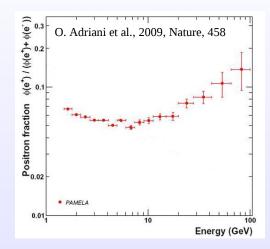


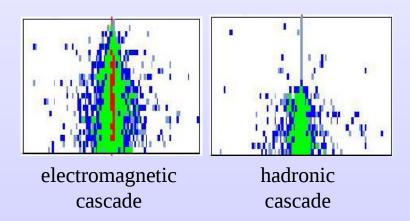
Studies of positron identification with the PAMELA calorimeter

Laura Rossetto

Licentiate seminar, November 10th 2010, Stockholm

1

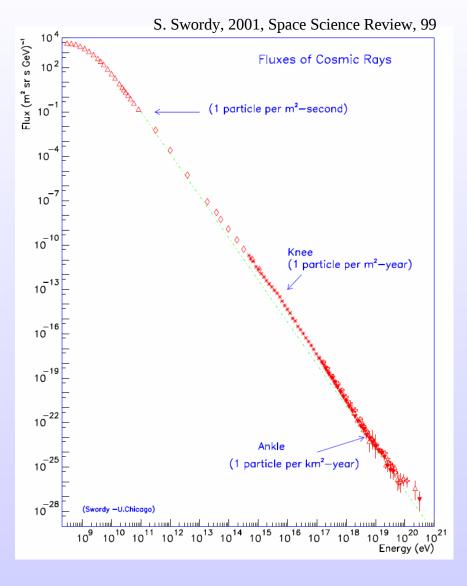



Basic concepts of cosmic rays

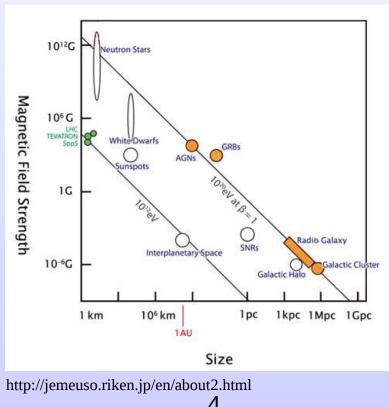
- \rightarrow acceleration and propagation mechanisms
- \rightarrow solar modulation
- → cosmic ray positrons and the PAMELA positron fraction

The PAMELA experiment → description of the components

- Shower development in the PAMELA calorimeter
 - → description of electromagnetic and hadronic shower development inside the calorimeter
 - $\rightarrow \pi^0$ contamination of hadronic showers
- Simulation studies of π^0 contamination
 - → the "Nature analysis" approach applied to simulations
 - \rightarrow a new approach for positron identification

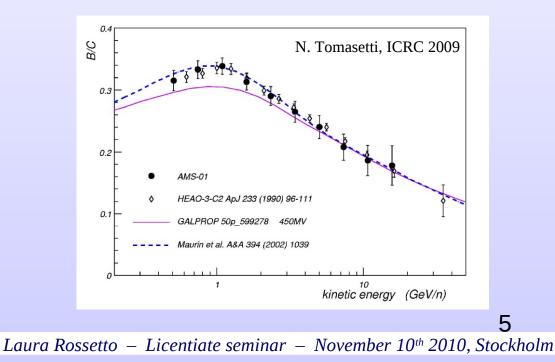



- Cosmic rays:
 ~ 98% protons and nuclei
 ~ 2% electrons
- all particle energy spectrum follows a power-law distribution $E^{-\alpha}$
 - \rightarrow for E > 10⁹ eV, α = 2.7
 - \rightarrow knee at E ~ 3 · 10¹⁵ eV, α = 3.1
 - → ankle at $E \sim 10^{18}$ eV, $\alpha = 2.7$
- for E ≤ 10 GeV
 → solar modulation effect
- **primary** elements are accelerated in sources of high energy particles
- **secondary** elements are produced by spallation processes


Acceleration mechanisms

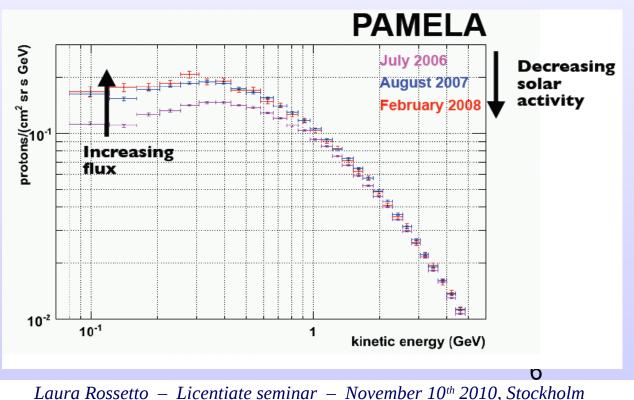
- First order Fermi acceleration (1949) \rightarrow < $\Delta E / E > = (2 / 3) \cdot (V / c)$
 - → acceleration in strong shock waves, e.g. **supernovae explosions**
 - \rightarrow a power-law energy spectrum is obtained
 - → acceleration phase ~ 10^5 years → upper limit E ~ 10^{14} eV
 - \rightarrow acceleration to higher energies \rightarrow pulsar magnetosphere, AGN, GRB...

Crab nebula



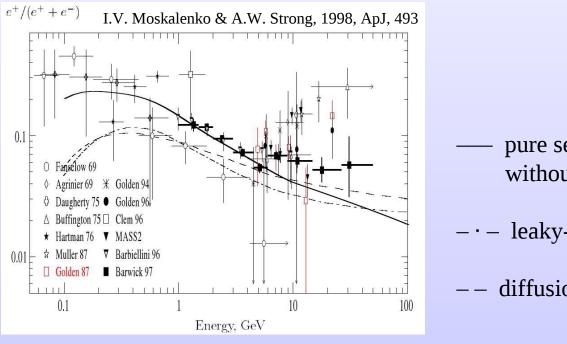
Propagation mechanisms

- Cosmic rays propagate through the interstellar medium losing energy
- the processes which participate in the particles transportation are
 - \rightarrow **diffusion**: it depends upon the particle density and the diffusion coefficient
 - → **convection**: galactic winds of charged particles
 - → reacceleration: inhomogeneities in the galactic magnetic field (Alfvén velocity)



Solar modulation

- Energy spectra of cosmic rays with E < 10 GeV are modified by the solar wind
- the intensity of the solar activity is periodic with a **11-year cycle**
- at each maximum the polarity of the solar magnetic field reverses
 - \rightarrow 22-year cycle
- at the solar maximum \rightarrow the flux of low energy particles is minimum

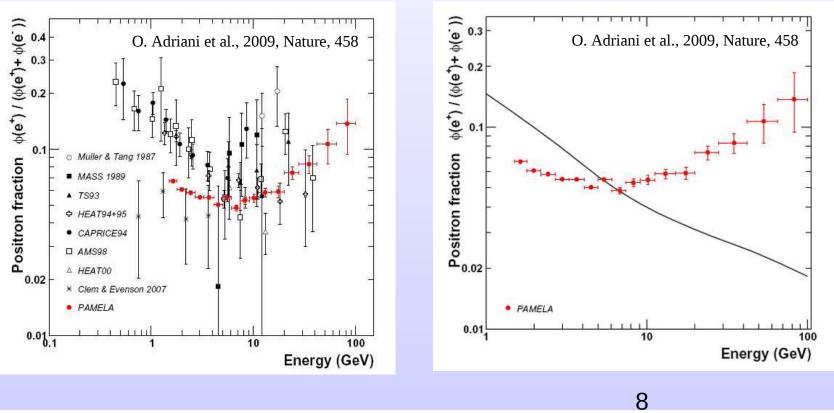


Cosmic ray positrons

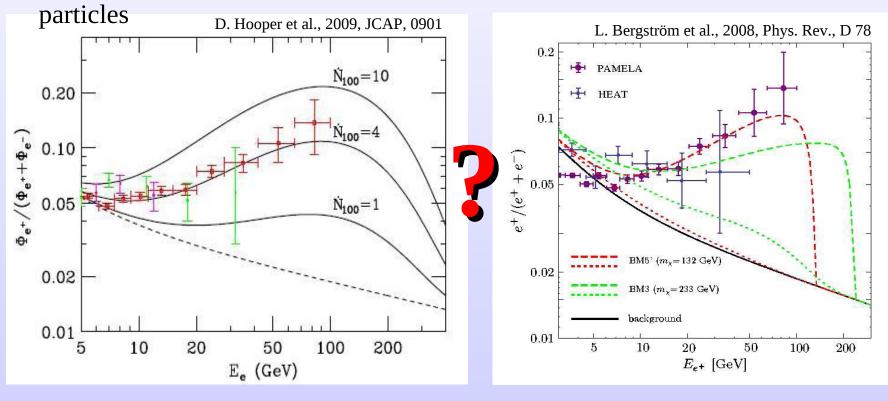
- electrons account for ~ 2% of the cosmic ray particles
- proton-to-positron flux ratio is $\sim 10^4$ at 100 GV
 - \rightarrow positrons can probe acceleration and propagation mechanisms in a galactic region of ~ 1 kpc (synchrotron radiation, inverse Compton scattering)
- positrons are believed to be mainly secondary particles: $p + p \rightarrow \pi^{\pm}$, K^{\pm}

 $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} \rightarrow e^{\pm} + \nu_{e}$ $K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$, $\pi^{0} + \pi^{\pm}$

- pure secondary production without reacceleration
- leaky-box model
- diffusion model

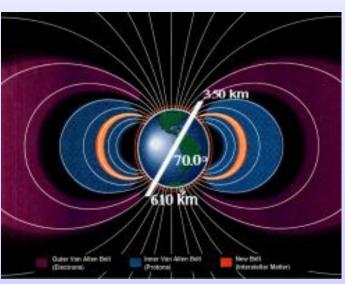

Laura Rossetto – Licentiate seminar – November 10th 2010, Stockholm

PAMELA positron fraction

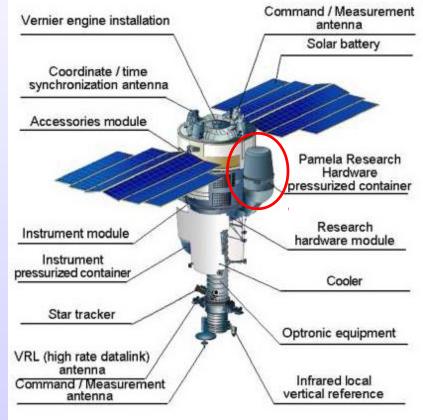

- Positron fraction measured between **1.5** and **100 GeV**
- result based on the data collected between July 2006 and February 2008
 - \rightarrow ~ 10⁹ triggers, total acquisition time of ~ 500 days
- published in the journal Nature \rightarrow widely discussed, more than 600 citations!

PAMELA positron fraction

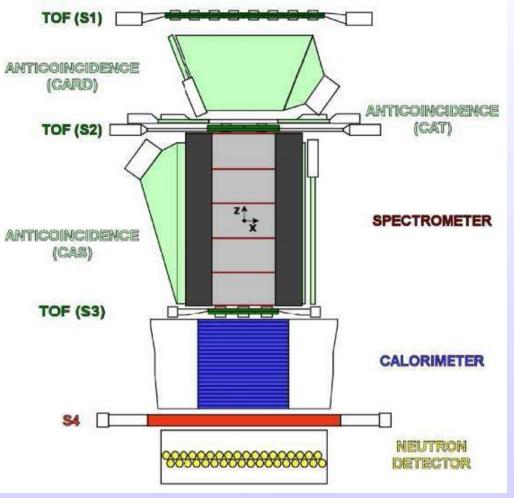
- Widely discussed \rightarrow what is the reason to the rise at high energies?
- Possible answers:
 - \rightarrow pulsar magnetosphere could be source of primary cosmic ray positrons
 - \rightarrow primary positrons could be produced via annihilation of dark matter



Laura Rossetto – Licentiate seminar – November 10th 2010, Stockholm

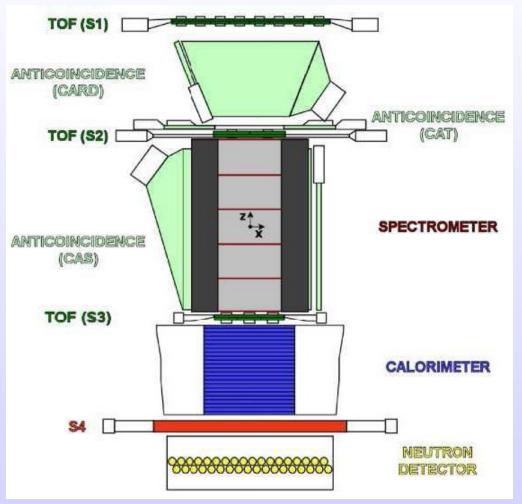


- PAMELA is mounted on board of the Russian Resurs DK1 satellite
- the satellite was launched from the Baikonur cosmodrome in Kazakhstan on
 June 15th 2006
 Command / Measuren
 - \rightarrow elliptical and semi-polar orbit
 - \rightarrow altitude between 350 600 km
 - \rightarrow inclination angle of 70°


http://pamela.roma2.infn.it

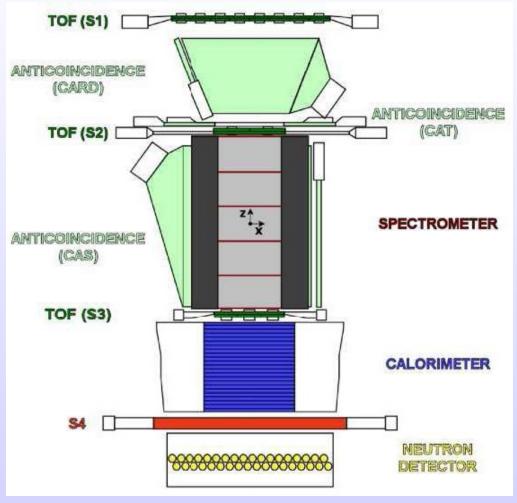
10

P. Picozza et al., 2007, Astrop. Phys., 27



- height of $\sim 1.3 \text{ m}$
- mass of 470 kg
- power consuption of 355 W
- time-of-flight system
- magnetic spectrometer
- electromagnetic calorimeter
- neutron detector
- anticoincidence system
- geometrical acceptance 21.5 cm² sr
 - → determined by the geometry of the spectrometer cavity

P. Picozza et al., 2007, Astrop. Phys., 27


- time-of-flight system
 - \rightarrow 3 scintillator layers
 - \rightarrow dE/dx, charge z
 - \rightarrow flight time, velocity β
 - → time resolution ~ 250 ps lepton – hadron separation up to ~ 1 GeV/c
- magnetic spectrometer
 - → permanent magnet, B = 0.43 T along the y-direction
 - → 6 silicon detector planes
 300 µm thick
 - \rightarrow deflection $\eta = 1 / R$

$$\mathbf{R} = \mathbf{c} \cdot \mathbf{p} / \mathbf{Z} \cdot \mathbf{e}$$

P. Picozza et al., 2007, Astrop. Phys., 27

• electromagnetic calorimeter

- → 44 silicon sensor planes (x-y) interleaved with 22 W planes
- \rightarrow total depth = 16.3 X₀ ~ 0.6 λ
- \rightarrow lepton hadron separation

• neutron detector

→ 36 counters filled with ³He in 2 planes

• anticoincidence system

13

- \rightarrow 4 plastic scintillators (CAS)
- \rightarrow 1 plastic scintillator (CAT)
- \rightarrow 4 plastic scintillators (CARD)
- \rightarrow identify false trigger events

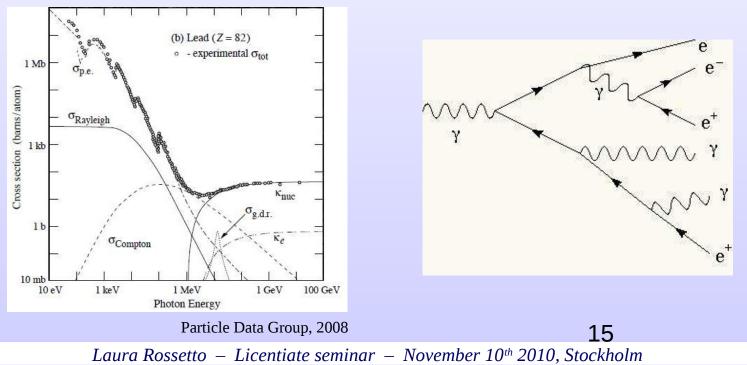
P. Picozza et al., 2007, Astrop. Phys., 27

The PAMELA calorimeter

- 44 silicon sensor planes interleaved with 22 plates of tungsten absorbers
- silicon detectors total sensitive area ~ (24 × 24) cm² arranged in a 3 × 3 matrix
 - \rightarrow each silicon detector is segmented into 32 strips, 96 strips for each plane
- layout of one plane \rightarrow Si X / W / Si Y
- the total depth is **16.3** $X_0 \rightarrow$ up to $E \sim 1$ TeV the maximum of the

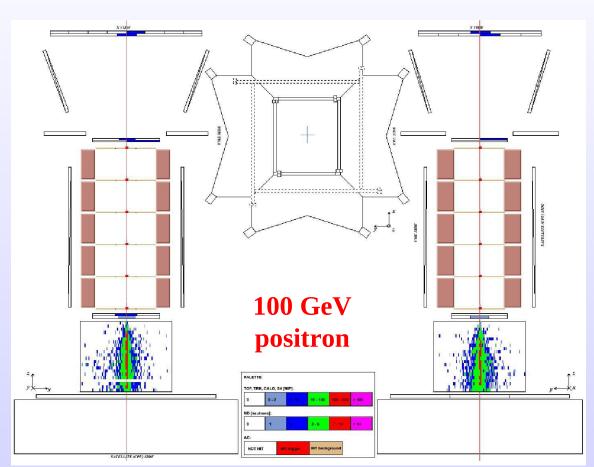
electromagnetic cascade is well contained

• the total depth is ~ 0.6 $\lambda \rightarrow ~$ ~ 40% of hadronic particles do not interact



http://pamela.roma2.infn.it

Electromagnetic showers

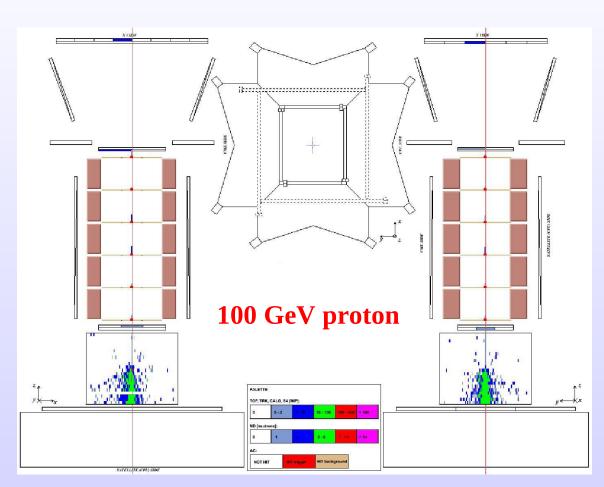

- Electrons or positrons \rightarrow Ionization, bremmstrahlung
- photons \rightarrow photoelectric effect, Compton scattering, e[±] pair production
- radiation length $X_0 \rightarrow$ distance over which an electron or positron loses 63.2% on average of its energy due to bremmstrahlung
- Molière radius $\rho_M \rightarrow$ about 90% of the energy is deposited in a cylinder with radius ρ_M around the shower axis

Electromagnetic showers

- longitudinal profile
 - → governed by the high-energy part of the cascade
 - \rightarrow scales as X_0
- transverse profile
 - → characterised by a pronounced central core surrounded by a halo
 - $\boldsymbol{\rightarrow}$ described in units of $\rho_{\scriptscriptstyle M}$

Hadronic showers

 Hadronic interaction → strong interactions → more complicated shower development compared to the electromagnetic one


• **nuclear interaction length** $\lambda_{int} \rightarrow$ average distance a hadron has to travel inside an absorber medium before a nuclear interaction occurs

- secondary particles → mesons, nucleon, photons emitted in the forward direction of the primary hadron
- spallation fragments \rightarrow emitted isotropically in the laboratory frame
 - → longitudinal and transverse profile are very different from those of electromagnetic showers

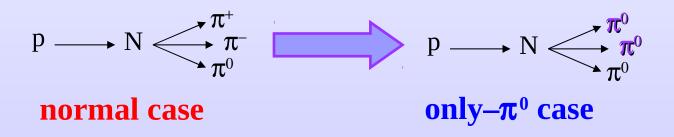
Hadronic showers

- longitudinal profile
 - → any maximum lies deeper in the calorimeter for a given incident energy

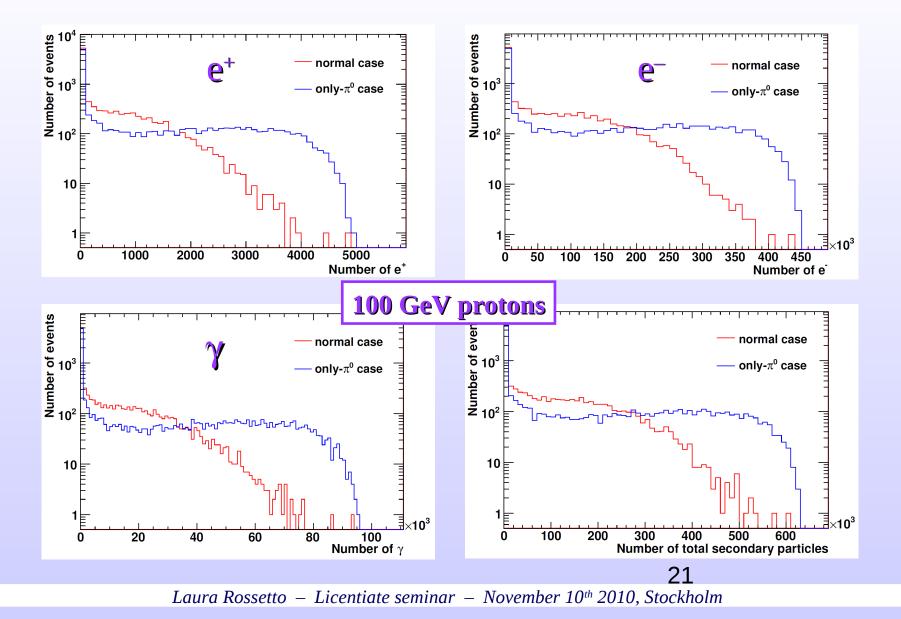
• transverse profile

- \rightarrow it is broader
- → composed by a narrow
 core (the electromagnetic
 component) and a halo
 (the non-electromagnetic
 component)

• Hadronic showers generally contain an **electromagnetic** component


$$p + N \rightarrow \pi^{+}, \pi^{-}, \pi^{0} \qquad \pi^{0} \rightarrow \gamma + \gamma \rightarrow e^{+}, e^{-}, \gamma...$$
$$\tau = 8.4 \cdot 10^{-17} \text{ s}$$
probability ~ 99%

- ~ 1/3 of the mesons produced in the first interaction are π^0
 - → $\mathbf{f}_{em} = \mathbf{1} (\mathbf{1} \mathbf{f}_{\pi^0})^n$ n = number of generations (1 - f_{π^0})ⁿ = non-electromagnetic content of the shower $f_{\pi^0} \sim 1/3$
- the electromagnetic contamination of hadronic showers due to π⁰ could affect the discrimination between positron and proton events
 → it becomes extremely important within the context of the positron analysis



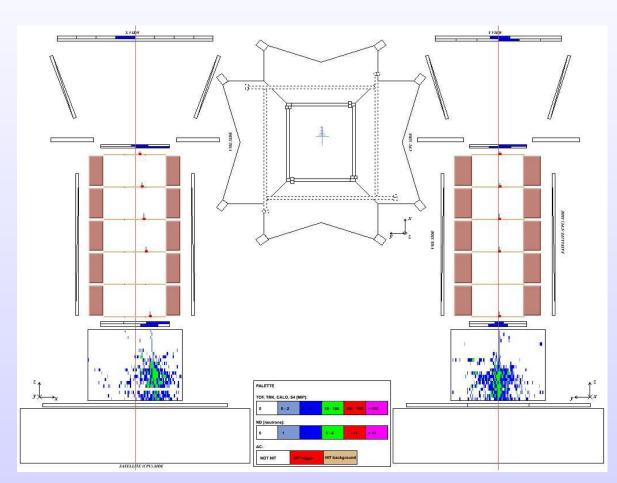
- Study the π^0 produced in hadronic showers within the context of the positron analysis
- Geant3 simulations \rightarrow GPAMELA
 - → in the subroutine GUSTEP every π^{\pm} were changed into π^{0} , in order to increase the production of π^{0} (without modifying the cross section of protons!!)

Simulation studies of π^0 contamination

E = 20 - 100 GeV

- 10⁵ protons (**normal case**)
- 5 · 10⁵ protons (only π^0 case)
- 10⁵ positrons

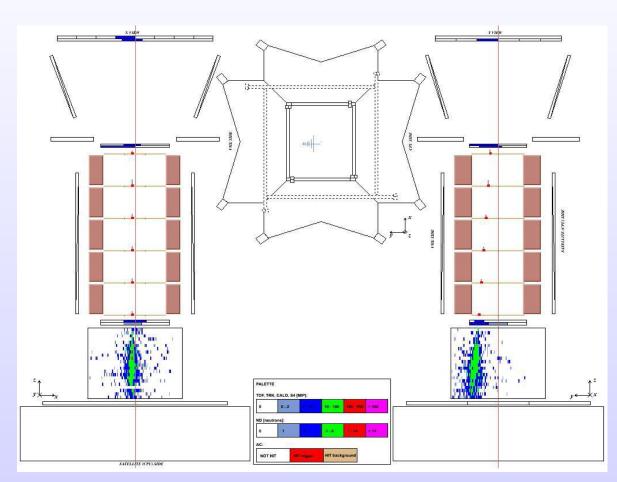
power-law spectrum: **E**^{-2.7} for protons **E**^{-3.0} for positrons


22

inclination angle: $\theta = (0 - 20)^{\circ}$ azimuth angle: $\Phi = (0 - 359)^{\circ}$

Simulation studies of π^0 contamination

Hadronic shower development in the **only**– π^0 case

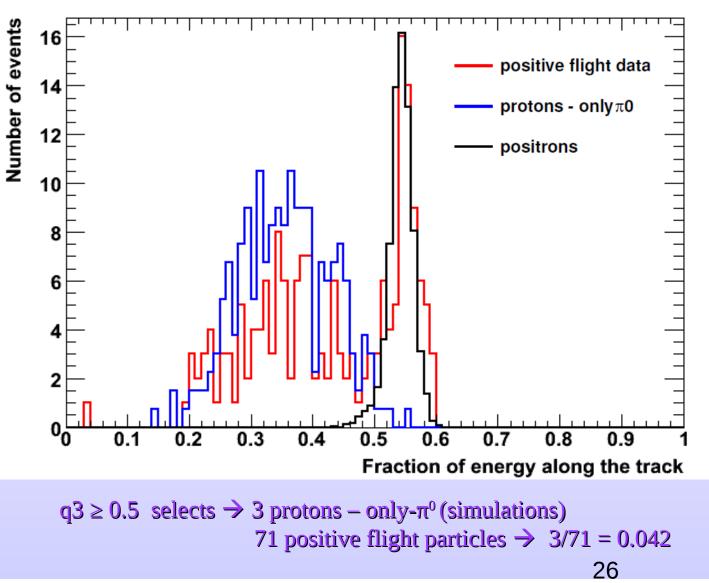

- tracker reconstructed rigidity R = 47.6 GV (R = c·p / Z·e)
- the shower development is similar to an **hadronic cascade**

23

Simulation studies of π^0 contamination

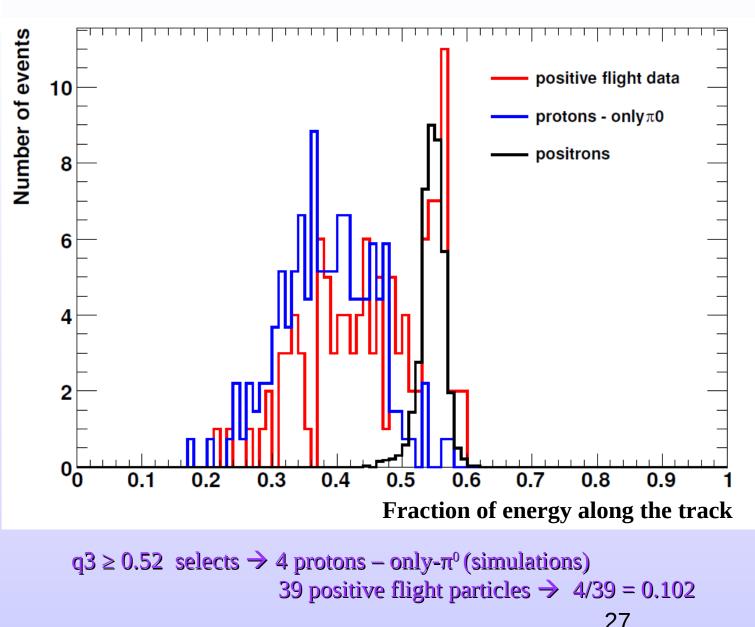
Hadronic shower development in the **only**– π^0 case

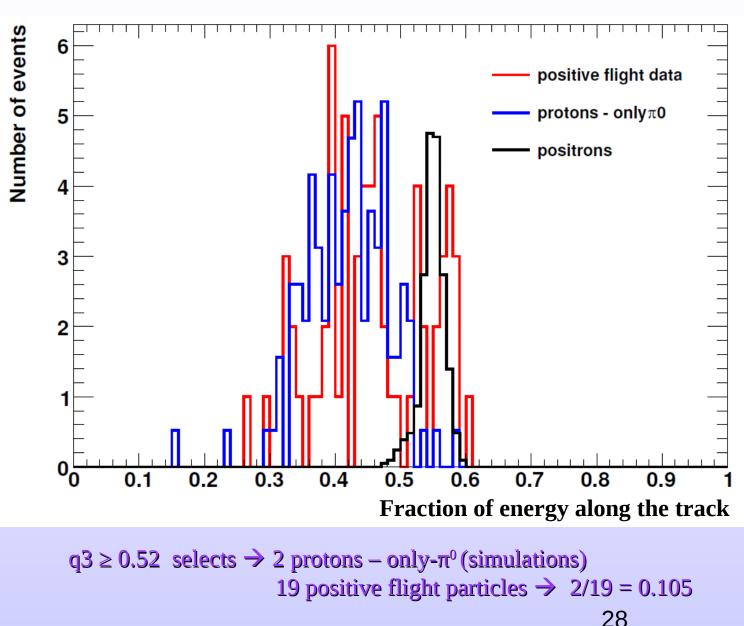
- tracker reconstructed rigidity R = 41.6 GV (R = c·p / Z·e)
- the shower development is similar to an electromagnetic cascade → problematic!!

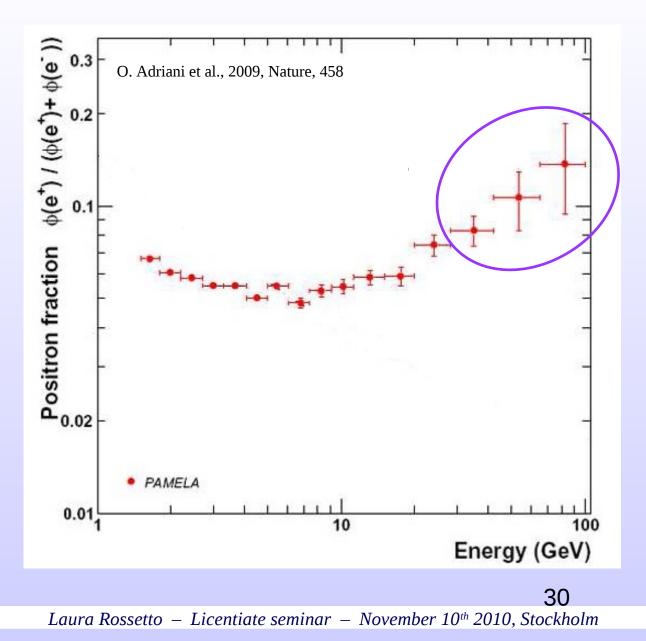

• Evaluate the π^0 contamination in positron selection when following the "Nature analysis" approach

• the positron selection cuts used on Nature have been applied to positron and proton simulated samples

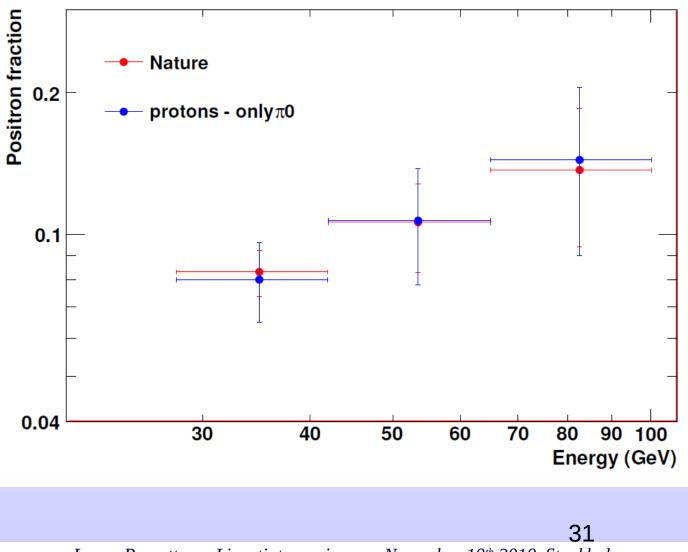
- distributions of the energy fraction (q3) have been compared with
 - positively charged particles in flight data in order to investigate the π^0 contamination




42 – 65 GV


I – Positron fraction

		Rigidity (GV) p	only- π^0	positive particles	p $\mathit{only}\text{-}\pi^0$ / positive particles
q3 ≥ 0.5 28		28 - 42	28 - 42		71	$0.042\ {}^{+}_{-}\ {}^{0.066}_{0.030}$
q3 ≥ 0.52 42 - 65		6	$4 {}^{+}_{-} {}^{5}_{3}$	39	$0.102\ {}^{+}_{-}\ {}^{0.131}_{0.067}$	
q3 ≥ 0.52 65		65 - 10	0	$2 {}^{+}_{-} {}^{4}_{2}$	19	$0.105 \ {}^{+}_{-} \ {}^{0.226}_{0.086}$
					simulations	Nature results
	Rigidity (GV)		\mathbf{N}_{e^+}	N_{e^-}	$N_{e^+} / (N_{e^+} + N_{e^-})$) $N_{e^+} / (N_{e^+} + N_{e^-})$
	28 - 42		$68 \ ^{+}_{-} \ ^{1}_{1}$	$\frac{4}{3}$ 780	$0.080\ {}^+_{-}\ {}^{0.016}_{0.015}$	0.0831 ± 0.0093
	42 - 65		$35 \ ^{+}_{-} \ ^{1}_{1}$	$^{1}_{0}$ 292	$0.107 \ {}^+_{-} \ {}^{0.031}_{0.029}$	$0.106 \ {}^+_{-} \ {}^{0.022}_{0.023}$
	6	5 - 100	$17 \frac{+}{-} \frac{8}{-}$	$\frac{8}{7}$ 101	$0.144 \ ^+_{-} \ ^{0.061}_{0.054}$	$0.137 \ {}^{+\ 0.048}_{-\ 0.043}$


I – Positron fraction

I – Positron fraction

The q3 distribution of positively charged particles in flight data are well reproduced by two distributions of simulated events:

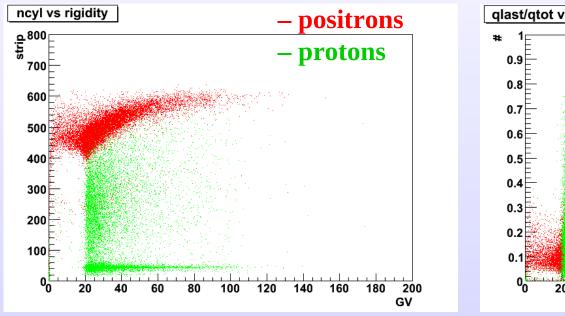
 → protons – only-π⁰ case (q3 < 0.5)
 → positrons (q3 ~ 0.5 – 0.6)

- no double peak q3 distribution for simulated protons in the only- π^0 case
- the positron fraction evaluated from proton simulations in the only- π^0 case is compatible with the positron fraction values published in Nature
 - → it is unlikely that the rise in the positron fraction is due to π⁰ contamination of hadronic showers
 32

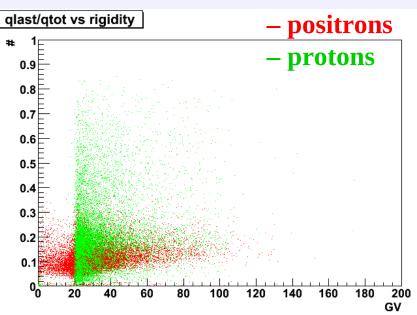
II – A new approach for positron identification

- π^0 contamination above 100 GeV ???
- study new positron selection cuts using **shower profile variables** in the calorimeter
- standard positron selection cuts have been applied to simulated positron and proton samples in the range E = 20 100 GeV
 - → find out what shower profile variables in the calorimeter permit the most efficient positron selection
 - → study positron selection efficiency and the related proton contamination

II – Shower profile variables


- **qtot** \rightarrow total energy deposited in the calorimeter
- **qtrack** \rightarrow energy deposited in the strips along the track and in the neighbouring strips on each side
- **qmax** \rightarrow the maximum energy detected in a strip
- **qcyl** \rightarrow energy deposited in a cylinder of radius 8 strips around the shower axis ($2\rho_{M} = 8.5 \text{ strips}$)
- qtr → energy deposited in a cylinder of radius 4 strips around the shower axis qpresh → energy deposited in a cylinder of radius 2 strips around the shower axis and only in the first 4 planes of the calorimeter
- **qtotimp** = qtot / rigidity
- **qm** = qmax / qtrack
- $\mathbf{q1} = \mathbf{qcyl} / \mathbf{qtot}$
- $\mathbf{q2} = \mathbf{qtrack} / \mathbf{qtr}$
- **q3** = qtrack / qtot
- **qt1** = qtrack / qcyl
- **nstrip** \rightarrow total number of strips hit in the calorimeter
- **ncyl** \rightarrow number of strips hit in a cylinder of radius 8 strips around the shower axis **ncore** \rightarrow number of strips hit in a cylinder of radius $2\rho_M$ around the shower
 - axis and up to the calculated electromagnetic shower maximum

34


II – A new approach for positron identification

- study distributions of variables as function of the rigidity
 - → identify what variables permit an efficient discrimination between positrons and protons

ncyl → number of strips hit in a cylinder of radius 8 strips around the shower axis

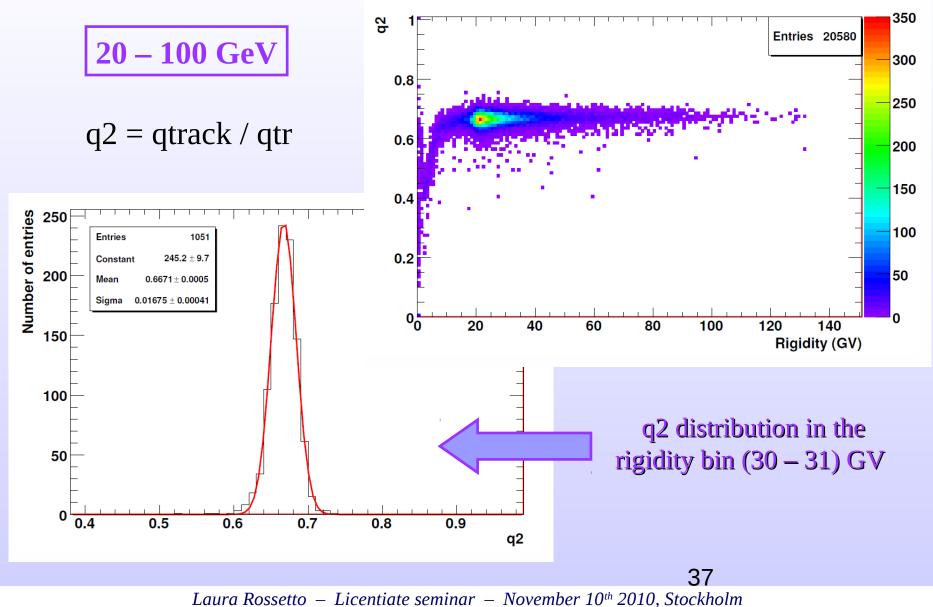
qtot → total energy deposited in the calorimeter
qlast → energy deposited in a cylinder of radius 4
strips around the shower axis and only in
the last 4 planes of the calorimeter

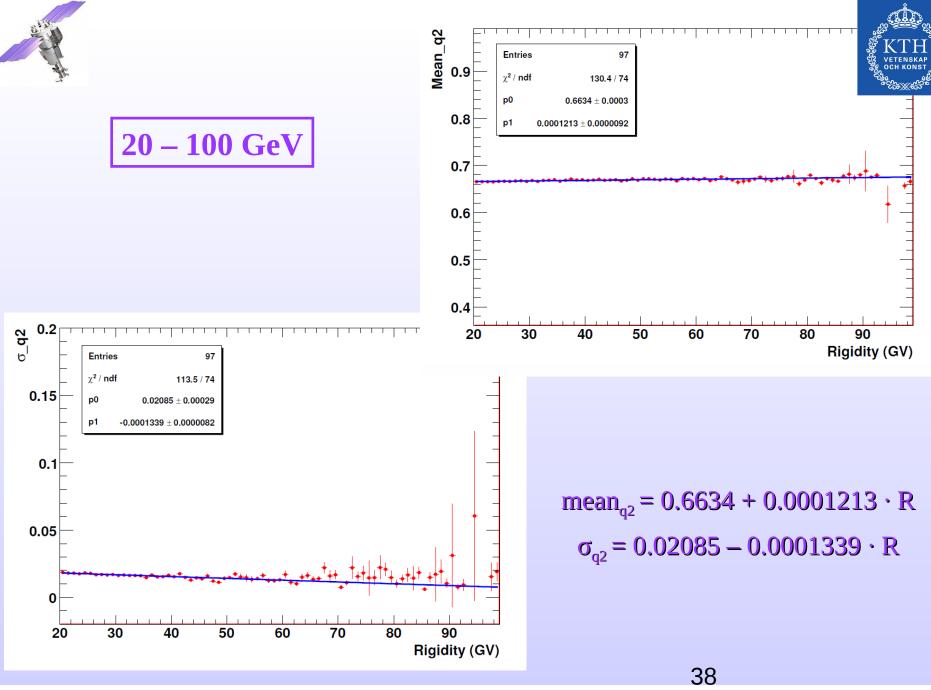
II – A new approach for positron identification

- study distributions of variables as function of the rigidity
 - → identify what variables permit an efficient discrimination between positrons and protons
- construct the variable CALCHI

 \rightarrow CALCHI = $\sum_{i} \chi^{2}_{variable[i]}$

= \sum_{i} (variable[i] – mean_{variable[i]})² / $\sigma^{2}_{variable[i]}$

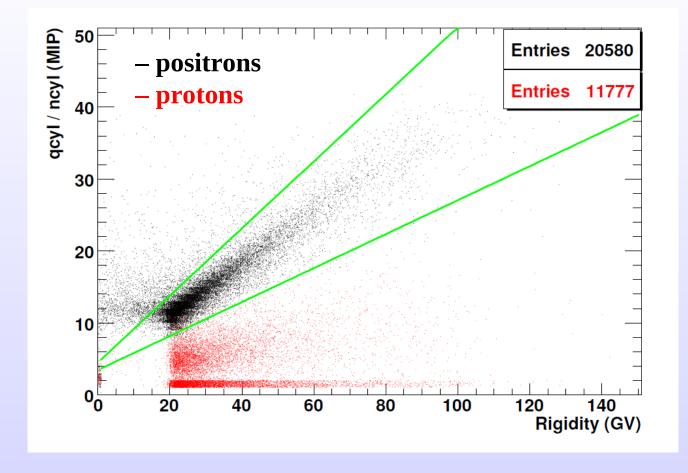

36


→ mean and standard deviation have been tuned on the simulated positron sample

fit of mean and σ distributions as function of the rigidity

II – Positron selection efficiency study

Selections related to the transverse shower profile variables:


- $mean_{ncore} 3 \cdot \sigma_{ncore} < ncore < mean_{ncore} + 3 \cdot \sigma_{ncore}$
- ncyl > mean_{ncyl} 3 · σ_{ncyl}
- $\bullet mean_{qcyl/ncyl} 3 \cdot \sigma_{qcyl/ncyl} < qcyl/ncyl < mean_{qcyl/ncyl} + 3 \cdot \sigma_{qcyl/ncyl}$
- qpresh > 50
- qtot/nstrip > 6
- CALCHI < CALCHI_{cut}

39

II – Positron selection efficiency study

 $mean_{\rm qcyl/ncyl} - 3 \cdot \sigma_{\rm qcyl/ncyl} < qcyl/ncyl < mean_{\rm qcyl/ncyl} + 3 \cdot \sigma_{\rm qcyl/ncyl}$

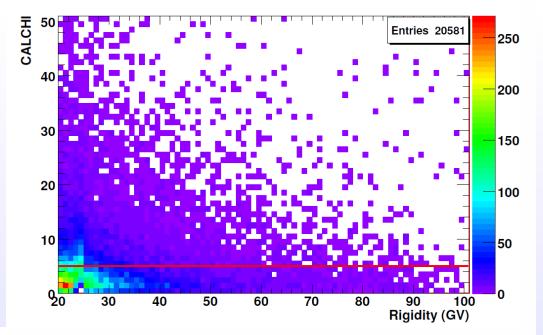
40 Laura Rossetto – Licentiate seminar – November 10th 2010, Stockholm

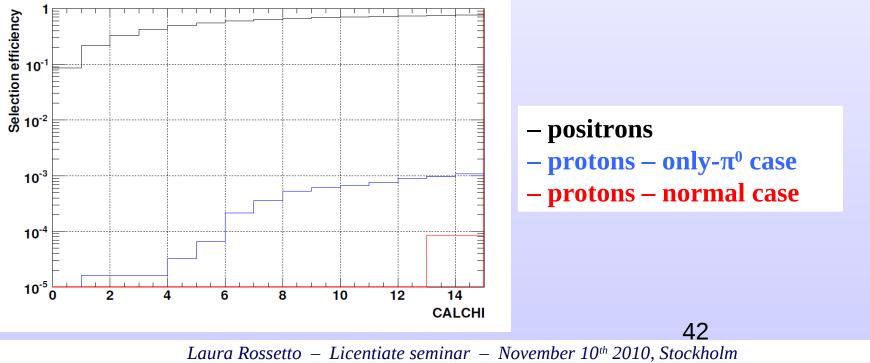
II – Positron selection efficiency study

• Many combinations of different shower profile variables have been used in order to obtain the best positron selection efficiency with the smallest proton contamination

CALCHI = $\sum_{i} \chi^{2}_{variable[i]}$

 $= \chi^{2}_{ncore} + \chi^{2}_{q3} + \chi^{2}_{qpresh} + \chi^{2}_{ncyl} + \chi^{2}_{qcyl/ncyl} + \chi^{2}_{qtot/nstrip}$


 the selection efficiencies were studied for different values of CALCHI_{cut}


11

20 – 100 GeV

CALCHI < 6 selects 55.4% of positrons

Positron selection efficiencies for different CALCHI values and corresponding proton contamination

$Only-\pi^0 \ case$									
CALCHI _{cut}	e ⁺ efficiency	p efficiency	proton contamination						
3	0.328 ± 0.006	$(1.6 + 6.0 - 1.5) \cdot 10^{-5}$	$(0.49 \ ^{+}_{-} \ ^{1.84}_{0.46}) \ \cdot \ 10^{-4}$						
4	0.423 ± 0.007	$(1.6 + 6.0 - 1.5) \cdot 10^{-5}$	$(0.49 \ ^{+}_{-} \ ^{1.84}_{0.46}) \ \cdot \ 10^{-4}$						
5	0.497 ± 0.008	$(3.3 \ \ + \ \ 7.1 \ \ - \ \ 2.7) \ \ \cdot \ 10^{-5}$	$(0.66 \ ^+ \ ^- \ ^- \ ^- \ ^- \ ^- \ ^- \ ^-$						
6	0.554 ± 0.008	$(6.6 \ + \ 8.5 \ - \ 4.3) \cdot 10^{-5}$	$(1.19 \ {}^{+}_{-} \ {}^{1.53}_{0.77}) \cdot 10^{-4}$						
7	0.600 ± 0.009	$(2.1 \pm 1.0) \cdot 10^{-4}$	$(3.50 \pm 1.67) \cdot 10^{-4}$						
8	0.634 ± 0.009	$(3.6 \pm 1.3) \cdot 10^{-4}$	$(5.68 \pm 2.05) \cdot 10^{-4}$						

proton contamination = p efficiency / e⁺ efficiency

Laura Rossetto – Licentiate seminar – November 10th 2010, Stockholm

43

- A new approach based on selections on shower profile variables was studied and tested on simulations in the energy range
 20 100 GeV
- a combination of six variables permit an efficient positron selection (e.g. ~ 0.50 considering CALCHI < 5)
- these selections yield no proton contamination in the normal case sample
- the proton contamination in the only-π⁰ case sample is of order of 10⁻⁵ (considering CALCHI < 5)

Summary

- PAMELA calorimeter → discrimination between electromagnetic and hadronic showers induced by leptons and hadrons
- study the electromagnetic component in hadronic showers produced by $\pi^{\scriptscriptstyle 0}$ using GEANT3 simulations
 - → artificially boosted the number of π^0 produced in hadronic showers **(only-\pi^0 case** simulations)
 - I the "Nature analysis" approach were applied to simulations
 - → the positron fraction is in good agreement with the one published in Nature (O. Adriani et al., 2009, Nature, 458)
 - → it is unlikely that the rise in the positron fraction is due to π^0 contamination of hadronic showers
 - II a new approach based on selections on shower profile variables was studied and tested on **simulations** in the energy range 20 100 GeV
 - → a positron selection efficiency of ~ 0.50 was found with a proton contamination of order of 10⁻⁵

Outlook

- Extend the PAMELA positron fraction to E > 100 GeV
- a new approach, based on selections on shower profile variables, was tested on simulations in the energy range 20 100 GeV
- this new approach will be applied on positive charged particles in flight data

→ reproduce the positron fraction

- this method will be studied at higher energies, up to ~ 300 GeV
 → the shower profile variables will be optimised at higher energies
- measurement of the positron fraction for E > 100 GeV could solve the problem about primary positron production models

Thank you!!!