMix (float, READ/WRITE) voiced/unvoiced mix [0.0 - 1.0]
� .vibratoFreq (float, READ/WRITE) vibrato frequency (Hz)

The ChucK Manual� 153

=> Unit Generators

� .vibratoGain (float, READ/WRITE) vibrato gain [0.0 - 1.0]
� .loudness (float, READ/WRITE) ’loudness’ of voice [0.0 - 1.0]

(inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

STK - FM Synths

FM

� STK abstract FM synthesis base class

This class controls an arbitrary number of
waves and envelopes, determined via a
constructor argument.

Control Change Numbers:
- Control One = 2
- Control Two = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .lfoSpeed (float, READ/WRITE) modulation speed (Hz)
� .lfoDepth (float, READ/WRITE) modulation depth [0.0 - 1.0]
� .afterTouch (float, READ/WRITE) aftertouch [0.0 - 1.0]

The ChucK Manual� 154

=> Unit Generators

� .control1 (float, READ/WRITE) FM control 1 [instrument specific]
� .control2 (float, READ/WRITE) FM control 2 [instrument specific]

it (inherited from StkInstrument)

� .noteOn - (float velocity) - trigger note on
� .noteOff - (float velocity) - trigger note off
� .freq - (float frequency) - set/get frequency (Hz)
� .controlChange - (int number, float value) - assert control change

BeeThree

� STK Hammond-oid organ FM synthesis instrument.

This class implements a simple 4 operator
topology, also referred to as algorithm 8 of
the TX81Z.

\code
Algorithm 8 is :

1 --.
2 -\|

+-> Out
3 -/|
4 --

\endcode

Control Change Numbers:
- Operator 4 (feedback) Gain = 2
- Operator 3 Gain = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

The ChucK Manual� 155

=> Unit Generators

extends FM

[ctrl param]

� (see super classes)

FMVoices

� STK singing FM synthesis instrument.

This class implements 3 carriers and a common
modulator, also referred to as algorithm 6 of
the TX81Z.

\code
Algorithm 6 is :

/->1 -\
4-|-->2 - +-> Out

\->3 -/
\endcode

Control Change Numbers:
- Vowel = 2
- Spectral Tilt = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends FM

[ctrl param]

� .vowel (float, WRITE only) select vowel [0.0 - 1.0]

The ChucK Manual� 156

=> Unit Generators

� .spectralTilt (float, WRITE only) spectral tilt [0.0 - 1.0]
� .adsrTarget (float, WRITE only) adsr targets [0.0 - 1.0]

HevyMetl

� STK heavy metal FM synthesis instrument.

This class implements 3 cascade operators with
feedback modulation, also referred to as
algorithm 3 of the TX81Z.

Algorithm 3 is : 4--\
3-->2-- + -->1-->Out

Control Change Numbers:
- Total Modulator Index = 2
- Modulator Crossfade = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends FM

[ctrl param]

� (see super classes)

PercFlut

� STK percussive flute FM synthesis instrument.

The ChucK Manual� 157

=> Unit Generators

This class implements algorithm 4 of the TX81Z.

\code
Algorithm 4 is : 4->3--\

2-- + -->1-->Out
\endcode

Control Change Numbers:
- Total Modulator Index = 2
- Modulator Crossfade = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends FM

[ctrl param]

� (see super classes)

Rhodey

� STK Fender Rhodes-like electric piano FM
� see examples/rhodey.ck

synthesis instrument.

This class implements two simple FM Pairs
summed together, also referred to as algorithm
5 of the TX81Z.

\code
Algorithm 5 is : 4->3--\

The ChucK Manual� 158

=> Unit Generators

+ --> Out
2->1--/

\endcode

Control Change Numbers:
- Modulator Index One = 2
- Crossfade of Outputs = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends FM

[ctrl param]

� (see super classes)

TubeBell

� STK tubular bell (orchestral chime) FM
� extends FM

synthesis instrument.

This class implements two simple FM Pairs
summed together, also referred to as algorithm
5 of the TX81Z.

\code
Algorithm 5 is : 4->3--\

+ --> Out
2->1--/

\endcode

The ChucK Manual� 159

=> Unit Generators

Control Change Numbers:
- Modulator Index One = 2
- Crossfade of Outputs = 4
- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� (see super classes)

Wurley

� STK Wurlitzer electric piano FM
� see examples/wurley.ck extends

synthesis instrument.

This class implements two simple FM Pairs
summed together, also referred to as algorithm
5 of the TX81Z.

\code
Algorithm 5 is : 4->3--\

+ --> Out
2->1--/

\endcode

Control Change Numbers:
- Modulator Index One = 2
- Crossfade of Outputs = 4

The ChucK Manual� 160

=> Unit Generators

- LFO Speed = 11
- LFO Depth = 1
- ADSR 2 & 4 Target = 128

The basic Chowning/Stanford FM patent expired
in 1995, but there exist follow-on patents,
mostly assigned to Yamaha. If you are of the
type who should worry about this (making
money) worry away.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

extends FM

[ctrl param]

� (see super classes)

STK - Delay

Delay

� STK non-interpolating delay line class
� see examples/net relay.ck

This protected Filter subclass implements
a non-interpolating digital delay-line.
A fixed maximum length of 4095 and a delay
of zero is set using the default constructor.
Alternatively, the delay and maximum length
can be set during instantiation with an
overloaded constructor.

A non-interpolating delay line is typically
used in fixed delay-length applications, such
as for reverberation.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

The ChucK Manual� 161

=> Unit Generators

� .delay (dur, READ/WRITE) length of delay
� .max (dur, READ/WRITE) max delay (buffer size)

DelayA

� STK allpass interpolating delay line class.

This Delay subclass implements a fractional-
length digital delay-line using a first-order
allpass filter. A fixed maximum length
of 4095 and a delay of 0.5 is set using the
default constructor. Alternatively, the
delay and maximum length can be set during
instantiation with an overloaded constructor.

An allpass filter has unity magnitude gain but
variable phase delay properties, making it useful
in achieving fractional delays without affecting
a signal’s frequency magnitude response. In
order to achieve a maximally flat phase delay
response, the minimum delay possible in this
implementation is limited to a value of 0.5.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .delay (dur, READ/WRITE) length of delay
� .max (dur, READ/WRITE) max delay (buffer size)

DelayL

� STK linear interpolating delay line class.
� see examples/i-robot.ck

This Delay subclass implements a fractional-
length digital delay-line using first-order
linear interpolation. A fixed maximum length
of 4095 and a delay of zero is set using the

The ChucK Manual� 162

=> Unit Generators

default constructor. Alternatively, the
delay and maximum length can be set during
instantiation with an overloaded constructor.

Linear interpolation is an efficient technique
for achieving fractional delay lengths, though
it does introduce high-frequency signal
attenuation to varying degrees depending on the
fractional delay setting. The use of higher
order Lagrange interpolators can typically
improve (minimize) this attenuation characteristic.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .delay (dur, READ/WRITE) length of delay
� .max (dur, READ/WRITE) max delay (buffer size)

Echo

� STK echo effect class.

This class implements a echo effect.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .delay (dur, READ/WRITE) length of echo
� .max (dur, READ/WRITE) max delay
� .mix (float, READ/WRITE) mix level (wet/dry)

STK - Envelopes

Envelope

� STK envelope base class.

The ChucK Manual� 163

=> Unit Generators

� see examples/sixty.ck

This class implements a simple envelope
generator which is capable of ramping to
a target value by a specified \e rate.
It also responds to simple \e keyOn and
\e keyOff messages, ramping to 1.0 on
keyOn and to 0.0 on keyOff.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .keyOn (int, WRITE only) ramp to 1.0
� .keyOff (int, WRITE only) ramp to 0.0
� .target (float, READ/WRITE) ramp to arbitrary value
� .time (float, READ/WRITE) time to reach target (in second)
� .duration (dur, READ/WRITE) time to reach target
� .rate (float, READ/WRITE) rate of change
� .value (float, READ/WRITE) set immediate value

ADSR

� STK ADSR envelope class.
� see examples/adsr.ck

This Envelope subclass implements a
traditional ADSR (Attack, Decay,
Sustain, Release) envelope. It
responds to simple keyOn and keyOff
messages, keeping track of its state.
The \e state = ADSR::DONE after the
envelope value reaches 0.0 in the
ADSR::RELEASE state.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .keyOn (int, WRITE only) start the attack for non-zero values

The ChucK Manual� 164

=> Unit Generators

� .keyOff (int, WRITE only) start the release for non-zero values
� .attackTime (dur, WRITE only) attack time
� .attackRate (float, READ/WRITE) attack rate
� .decayTime (dur, READ/WRITE) decay
� .decayRate (float, READ/WRITE) decay rate
� .sustainLevel (float, READ/WRITE) sustain level
� .releaseTime (dur, READ/WRITE) release time
� .releaseRate (float, READ/WRITE) release rate
� .state (int, READ only) attack=0, decay=1, sustain=2, release=3,done=4

STK - Reverbs

JCRev

� John Chowning’s reverberator class.

This class is derived from the CLM JCRev
function, which is based on the use of
networks of simple allpass and comb delay
filters. This class implements three series
allpass units, followed by four parallel comb
filters, and two decorrelation delay lines in
parallel at the output.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .mix (float, READ/WRITE) mix level

NRev

� CCRMA’s NRev reverberator class.

This class is derived from the CLM NRev
function, which is based on the use of
networks of simple allpass and comb delay
filters. This particular arrangement consists

The ChucK Manual� 165

=> Unit Generators

of 6 comb filters in parallel, followed by 3
allpass filters, a lowpass filter, and another
allpass in series, followed by two allpass
filters in parallel with corresponding right
and left outputs.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .mix (float, READ/WRITE) mix level

PRCRev

� Perry’s simple reverberator class.

This class is based on some of the famous
Stanford/CCRMA reverbs (NRev, KipRev), which
were based on the Chowning/Moorer/Schroeder
reverberators using networks of simple allpass
and comb delay filters. This class implements
two series allpass units and two parallel comb
filters.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .mix (float, READ/WRITE) mix level

STK - Components

Chorus

� STK chorus effect class.

This class implements a chorus effect.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

The ChucK Manual� 166

=> Unit Generators

[ctrl param]

� .modFreq (float, READ/WRITE) modulation frequency
� .modDepth (float, READ/WRITE) modulation depth
� .mix (float, READ/WRITE) effect mix

Modulate

� STK periodic/random modulator.

This class combines random and periodic
modulations to give a nice, natural human
modulation function.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .vibratoRate (float, READ/WRITE) set rate of vibrato
� .vibratoGain (float, READ/WRITE) gain for vibrato
� .randomGain (float, READ/WRITE) gain for random contribution

PitShift

� STK simple pitch shifter effect class.

This class implements a simple pitch shifter
using delay lines.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .mix (float, READ/WRITE) effect dry/wet mix level
� .shift (float, READ/WRITE) degree of pitch shifting

SubNoise

The ChucK Manual� 167

=> Unit Generators

� STK sub-sampled noise generator.

Generates a new random number every "rate" ticks
using the C rand() function. The quality of the
rand() function varies from one OS to another.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .rate (int, READ/WRITE) subsampling rate

STK - File I/O

WvIn

� STK audio data input base class.

This class provides input support for various
audio file formats. It also serves as a base
class for "realtime" streaming subclasses.

WvIn loads the contents of an audio file for
subsequent output. Linear interpolation is
used for fractional "read rates".

WvIn supports multi-channel data in interleaved
format. It is important to distinguish the
tick() methods, which return samples produced
by averaging across sample frames, from the
tickFrame() methods, which return pointers to
multi-channel sample frames. For single-channel
data, these methods return equivalent values.

Small files are completely read into local memory
during instantiation. Large files are read
incrementally from disk. The file size threshold
and the increment size values are defined in
WvIn.h.

The ChucK Manual� 168

=> Unit Generators

WvIn currently supports WAV, AIFF, SND (AU),
MAT-file (Matlab), and STK RAW file formats.
Signed integer (8-, 16-, and 32-bit) and floating-
point (32- and 64-bit) data types are supported.
Uncompressed data types are not supported. If
using MAT-files, data should be saved in an array
with each data channel filling a matrix row.

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .rate (float, READ/WRITE) playback rate
� .path (string, READ/WRITE) specifies file to be played

WaveLoop

� STK waveform oscillator class.
� see examples/dope.ck

[ctrl param]

� .freq (float, READ/WRITE) frequency of playback (loops/second)
� .addPhase (float, READ/WRITE) offset by phase
� .addPhaseOffset (float, READ/WRITE) set phase offset

WvOut

� STK audio data output base class.

This class provides output support for various
audio file formats. It also serves as a base
class for "realtime" streaming subclasses.

WvOut writes samples to an audio file. It
supports multi-channel data in interleaved
format. It is important to distinguish the
tick() methods, which output single samples

The ChucK Manual� 169

=> Unit Generators

to all channels in a sample frame, from the
tickFrame() method, which takes a pointer
to multi-channel sample frame data.

WvOut currently supports WAV, AIFF, AIFC, SND
(AU), MAT-file (Matlab), and STK RAW file
formats. Signed integer (8-, 16-, and 32-bit)
and floating- point (32- and 64-bit) data types
are supported. STK RAW files use 16-bit
integers by definition. MAT-files will always
be written as 64-bit floats. If a data type
specification does not match the specified file
type, the data type will automatically be
modified. Uncompressed data types are not
supported.

Currently, WvOut is non-interpolating and the
output rate is always Stk::sampleRate().

by Perry R. Cook and Gary P. Scavone, 1995 - 2002.

[ctrl param]

� .matFilename (string, WRITE only) open a matlab file for writing
� .sndFilename (string, WRITE only) open snd file for writing
� .wavFilename (string, WRITE only) open WAVE file for writing
� .rawFilename (string, WRITE only) open raw file for writing
� .aifFilename (string, WRITE only) open AIFF file for writing
� .closeFile () close file properly

events

Event

� event handler

[ctrl param]

� .signal() signals first waiting shred
� .broadcast() signals all shreds

The ChucK Manual� 170

=> Unit Generators

MidiIn

� MIDI receiver

extends Event [ctrl param]

� .open (int, READ/WRITE) set port to receive
� .recv (MidiMsg, READ) receives MIDI input

(see MIDI tutorial)

MidiOut

� MIDI sender

extends Event [ctrl param]

� .open (int, READ/WRITE) set port to send
� .send (MidiMsg, WRITE) sends MIDI output

(see MIDI tutorial)

MidiMsg

� MIDI data holder

[ctrl param]

� .data1 (int, READ/WRITE) first byte of data (member variable)
� .data2 (int, READ/WRITE) second byte of data (member variable)
� .data3 (int, READ/WRITE) third byte of data (member variable)

(see MIDI tutorial)

OscRecv

� Open Sound Control receiver

The ChucK Manual� 171

=> Unit Generators

[ctrl param]

� .port (int, READ/WRITE) set port to receive
� .listen () starts object listening to port
� .event (string(name), string(type), READ/WRITE) define string for event to receive

(see events tutorial)

OscSend

� Open Sound Control sender

[ctrl param]

� .setHost (string(host), int(port), READ/WRITE) set port on the host to receive
� .startMsg (string(name), string(type), READ/WRITE) define string for event to send

(see events tutorial)

OscEvent

� Open Sound Control event

extends Event [ctrl param]

� .nextMsg (int, READ) the number of messages in queue
� .getFloat (float, READ) gets float from message
� .getInt (int, READ) gets int from message

(see events tutorial)

KBHit

� ascii keyboard event

extends Event [ctrl param]

� .getchar (int, READ) ascii value
� .more (int, READ only) returns 1 if multiple keys have been pressed

The ChucK Manual� 172

=> Unit Generators

(see events tutorial)

HidIn

� HID receiver

extends Event [ctrl param]

� .openJoystick (int(which), WRITE only) open joystick number
� .openMouse (int(which), WRITE only) open mouse number
� .openKeyboard (int(which), WRITE only) open keyboard number
� .num () return joystick/mouse/keyboard number
� .recv (HidMsg, READ only) writes the next message available for this device to the argument
� .name () return device name

(see events tutorial)

HidMsg

� HID data holder

[ctrl param]

� .isAxisMotion (int, READ only) non-zero if this message corresponds to movement of a
joystick axis

� .isButtonDown (int, READ only) non-zero if this message corresponds to button down or
key down of any device type

� .isButtonUp (int, READ only) non-zero if this message corresponds to button up or key up
of any device type

� .isMouseMotion (int, READ only) non-zero if this message corresponds to motion of a
pointing device

� .isHatMotion (int, READ only) non-zero if this message corresponds to motion of a joystick
hat, point-of-view switch, or directional pad

� .which (int, READ/WRITE) HID element number (member variable)
� .axisPosition (float, READ/WRITE) position of joystick axis in the range [-1.0, 1.0] (mem-

ber variable)
� .deltaX (float, READ/WRITE) change in X axis of pointing device (member variable)
� .deltaY (float, READ/WRITE) change in Y axis of pointing device (member variable)
� .deviceNum (float, READ/WRITE) device number which produced this message (member

variable)

The ChucK Manual� 173

=> Unit Generators

� .deviceType (float, READ/WRITE) device type which produced this message (member vari-
able)

� .type (int, READ/WRITE) message/HID element type (member variable)
� .idata (int, READ/WRITE) data (member variable)
� .fdata (int, READ/WRITE) data (member variable)

(see events tutorial)

The ChucK Manual� 174

=> Unit Generators

GenX

� base class for classic MusicN lookup table unit generators
� see examples: readme-GenX.ck (examples/special/readme-GenX.ck)

Ported from rtcmix. See http://www.music.columbia.edu/cmix/makegens.html
for more information on the GenX family of UGens. Currently coefficients
past the 100th are ignored.

Lookup can either be done using the lookup() function, or by driving the
table with an input UGen, typically a Phasor. For an input signal
between [-1, 1], using the absolute value for [-1, 0], GenX will
output the table value indexed by the current input.

[ctrl param]

� .lookup - (float , READ ONLY) - returns lookup table value at index [-1, 1]; absolute
value is used in the range [-1, 0]

� .coefs - (float [] , WRITE ONLY) - set lookup table coefficients; meaning is dependent on
subclass

Gen5

� exponential line segment lookup table table generator
� see examples: Gen5-test.ck (examples/special/Gen5-test.ck)

Constructs a lookup table composed of sequential exponential curves. For
a table with N curves, starting value of y’, and value y_n for lookup
index x_n , set the coefficients to [y’, y_0 , x_0 , ..., y_N-1 , x_N-1
]. Note that there must be an odd number of coefficients. If an even
number of coefficients is specified, behavior is undefined. The sum of
x_n for 0 ? n < N must be 1. y_n = 0 is approximated as 0.000001 to
avoid strange results arising from the nature of exponential curves.

extends GenX

[ctrl param]

see GenX

The ChucK Manual� 175

=> Unit Generators

Gen7

� line segment lookup table table generator
� see examples: Gen7-test.ck (examples/special/Gen7-test.ck)

Constructs a lookup table composed of sequential line segments. For a
table with N lines, starting value of y’, and value y_n for lookup index
x_n , set the coefficients to [y’, y_0 , x_0 , ..., y_N-1 , x_N-1].
Note that there must be an odd number of coefficients. If an even number
of coefficients is specified, behavior is undefined. The sum of x_n for
0 ? n < N must be 1.

extends GenX

[ctrl param]

see GenX

Gen9

� sinusoidal lookup table with harmonic ratio, amplitude, and phase control
� see examples: Gen9-test.ck (examples/special/Gen9-test.ck)

Constructs a lookup table of partials with specified amplitudes, phases,
and harmonic ratios to the fundamental. Coefficients are specified in
triplets of [ratio, amplitude, phase] arranged in a single linear array.

extends GenX

[ctrl param]

see GenX

Gen10

� sinusoidal lookup table with partial amplitude control
� see examples: Gen10-test.ck (examples/special/Gen10-test.ck)

Constructs a lookup table of harmonic partials with specified
amplitudes. The amplitude of partial n is specified by the n^th
element of the coefficients. For example, setting coefs to [1]
will produce a sine wave.

The ChucK Manual� 176

=> Unit Generators

extends GenX

[ctrl param]

see GenX

Gen17

� chebyshev polynomial lookup table
� see examples: Gen17-test.ck (examples/special/Gen17-test.ck)

Constructs a Chebyshev polynomial wavetable with harmonic partials of
specified weights. The weight of partial n is specified by the n^th
element of the coefficients.

Primarily used for waveshaping, driven by a SinOsc instead of a Phasor.
See http://crca.ucsd.edu/~msp/techniques/v0.08/book-html/node74.html and
http://en.wikipedia.org/wiki/Distortion_synthesis for more information.

extends GenX

[ctrl param]

see GenX

CurveTable

� flexible curve/line segment table generator
� see examples: GenX-CurveTable-test.ck (examples/special/GenX-CurveTable-test.ck)

Constructs a wavetable composed of segments of variable times, values,
and curvatures. Coefficients are specified as a single linear array of
triplets of [time, value, curvature] followed by a final duple of [
time, value] to specify the final value of the table. time values are
expressed in unitless, ascending values. For curvature equal to 0, the
segment is a line; for curvature less than 0, the segment is a convex
curve; for curvature greater than 0, the segment is a concave curve.

extends GenX

[ctrl param]

see GenX

The ChucK Manual� 177

=> Unit Generators

LiSa

� live sampling utility.

LiSa provides basic live sampling functionality. An internal
buffer stores samples chucked to LiSa’s input. Segments of
this buffer can be played back, with ramping and speed/direction
control. Multiple voice facility is built in, allowing for a
single LiSa object to serve as a source for sample layering and
granular textures. by Dan Trueman (2007) see LiSa Examples
<http://wiki.cs.princeton.edu/index.php/LiSa_examples> wiki for
more, and also a slowly growing tutorial
<http://music.princeton.edu/~dan/LiSa/LiSa_tutorial.html>

[ctrl param]

� .duration - (dur , READ/WRITE) - sets buffer size; required to allocate memory, also
resets all parameter values to default

� .record - (int , READ/WRITE) - turns recording on and off
� .getVoice - (READ) - returns the voice number of the next available voice
� .maxVoices - (int , READ/WRITE) - sets the maximum number of voices allowable; 10

by default (200 is the current hardwired internal limit)
� .play - (int, WRITE) - turn on/off sample playback /(voice 0) /
� .play - (int voice, int, WRITE) - for particular voice (arg 1), turn on/off sample playback
� .rampUp - (dur, WRITE) - turn on sample playback, with ramp /(voice 0) /
� .rampUp - (int voice dur, WRITE) - for particular voice (arg 1), turn on sample playback,

with ramp
� .rampDown - (dur, WRITE) - turn off sample playback, with ramp /(voice 0) /
� .rampDown - (int voice, dur, WRITE) - for particular voice (arg 1), turn off sample

playback, with ramp
� .rate - (float, WRITE) - /set playback rate (voice 0). Note that the int/float type for this

method will determine whether the rate is being set (float, for voice 0) or read (int, for voice
number)/

� .rate - (int voice, float, WRITE) - for particular voice (arg 1),/ set playback rate/
� .rate - (READ) - /get playback rate (voice 0) /
� .rate - (int voice, READ) - for particular voice (arg 1), /get playback rate. Note that the

int/float type for this method will determine whether the rate is being set (float, for voice 0)
or read (int, for voice number) /

� .playPos - (dur, WRITE) - /set playback position (voice 0) /
� .playPos - (int voice, dur, WRITE) - for particular voice (arg 1), /set playback position/
� .recPos - (dur, READ/WRITE) - /get/set record position /

The ChucK Manual� 178

=> Unit Generators

� .recRamp - (dur , READ/WRITE) - set ramping when recording (from 0 to loopEndRec)
� .loopRec - (int, READ/WRITE) - /turn on/off loop recording /
� .loopEndRec - (dur, READ/WRITE) - /set end point in buffer for loop/ /recording /
� .loopStart - (dur , READ/WRITE) - set loop starting point for playback (voice 0). only

applicable when 1 =¿ loop.
� .loopStart - (int voice, dur , WRITE) - for particular voice (arg 1), set loop starting point

for playback. only applicable when .loop(voice, 1).
� .loopEnd - (dur , READ/WRITE) - set loop ending point for playback (voice 0). only

applicable when 1 =¿ loop.
� .loopEnd - (int voice, dur , WRITE) - for particular voice (arg 1), set loop ending point

for playback. only applicable when .loop(voice, 1).
� .loop - (int , READ/WRITE) - turn on/off looping (voice 0)
� .loop - (int voice, int, READ/WRITE) - for particular voice (arg 1), turn on/off looping
� .bi - (int , READ/WRITE) - turn on/off bidirectional playback (voice 0)
� .bi - (int voice, int , WRITE) - for particular voice (arg 1), turn on/off bidirectional playback
� .voiceGain - (float , READ/WRITE) - set playback gain (voice 0)
� .voiceGain - (int voice, float , WRITE) - for particular voice (arg 1), set gain
� .feedback - (float , READ/WRITE) - get/set feedback amount when overdubbing (loop

recording; how much to retain)
� .valueAt - (dur, READ) - /get value directly from record buffer /
� .valueAt - (sample, dur, WRITE) - /set value directly in record buffer /
� .sync - (int, READ/WRITE) - /set input mode; (0) input is recorded to internal buffer, (1)

input sets playback position [0,1] (phase value between loopStart and loopEnd for all active
voices), (2) input sets playback position, interpreted as a time value in samples (only works
with voice 0) /

� .track - (int, READ/WRITE) - /identical to sync /
� .clear - /clear recording buffer /

The ChucK Manual� 179

	Authors of ChucK
	Thank You
	ChucK Places
	Intro-ChucK-tion
	Installation
	Binary Installation
	Source Installation

	ChucK Tutorials
	A Chuck Tutorial
	Conventions
	On-the-fly-programming
	Modifying Basic Patches
	LFOs and Blackhole
	Working with MIDI
	Writing To Disk
	Stereo
	Using OSC in ChucK

	Overview
	running ChucK
	comments
	debug print
	reserved words

	Types, Values, and Variables
	primitive types
	values (literals)
	variables
	reference types
	complex types

	Arrays
	declaration
	multi-dimensional arrays
	lookup
	associative arrays
	array assignment

	Operators and Operations
	cast

	Control Structures
	if / else
	while
	until
	for
	break / continue

	Functions
	writing
	calling
	overloading

	Concurrency and Shreds
	sporking shreds (in code)
	the 'me' keyword
	using Machine.add()
	inter-shred communication

	Time and Timing
	time and duration
	operations on time and duration (arithmetic)
	the keyword `now'
	advancing time

	Events
	what they are
	use
	MIDI events
	OSC events
	creating custom events

	Objects
	introduction
	built-in classes
	working with objects
	writing a class
	members (instance data + functions)
	class constructors
	static (data + functions)
	inheritance
	Overloading

	The ChucK Compiler + Virtual Machine
	Unit Analyzers
	declaring
	connecting
	controlling (over time)
	representing metadata: the UAnaBlob
	representing complex data: the complex and polar types
	performing analysis in UAna networks
	using events
	built--in unit analyzers
	creating

	UAna objects
	On-the-fly Programming Commands
	Standard Libraries API
	Unit Generators

