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Abstract
In computer graphics, considerable research has been conducted on realistic human motion synthesis. However,
most research does not consider human emotional aspects, which often strongly affect human motion. This paper
presents a new approach for synthesizing dance performance matched to input music, based on the emotional
aspects of dance performance. Our method consists of a motion analysis, a music analysis, and a motion synthesis
based on the extracted features. In the analysis steps, motion and music feature vectors are acquired. Motion vec-
tors are derived from motion rhythm and intensity, while music vectors are derived from musical rhythm, structure,
and intensity. For synthesizing dance performance, we first find candidate motion segments whose rhythm features
are matched to those of each music segment, and then we find the motion segment set whose intensity is similar
to that of music segments. Additionally, our system supports having animators control the synthesis process by
assigning desired motion segments to the specified music segments. The experimental results indicate that our
method actually creates dance performance as if a character was listening and expressively dancing to the music.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation; J.5 [Arts and Humanities]: Performing ArtsMusic

1. Introduction

Synthesizing realistic human motion is currently one of
the most important topics in computer graphics research.
Most of the motion synthesis techniques use motion cap-
ture data and synthesize new motion whose features are
synchronized with external input signals such as trajec-
tories designed by users [KGP02], environmental obsta-
cles [LCR∗02], speech information [SDO∗04], motion of
another character [HGP04], and so on. The issue surround-
ing these techniques is what kinds of cues are used to search
the appropriate motions from the large amount of data in a
motion database. Animators need to choose suitable cues in
order to create the motion sequences they really want.

This paper proposes a new approach for synthesizing
dance motion well matched to music, and our approach uses
music signals as a cue to synthesize new motion. The goal
of this approach is a realization of a dance algorithm that
mimics human motions. The ability to dance to music is a
natural born skill for a human. Everyone has experienced
a desire to move their bodies while listening to a rhythmic
song. Hip-hop dancers can simultaneously compose a dance

motion to the musical sounds they are listening to. Although
this ability may appear amazing, actually these performers
do not create these motions, but rather combine appropriate
motion segments from their knowledge database with music
as their key to perform their unique movements. Consider-
ing this ability, we are led to believe that dance motion has
strong connections with music in the two following aspects:

• The rhythm of dance motions is synchronized to that of
music.

• The intensity of dance motions is synchronized to that of
music.

The first assumption is derived from the fact that almost all
people can recognize the rhythm of music, and they can clap
or wave their hands and dance to music. The second assump-
tion is derived from the fact that people feel quiet and relaxed
when listening to relaxing music such as a ballad, and they
feel excited when listening to intense music such as hard
rock music.

Our approach consists of three steps: a motion analysis,
a music analysis, and a motion synthesis based on the ex-
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tracted features. In the motion analysis step, we analyze
rhythm and intensity features of input dance motions, and
assign the features to each motion in a database. The anal-
ysis methods depend on recent studies about the emotional
aspects of human motions. Using these features, our system
finds the sequence of motion segments matched to input mu-
sic sequence with respect to the rhythm and the intensity
of the music. In the music analysis step, first, we analyze
a structure of input music sequence, and extract music seg-
ments based on the structure analysis results. Next, musical
rhythm and intensity features are extracted, and are assigned
to each music segment. Finally, our method automatically
synthesizes new dance motion by interpolating between the
motion segments. Additionally, our system has a user inter-
face that enables animators to control the synthesis process
by choosing desired motion segments well matched to music
segments. For example, animators can set key motions in the
motion database for desired music segments, such as setting
a jumping motion to the final scene of the song, or a punch
motion to a particular sudden sound in the music.

The remainder of this paper is organized as follows: we
first present related work on motion capture-based anima-
tion and music signal processing in Section 2. Then Sec-
tion 3 introduces a concept of our approach, which depends
on human emotional aspects. Our motion and music analysis
methods are described in Section 4 and Section 5, respec-
tively. Section 6 describes a dance motion synthesis algo-
rithm using results of analyses. In Section 7, user interfaces
of our system for designing resulting motion are shown. The
experimental results are shown in Section 8. Discussion and
conclusions are presented in Section 9 and Section 10 re-
spectively.

2. Related Work

2.1. Data-driven Character Animation

In computer graphics, research on motion capture-based
character animation has been well studied. To reuse motions
efficiently, methods to edit motion data have been proposed
using signal processing methods such as a filter bank or dy-
namic programming [BW95], or warping the motion to sat-
isfy a given time and position [WP95]. Some researchers
have proposed a retargeting method, in which motion cap-
ture data are transferred to new characters while retaining
important constraints [Gle98, LS99].

Recently many researchers have focused on using a mo-
tion database. One of the representative methods is Mo-
tion Graph, which is constructed by connecting motion cap-
ture data and tracing a motion graph to synthesize new mo-
tions depending on the users’ input such as path or environ-
mental obstacles [KGP02, PB02, AF02, LCR∗02, LWS02].
Motion databases also enable learning of motion patterns
for extracting style components [BH00, GMHP04, HPP05],
to make path planning easier while considering geometric,
kinematic, and posture constraints [YKH04].

Stone et al. [SDO∗04] proposed a method whose ap-
proach is quite similar to ours in that input sound signals
are considered. The purpose of their method is to synthe-
size utterance performance by extracting emphasis features
of motion and speech data and synchronizing them. How-
ever, their feature extraction needs many manual processes,
and is accordingly a very time-consuming system for syn-
thesizing new utterance motions.

Kim et al. [KPS03] proposed a rhythmic motion synthesis
method using the results of motion rhythm analysis. But us-
ing their method, music data needs to have a rhythm interval
that is similar to that of the resulting motion, and it is quite
difficult to apply this method with various kinds of music
data.

Müller et al. [MRC05] proposed a motion-retrieval
method based on motion contents, which is a similar ap-
proach to ours. However, the motion contents considered in
our approach are defined based on human emotional aspects,
while those in their method were defined based on specified
joint position/angle.

2.2. Auditory Scene Analysis

Computational analysis methods for a music scene are im-
portant for understanding how humans recognize musi-
cal features, and are called Computational Auditory Scene
Analysis. [Bre90,CB93]. In particular, for dance motion syn-
thesis, we believe that rhythm features, rhythm structure, and
musical intensity are very important.

Most humans have an ability to recognize rhythm and
rhythm structure. When people hear music, they tap their
feet, wave their hands in time with the music, and discover
the ability to dance to the music even if they are children
or beginners. Many researchers are working on the rhythm
tracking method considering these abilities.

In the case of MIDI signals, parameters of various mu-
sical features such as onset, pitch, and volume are easily
obtained and the most useful in rhythm tracking [DH89,
Ros92]. However, it is quite difficult to extract most of these
musical features from audio signals, and considerable re-
search has been done on rhythm tracking for audio signals.
Most of the rhythm tracking methods for audio signals are
based on the knowledge of the onset component [Tod94,
LZ03]. Goto [Got01] proposed a real-time rhythm tracking
method based on not only the onset component, but also
chord changes and drum sounds for rhythm structure anal-
ysis. Scheirer [Sch98] proposed an offline rhythm tracking
method for music that signifies rhythm changes by notations
such as accel. and rit. There are methods that can predict the
musical rhythm by using kalman filtering [CKDH01] and
bayesian network [SMS05, NT04].

Most musical songs have repeating patterns and promi-
nent structure, and musical structure analysis methods have
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been used to accomplish applications such as music sum-
marization. In general, repeating patterns are considered as
melody similarity. In order to extract the melody similar-
ity, musical intensity features that are extracted from spec-
tral components [LC00,WLZ04,SXWS04] or amplitude en-
velopes [LZ03] are used.

3. Concept of Our Method

Our approach uses musical information as a cue to retrieve
motion segments from a motion capture database. We start
by discussing a human perceptional model based on the re-
lationship between human motions and music. To define this
music and motion relationship model, previous studies of
human dance motion analysis are of great help.

Laban, who is famous for his novel dance description
method called “Labanotation,” is a pioneer in the study of
this issue. He has studied human emotional aspects of body
movements [LU60]. According to his theory, the emotion
of human motion comes from motion features consisting of
“effort” and “shape” components. The effort component is
defined as the movements of body portions, and the shape
component is defined as the shape of elements he calls “key-
poses.” More recently, Nakata et al. [NMS02] have tested
the validity of Laban’s theory by using their small robot and
user studies. Although they could not find a significant re-
lationship between the shape component and any emotions,
they found that the “weight effort” component, one of the
effort components, is closely related to the excitement of the
motion. Laban defined the weight effort component as the
strength of movement, and Nakata considered them physi-
cally as the linear sum of rotation velocity of each body joint.
We use these metrics to define the motion intensity compo-
nent FMotion

I .

Additionaly, we have developed a method that ana-
lyzes the relationship between stop motions and musical
rhythm, and the results indicate that musical rhythm has a
strong connection with motion elements called “motion key-
poses” [SNI04]. Accordingly, our motion analysis method
extracts the local minimums of the weight effort component
in order to extract the motion rhythm feature FMotion

R . A mo-
tion feature vector for each frame is obtained via the motion
feature analysis:

MotionFeature( f ) =
[

FMotion
R ( f )

FMotion
I ( f )

]
. (1)

The next issue is to extract musical features. We believe
that there are three important musical features for dance per-
formance. One is musical rhythm. As everyone has expe-
rienced, there is a very close relationship between musical
rhythm and motion rhythm. We consider musical knowl-
edge about what is called “the onset component” to estimate
musical rhythm FMusic

R . Another important factor is music
structure, which consists of several musical phrases. Both

musical players and dancers try to keep the structure from
being violated during their performances. We extract repeat-
ing patterns to detect the musical structure, and obtain mu-
sic segments from the music sequence. The other important
component is music intensity. People feel various emotions
depending on musical mood, and the same is true for dance
performance. For musical mood analysis, we mainly focus
on music intensity, one of the effective factors for musical
mood. We extract the music intensity component FMusic

I us-
ing the energy of the melody line. Accordingly, a music fea-
ture vector for each music segment M is obtained:

MusicFeature( f ;M) =
[

FMusic
R ( f ;M)

FMusic
I ( f ;M)

]
. (2)

Our motion synthesis step extracts the most appropriate
motion segment sequence by evaluating motion and music
features. First, we detect candidate motion segments for each
music segment by using rhythm features. Then, connections
between neighboring motion segments are analyzed, and
motion segment sequences that look like natural motions are
obtained. Finally, the best motion sequence is selected and
interpolated from the remaining motion sequences by evalu-
ating the similarity between the motion and music intensity
components.

4. Motion Feature Analysis

As described in Section 3, our motion analysis method
strongly relies on Laban’s weight effort component. In this
section, we describe our definition of the weight effort com-
ponent and how to extract the motion features.

4.1. Human Model

We first convert motion capture data into our simple human
body model. Figure 1 illustrates our human model. In our
model, a human pose at each frame is converted into a body
center coordinate, in which we set the origin t to the waist
position in the global coordinate, x-coordinate rx to the di-
rection from left to the right thigh, y-coordinate ry to the
forward direction of the body, and z-coordinate rz to a verti-
cal upper direction. The length of each coordinate vector is
set to 1. vn is a unit vector representing the direction of the
n-th body link in the coordinate {R, t}, and ln represents the
length of the n-th body link.

4.2. Weight Effort

According to Laban’s definition, the weight effort compo-
nent represents the strength of motion. Thus, we define the
weight effort component W as the linear sum of approxi-
mated instantaneous momentum magnitude calculated from
the link and body directions:

W ( f ) = ∑i αi arccos( v̇i( f )
|v̇i( f )| ·

v̇i( f+1)
|v̇i( f+1)| )

+∑ j∈{x,y,z} arccos( ṙ j( f )
|ṙ j( f )| ·

ṙ j( f+1)
|ṙ j( f+1)| ), (3)
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Figure 1: Our human body model. The shape and pose are
described by the base matrix {R, t} and the 17 vectors vn.
The lengths of the body links are given by ln. Our method
converts the pose at each frame into this coordinate.

where αi is a regularization parameter for the i-th link. These
regularization parameters depend on which parts we recog-
nize as important for dance expression. For example, if we
recognize the hands and feet as important, α corrsponding to
them will be greater than those corresponding to other parts.

4.3. Motion Rhythm Feature

Considering the characteristics of the weight effort compo-
nent, the local minimums of this component indicate stop
motions, which are impressive instances for dance perfor-
mance. We recognize these local minimums as motion “key-
poses,” and define the motion rhythm features FMotion

R as fol-
lows:

FMotion
R ( f ) =

{
1 if W ( f ) is around the local minimum
0 otherwise

.

(4)

4.4. Motion Intensity Feature

It was validated that motion intensity is related to momen-
tum and forward translation. We obtain instant motion inten-
sity I from the momentum W and the speed of the forward
direction ry · ṫ:

I( f ) = W ( f ) · (1.0+ k · ry( f ) · ṫ( f )), (5)

where k is a regularization parameter between the weight
effort and the speed. Finally, we calculate the average of the
instant motion intensity from the previous motion keypose
f R
i to the next one f R

i+1, and set it to the motion intensity:

FMotion
I ( f ) =

f R
i+1

∑
i= f R

i

I(i)
f R
i+1 − f R

i +1
. (6)

5. Music Feature Analysis

When people listen or dance to music, they extract some mu-
sical features from an audio signal. The important features

Figure 2: The motion feature vector of an example motion.
Motion rhythm and intensity components are obtained from
“weight effort” of body movement. Motion rhythm compo-
nent is the local minimums of the weight effort component
(dashed lines), and motion intensity comes from the average
of weight effort and forward translation of the body within
the neighboring motion rhythm frame.

for dance performance are music structure, rhythm, and in-
tensity. In this section, we describe how to acquire the music
segments and to extract the musical rhythm and intensity.

5.1. Constant Q Transform

Music is different from speech in that music consists of a se-
quence of notes whose frequencies are already defined. Ide-
ally, it is most appropriate for extraction of musical features
that music signals are converted into a note sequence. But
most of the frequency component extraction methods such
as Fourier transform do not consider this musical aspect. In
order to extract frequency components representing music
notes more accurately, we use constant Q transform (CQT)
proposed by Brown et al. [Bro90]. The CQT method sets the
bank of filters whose center frequencies represent musical
notes, and enables extraction of the spectral energy of each
note.

In our approach, we extract the spectral energies of the 37
semi-tones (over three octaves from the C3 note to the C6
note) from audio signal x(n) as follows:

X(k) =
1

Nk

Nk−1

∑
n=0

x(n)exp(− j
2πQn

Nk
), (7)

where j represents
√−1, X(k) represents the spectral power

of the k-th note, Nk is the window size, and n represents the
sampled frame. According to music theory, the frequency of
the k-th note is calculated as

fk = f0 ·2k/Noctave , (8)

where f0 is the minimal frequency that we are interested in
for analysis and is set to 130.8 Hz, the pitch of the C3 note,
and Noctave denotes the number of semi-tones in one octave
and is typically set to 12. Q is a constant ratio of frequency
to resolution:

Q = fk/( fk+1 − fk) = 1/(21/Noctave −1), (9)
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Figure 3: An example of fundamental tone and its overtones.
When a sound ‘A’ whose frequency is around 110Hz is pro-
duced, its overtones, whose frequencies are integral multi-
ples of the fundamental tone, are also produced.

and accordingly the window size Nk is set as:

Nk = � fsQ/ fk�, (10)

where fs represents the sampling rate of the input audio sig-
nal. Our method uses the hamming window function, and
shifts it by some interval, and then calculates the CQT com-
ponent until the window reaches the end of the music, like
the short-time FFT calculation. In the following section,
X(t,k) denotes the spectral power of k-th note at t-th tem-
poral frame.

5.2. Music Segment Retrieval

With respect to musical structure, we use the following
knowledge:

Knowledge1 Music structure consists of the repetition of
several phrases.

The goal of this analysis is to extract the patterns of the re-
peating phrases and to segment the music by the extracted
repeating patterns.

Some phrases may be repeated, performed by the differ-
ent instruments (e.g., one phrase is performed by a vocalist,
and the repeat is performed by the guitar). However, peo-
ple can easily recognize that they are the same phrases, and
therefore the structure analysis method should depend on the
sequence of the notes, but not be affected by the timbre of the
instruments.

Figure 3 shows a mechanism of timbre. The timbre of ev-
ery instrument has a basic characteristic that it always con-
sists of a fundamental tone and its overtones, whose frequen-
cies are integral multiples of the fundamental frequency, but
the energies of the overtones differ from one instrument to
another. That is, it is difficult to extract accurate repeating
patterns directly in the frequency domain.

In order to find the repeating patterns, we use CQT fea-
ture vectors, and evaluate them with a structure-based simi-
larity measurement that is independent of the timbre effects

proposed by Lie et al. [WLZ04]. First, we calculate the auto-
correlation of the elements of difference vector:

ri j(m) =
N−m−1

∑
n=0

Δvi j(n+m) ·Δvi j(n), (11)

where Δvi j(n) is the absolute difference of the n-th CQT
feature vector element between the i-th and j-th temporal
frames:

Δvi j(n) = |X(i,n)−X( j,n)|, (12)

and N is the number of the elements of CQT feature vectors.
If the CQT feature vectors contain the same pitch sound, the
peaks of ri j(m) will have harmonic intervals that are based
on the characteristics of the overtones, and if not, the peaks
will appear without this interval. In detail, if the vectors con-
tain the same pitch, the peak of ri j(m) will strongly appear
at m = 0,12,19,24,29 etc., which represent the fundamen-
tal frequency fb and its integral multiples 2 fb,3 fb,4 fb,5 fb.
This characteristic is modeled as the spiral array [Che01],
and the elements of the weighting vector w(m) for r(i, j) =
[ri j(0),ri j(1), · · · ,ri j(N)]T are represented as

w(m) =
1
A
|p(7m mod 12)−p(0)|, (13)

where A is a normalization factor to satisfy ∑m w(m) = 1,
and

p(m) = [sin
mπ
2

,cos
mπ
2

,
mπ
2

]T . (14)

Accordingly, the distance D between two CQT feature vec-
tors is considered the neighboring frames and evaluated as
follows:

D(i, j) =
1

2Nr

Nr−1

∑
k=−Nr

w · r(i+ k, j + k), (15)

where w represents the weighting vector, and 2Nr is the
range for the distance calculation.

Once the distance function is defined, we can get the sim-
ilarity matrix S whose elements are the similarity measure-
ments 1/D(i, j), and then convert it to time-lag matrix T:

Ti j = Si,i+ j =
1

D(i, i+ j)
. (16)

Figure 4 shows examples of these matrices. In this figure,
the brighter regions show the greater similarity, and sev-
eral white horizontal lines appear clearly in the time-lag ma-
trix. These lines denote the repeating patterns. By extracting
them, we can acquire the repeating phrases, and analyze the
structure of the input music. In detail, erosion and dilation
operators that are often used in image processing are applied
to make the lines more clear, and then the lines can be ex-
tracted with a thresholding process. Finally, music segments
are extracted by dividing the music sequence at the bound-
aries of resulting repeating phrases. The other musical fea-
tures are extracted and assigned to each music segment.
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(a) (b) (c) (d)

Figure 4: An example of repeating pattern analysis steps.
(a) Similarity matrix, (b) time-lag matrix, (c) time-lag ma-
trix after erosion and dilation operations, and (d) result of
repeating phrases extraction.

5.3. Music Rhythm Feature

To extract the musical rhythm, we use the following knowl-
edge:

Knowledge2 A sound is likely to be produced with the tim-
ing of the rhythm.

Knowledge3 The interval of the onset component is likely
to be equal to that of the rhythm.

So we consider the onset component for estimating the musi-
cal rhythm. Figure 5 illustrates the onset component extrac-
tion. First, using Knowledge2, we calculate the onset com-
ponent of the k-th note, which is the power increase from the
previous temporal frame t −1 defined as d(t,k) [Got01].

d(t,k) =

⎧⎨
⎩

max(X(t,k),X(t +1,k))−PrevPow
(min(X(t,k),X(t +1,k)) ≥ PrevPow),

0 (otherwise)
(17)

where

PrevPow = max(X(t −1,k),X(t −1,k±1)). (18)

By calculating total onset component D(t) = ∑k d(t,k), we
can determine the total intensity of the sounds produced at
the t-th temporal frame.

Using Knowledge3, we calculate the auto-correlation
function of D(t) to estimate the average rhythm interval.
Then, the starting time is estimated by calculating the cross-
correlation function between D(t) and pulse sequence whose
interval is the estimated rhythm interval. However, in prac-
tice, a rhythm interval may change slightly due to the
performers’ sensibilities, etc., and errors caused by these
changes make rhythm tracking impossible. So, considering
Knowledge2 again, our method tracks the local maximum
around the estimated rhythm. The musical rhythm feature
FMusic

R is defined as follows:

FMusic
R ( f ;M) =

{
1 if f in M is estimated rhythm time
0 otherwise

.

(19)

5.4. Music Intensity Feature

To extract music intensity, we use the following knowledge:

Figure 5: An illustration of onset component extraction.
First, the maximum among X(t−1,k) and X(t−1,k±1) de-
scribed as PrevPow, and the minimum between X(t,k) and
X(t,k+1) described as CurPow are extracted. Then, the dif-
ference between CurPow and PrevPow is calculated. If the
difference is larger than 0, d(t,k) is the difference; other-
wise, d(t,k) is 0.

Knowledge4 The spectral power of a melody line is likely
to increase during increasing intensity in the music.

Knowledge5 A melody line is likely to be performed using
a higher range than the C4 note.

Many surveys on auditory psychology [Roa96] say that
our ears tend to recognize only the sound whose spectral
power is the strongest among the neighboring frequency
sounds, which is often used in many audio signal compres-
sion algorithms such as MP3. Accordingly, a temporally av-
erage spectral power X̄ of k-th note within a music segment
M is calculated to figure out which note sounds are pro-
duced in the music segment:

X̄(M,k) =
1

|M| ∑
t∈M

X(t,k), (20)

where |M| denotes the number of the CQT feature vec-
tors in M, and then the local peaks Xpeak of each average
CQT feature vectors are picked up: Xpeak(τ,k) = X̄(M,k)
if X̄(M,k) > X̄(M,k± 1), otherwise Xpeak(M,k) = 0. In

order to extract music intensity feature FMusic
I , we approxi-

mately calculate the Sound Pressure Level, which considers
the humans’ auditory properties and is related to both the
amplitude and the frequency:

FMusic
I ( f ;M) = log10( ∑

k∈[C4,C6]
Xpeak(M,k)2 · f 2

k ). (21)

6. Motion Synthesis Considering Motion and Music
Features

The final step of our approach is to synthesize new dance
motions considering both the motion and music feature vec-
tors. The main purpose and problem of this step are to select
the motion segment set from the motion database with as low
a loss of correlation as possible. In order to achieve this, we
perform three steps to synthesize a new dance motion. Fig-
ure 6 gives an overview of our motion synthesis algorithm.
First, we evaluate the similarity of the rhythm components,
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Figure 6: Overview of our motion synthesis algorithm. For
each music segment, candidate motion segments are ob-
tained from a motion-capture database by evaluating the
similarity with music rhythm components. Then, all possible
motion segment sequences can be acquired by connectivity
analysis between neighboring motion segments. Finally, we
evaluate the similarity of the intensity components between
the motion segments and the music segments.

and detect the candidate motion segments strongly corre-
sponding to each music segment. Then, we apply connec-
tivity analysis, which checks if synthesized transition motion
between the neighboring motion segments looks natural, and
extract the possible sequences of motion segments. Finally,
we analyze the similarity of their intensity components be-
tween the music segments and the selected motion segment
sequences, and synthesize new dance motions by connecting
the motion segments with each other.

6.1. Similarity Measurement of Rhythm Components

This step extracts the candidate motion segments from ev-
ery input motion sequence, considering motion and music
rhythm components. To include more detail, we focus on
one input motion sequence whose length is Lmotion and a
music segment M whose length is Lmusic. In our method,
we allow a slight stretching of the duration of the input mo-
tion sequence. Thus, on the similarity measurement of their
rhythm components, we consider not only the rhythm com-
ponents but the scaling parameter s ∈ [0.9 1.1] and the off-
set parameter fo, which represents the frame from which a
motion segment starts. We extract the scaling parameter ŝ,
which maximizes the similarity measurement

ŝ = arg max
s

Lmusic

∑
f=0

FMusic
R ( f ;M) ·FMotion

R (s · f + fo)
FMusic

R ( f ;M)+FMotion
R (s · f + fo)

(22)

for each fo ∈ [0, Lmotion −Lmusic].

We extract all possible sets of (s, fo) for each input of mo-
tion sequence, and apply a simple thresholding process to
the parameter sets. Using the remaining parameters, we can
extract candidate motion segments for each music segment.

6.2. Connectivity Analysis of Motion Segments

Whether or not synthesized motion looks natural strongly
depends on connectivity analysis. In this step, we consider
both the posture similarity Spose and movement similarity
Smove. Posture similarity Spose between the iA-th frame of
the motion segment A and the jB-th frame of the motion
segment B is defined as the angular similarity of the link
direction vectors:

Spose(iA, jB) = ∑
l

βl ·vl(i
A) ·vl( jB), (23)

where βl is a regularization factor for the l-th link. With
regard to movement similarity Smove, we use velocity vec-
tors in homogeneous coordinates, since the angular distance
measure of their unit vectors in the homogeneous coordi-
nates account for the differences in both direction and mag-
nitude. Specifically, movement similarity Smove is calculated
as follows:

Smove(iA, jB) = ∏l g[h(vl( jB)−vl(i
A)) ·h(v̇l(i

A))]

· g[h(vl( jB)−vl(i
A)) ·h(v̇l( jB))],(24)

where g[x] denotes x if x ≥ 0, otherwise 0, and v̇ is calculated
from the original input motion sequence, not the candidate
motion segment. Through h, an input 3D vector (x,y,z)T is
converted to the 4D unit vector (x,y,z,1)T /|x,y,z,1|. That is,
Eq. 24 evaluates the similarity of the directions between the
original movement in the input motion sequence and the mo-
tion to be synthesized. Finally, connectivity is analyzed from
both Spose and Smove between the end frame of one motion
segment and the beginning frame of the neighboring motion
segments. From the results of the connectivity evaluation,
we obtain the candidate sequences of the motion segments
that satisfy the requirements for similarity with the rhythm
features and naturalness of the synthesized motion.

6.3. Similarity Measurement of Intensity Components

Next, we evaluate the intensity components of the candidate
sequences of the motion segments and input music. In order
to find the globally optimal solution, we consider the time
series of the intensity features as a histogram, and the Bhat-
tacharyya coefficient [Kai67] is considered to relatively eval-
uate the similarity between the motion and music intensity
histograms. Hence, we finally obtain the motion segment se-
quence D̂ that maximizes the Bhattacharyya coefficient:

D̂ = arg max
D∈CS∑

j

√
FMusic

I ( j)

∑k FMusic
I (k)

· FMotion
I ( j)

∑k∈D FMotion
I (k)

, (25)

where CS represents the candidate sequences of the motion
segments after the analyses of rhythm similarity and connec-
tivity.
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Figure 7: Our user interface for designing motion. A user
can confirm the music and motion segments by selecting and
double-clicking an item out of the lists in which the music
segments and their corresponding motion segments are dis-
played from left to center, respectively. The process of de-
signing motion is just assigning the desired motion segment
to the music segment. The resulting motion is displayed in
the top-right window.

6.4. Transition Motion Generation

The resulting motion sequence is acquired by connecting the
best matched motion segment sequence. For posture, we use
a spline function considering the first and second order dif-
ferential to interpolate the motion segments. For the position
of a character, we pay attention to the position and posture
relative to the ground in order to avoid effects such as sliding
or being stuck in one position.

7. Interface for Designing Dance Motions

Our method can synthesize new dance performances well
matched to input music. However, the resulting motion se-
quence does not reflect the animators’ design. For example,
some animators may want a character to jump when vocal
input music says, “Jump!”

Our system supports the designs animators often have.
Figure 7 shows our interface that enables animators to design
motions. The left list shows the music segment sequence,
and the central list shows the extracted motion segments cor-
responding to the currently assigned music segment. A user
can confirm the music segments and the motion segments by
selecting and double-clicking an item out of the lists. Using
our system, the desired motion segment can be assigned to
the music segment as animators want. It is conceivable that
there are no candidate sets of the motion segments that sat-
isfy the assigned design. If so, our system re-evaluates the
motion and music features under this constraint.

8. Experiments

We have experimented in our proposed method with our
motion database consisting of break dance, Indian dance,
and simple dance motion, which are all downloaded from

Table 1: Results of Rhythm Tracking

Title (Genre) Rhythm [sec] ([bpm])

Again (pops) 0.459 (131)
Tonite (pops) 0.476 (126)

Carmen Suite (classic) 0.417 (144)
Nutcracker Suite (classic) 0.714 (84)

the CMU Motion Capture Database. They were all captured
with an optical motion-capture system produced by Vicon,
and their sampling rate is 120Hz. The length of music data
used for our experiments was about 60 seconds, and the sam-
pling was 16bit stereo at 44kHz.

Results of Music Analysis We first show the results of
the music feature analysis. We applied the rhythm tracking
method to 13 music data sets that contain classical music,
rock, jazz, and so on. Ten out of them correctly tracked the
rhythm. The accompanying music data show that our rhythm
tracking method can estimate music rhythm correctly. Ta-
ble 1 shows a part of the successful rhythm tracking results.
Additionally, the music intensity analysis was also success-
ful. However, the structure analysis sometimes failed, espe-
cially when it was applied to jazz music. This is because
jazz music often contains ad-lib whose melody lines rarely
repeat.

Results of Dance Performance Synthesis Figure 8 shows
the synthesized motion for popular music “Again.” The ac-
companying video shows that the rhythm and intensity of
the resulting motion are well matched to those of the input
music.

Figure 9 shows another synthesized motion for popular
music “Tonite.” The accomponying video also shows that
our method works well. Figure 10 shows the features of the
synthesized motion and the input music. In this figure, the
yellow line and the light blue line show the motion rhythm
component and the music rhythm component respectively,
and the blue line and the red line are the intensity histograms
of motion and music segments. We can easily confirm that
most of the musical rhythm is matched to the motion rhythm,
and the distributions of the intensity components are quite
similar.

Computational Cost The synthesis step takes much longer
than the other analysis steps. Especially, the connectivity
analysis between neighboring candidate motion segments is
the most time-consuming process, because all possible sets
of the neighboring segments are checked. In the case of us-
ing the music Again, it takes around 10 minutes to synthesize
motion from input music data one minute long and around
27 motion data sets (about 520 sec in total) with Pentium-4
2.8GHz PC.
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Figure 8: The synthesis result for music “Again.”

9. Discussion

Our algorithm can synthesize new dance motion consider-
ing musical and motion rhythms, and musical and motion
intensities. This is based on two ideas: 1. motion rhythm is
correlated with musical rhythm, and 2. music intensity and
motion intensity have a direct correlation. Our contribution
is, with regard to CG animation, to automatically synthe-
size motion that synchronizes input music signals, and to
take motion expressions extracted from Laban’s weight ef-
fort component into consideration. With regard to artificial
intelligence, we have been able to imitate the simple models
of human emotional aspects and the human ability to recog-
nize music features for dance performance while listening to
music.

We believe that it is possible to introduce other features
for matching, such as relationships between a music chord
or key (major/minor) and mood of motion, or a category of
music and its appropriate expression in dance. For example,
people tend to feel gloomy when listening to music in a mi-
nor key, and happier when listening to music in a major key.
To improve our approach, music psychology could be incor-
porated. Additionally, motion expressions, which have not
been well studied in CG animation, are also important fac-
tors. As future work, we will develop a motion expressions
analysis method, and introduce them into our method with
corresponding music psychology.

Additionally, we are now developing another application
to synthesize dance motions in real time: a character com-
poses new dance motion while listening to music. The pur-
pose of this application is to imitate the ability of ad-lib
dance which all people, and particularly children, have. This
application will also enable a humanoid robot to dance to
music as an entertainment robot.

10. Conclusion

This paper presented a method for synthesizing new motion
synchronized to music. Our idea is to consider the musical
rhythm and intensity components to be matched to motion
rhythm and intensity components. This is an imitation of a
dancer’s skill in performing motions as they listen to mu-
sic. Our method can automatically retrieve music features

Figure 9: The synthesis result for music “Tonite.”

from input music signals and motion features from motion
sequence, and synthesize new dance motions whose features
are closely matched to those of the music. We have presented
results from which we can confirm that our method can syn-
thesize expressive dance performance.
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