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•  Basic concepts of cosmic raysBasic concepts of cosmic rays
   acceleration and propagation mechanisms
   solar modulation
   cosmic ray positrons and 
       the PAMELA positron fraction 

•  The PAMELA experimentThe PAMELA experiment
   description of the components 

•  Shower development in the PAMELA calorimeterShower development in the PAMELA calorimeter
   description of electromagnetic and hadronic 
       shower development inside the calorimeter
   π0 contamination of hadronic showers

•  Simulation studies of Simulation studies of ππ00 contamination contamination
   the “Nature analysis” approach applied to 
       simulations
   a new approach for positron identification

OutlineOutline

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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electromagnetic
cascade

hadronic
cascade



3

• Cosmic rays:
  ~ 98% protons and nuclei
  ~ 2% electrons

• all particle energy spectrum follows 
  a power-law distribution E-α

   for E > 109 eV, α = 2.7
   knee at E ~ 3 · 1015 eV, α = 3.1
   ankle at E ~ 1018 eV, α = 2.7

• for E ≤ 10 GeV 
   solar modulation effect

• primary elements are accelerated in 
  sources of high energy particles
• secondary elements are produced by 
  spallation processes

Cosmic raysCosmic rays
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S. Swordy, 2001, Space Science Review, 99 
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Acceleration mechanismsAcceleration mechanisms
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• First order Fermi acceleration (1949)    < ΔE / E > = (2 / 3) · (V / c)
   acceleration in strong shock waves, e.g. supernovae explosions
   a power-law energy spectrum is obtained
   acceleration phase ~ 105 years    upper limit E ~ 1014 eV
   acceleration to higher energies    pulsar magnetosphere, AGN, GRB...

http://jemeuso.riken.jp/en/about2.html

Crab nebula
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Propagation mechanismsPropagation mechanisms
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• Cosmic rays propagate through the interstellar medium losing energy

• the processes which participate in the particles transportation are
   diffusion: it depends upon the particle density and the diffusion coefficient
   convection: galactic winds of charged particles 
   reacceleration: inhomogeneities in the galactic magnetic field 
                                 (Alfvén velocity)

N. Tomasetti, ICRC 2009
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Solar modulationSolar modulation
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• Energy spectra of cosmic rays with E < 10 GeV are modified by the solar wind

• the intensity of the solar activity is periodic with a 11-year cycle
• at each maximum the polarity of the solar magnetic field reverses 
   22-year cycle
• at the solar maximum  the flux of low energy particles is minimum
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Cosmic ray positronsCosmic ray positrons
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• electrons account for ~ 2% of the cosmic ray particles
• proton-to-positron flux ratio is ~ 104 at 100 GV
   positrons can probe acceleration and propagation mechanisms in a galactic 
       region of ~ 1 kpc (synchrotron radiation, inverse Compton scattering)

• positrons are believed to be mainly secondary particles: p + p  π± , K± 
                                                                                            π±  µ± + νµ  e± + νe

                                                                                            K±  µ± + νµ , π0 + π± 

–––  pure secondary production
        without reacceleration

– · –  leaky-box model

– –  diffusion model

I.V. Moskalenko & A.W. Strong, 1998, ApJ, 493 
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PAMELA positron fractionPAMELA positron fraction
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• Positron fraction measured between 1.5 and 100 GeV
• result based on the data collected between July 2006 and February 2008
   ~ 109 triggers, total acquisition time of ~ 500 days
• published in the journal Nature  widely discussed, more than 600 citations!

O. Adriani et al., 2009, Nature, 458 O. Adriani et al., 2009, Nature, 458 
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PAMELA positron fractionPAMELA positron fraction
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• Widely discussed  what is the reason to the rise at high energies? 
• Possible answers:
   pulsar magnetosphere could be source of primary cosmic ray positrons
   primary positrons could be produced via annihilation of dark matter 
particles D. Hooper et al., 2009, JCAP, 0901 L. Bergström et al., 2008, Phys. Rev., D 78 

??
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The PAMELA experimentThe PAMELA experiment
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• PAMELA is mounted on board of the Russian Resurs DK1 satellite
• the satellite was launched from the Baikonur cosmodrome in Kazakhstan on 
  June 15th 2006
   elliptical and semi-polar orbit
   altitude between 350 – 600 km 
   inclination angle of 70° 

P. Picozza et al., 2007, Astrop. Phys., 27 http://pamela.roma2.infn.it 
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• height of  ~ 1.3 m
• mass of 470 kg
• power consuption of 355 W

• time-of-flight system
• magnetic spectrometer
• electromagnetic calorimeter
• neutron detector
• anticoincidence system

• geometrical acceptance
   21.5 cm2 sr
    determined by the geometry 
        of the spectrometer cavity

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

The PAMELA experimentThe PAMELA experiment

P. Picozza et al., 2007, Astrop. Phys., 27 
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• time-of-flight system
   3 scintillator layers
   dE/dx, charge z
   flight time, velocity β
   time resolution ~ 250 ps
       lepton – hadron separation 
       up to ~ 1 GeV/c

• magnetic spectrometer
   permanent magnet, B = 0.43 T
       along the y-direction
   6 silicon detector planes
       300 μm thick
   deflection η = 1 / R
       R = c · p / Z · e

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

The PAMELA experimentThe PAMELA experiment

P. Picozza et al., 2007, Astrop. Phys., 27 
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• electromagnetic calorimeter
   44 silicon sensor planes (x-y)
       interleaved with 22 W planes
   total depth = 16.3 X0 ~ 0.6 λ
   lepton – hadron separation

• neutron detector
   36 counters filled with 3He
       in 2 planes

• anticoincidence system
   4 plastic scintillators (CAS)
   1 plastic scintillator (CAT)
   4 plastic scintillators (CARD)
   identify false trigger events

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

The PAMELA experimentThe PAMELA experiment

P. Picozza et al., 2007, Astrop. Phys., 27 
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The PAMELA calorimeterThe PAMELA calorimeter
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• 44 silicon sensor planes interleaved with 22 plates of tungsten absorbers
• silicon detectors total sensitive area ~ (24 ×× 24) cm2 arranged in a 3 × 3 matrix
   each silicon detector is segmented into 32 strips, 96 strips for each plane

• layout of one plane    Si – X / W / Si – Y 

• the total depth is 16.3 X0  up to E ~ 1 TeV the maximum of the 
                                                electromagnetic cascade is well contained
• the total depth is ~ 0.6 λ   ~ 40% of hadronic particles do not interact

http://pamela.roma2.infn.it 
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Electromagnetic showersElectromagnetic showers
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• Electrons or positrons  Ionization, bremmstrahlung
• photons  photoelectric effect, Compton scattering, e± pair production

• radiation length X0  distance over which an electron or positron loses 
                                         63.2% on average of its energy due to bremmstrahlung 
• Molière radius ρM  about 90% of the energy is deposited in a cylinder with 
                                       radius ρM around the shower axis 

Particle Data Group, 2008 
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• longitudinal profile  
   governed by the 
       high-energy part 
       of the cascade   
   scales as X0 

• transverse profile   
   characterised by a 
       pronounced central core 
       surrounded by a halo
   described in units of ρM

Electromagnetic showersElectromagnetic showers

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

100 GeV 
positron
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Hadronic showersHadronic showers
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• Hadronic interaction  strong interactions  more complicated shower 
                                                                             development compared to the 
                                                                             electromagnetic one

• nuclear interaction length λint  average distance a hadron has to travel 
                                                          inside an absorber medium before a nuclear 
                                                          interaction occurs

• secondary particles  mesons, nucleon, photons
                                       emitted in the forward direction of the primary hadron

• spallation fragments  emitted isotropically in the laboratory frame

   longitudinal and transverse profile are very different from those of 
       electromagnetic showers
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• longitudinal profile  
   any maximum lies deeper 
       in the calorimeter for a        
       given incident energy 

• transverse profile   
   it is broader
   composed by a narrow 
       core (the electromagnetic  
       component) and a halo 
       (the non-electromagnetic
       component)

Hadronic showersHadronic showers

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

100 GeV proton
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• Hadronic showers generally contain an electromagnetic component

  p + N  π+, π-, π0      π0  γ + γ  e+, e-, γ...    
                                                                                        τ = 8.4 · 10−17 s
                                                                                        probability ~ 99%
  
• ~ 1/3 of the mesons produced in the first interaction are π0

   fem = 1 – (1 – fπ0)n              n = number of generations

                                                    (1 – fπ0)n = non-electromagnetic content of the shower
                                                    fπ0 ∼ 1/3

• the electromagnetic contamination of hadronic showers due to π0 could affect 
  the discrimination between positron and proton events 
   it becomes extremely important within the context of the positron analysis

ππ00 contamination of hadronic showers contamination of hadronic showers

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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•  Study the π0 produced in hadronic showers within the context of 
  the positron analysis 

•  Geant3 simulations  GPAMELA
                                  

               in the subroutine GUSTEP every π± were changed 
                 into π0, in order to increase the production of π0 
                 (without modifying the cross section of protons!!) 

Simulation studies ofSimulation studies of π π 00 contamination contamination

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

p N
π+

π−

π0
p N

ππ00

ππ00

π0

normal case only–π0 case
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Simulation studies ofSimulation studies of π π 00 contamination contamination

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

100 GeV protons100 GeV protons

ee++ ee––

γγ



22

• 105 protons (normal case)
• 5 · 105 protons (only π0 case)  
 
• 105 positrons 

power-law spectrum: EE-2.7-2.7  for protons

                                   EE-3.0-3.0  for positrons

inclination angle: θ = (0 – 20)°
azimuth angle: Φ = (0 – 359)°

E = 20 – 100 GeVE = 20 – 100 GeV

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

Simulation studies ofSimulation studies of π π 00 contamination contamination



23

Hadronic shower development 
in the only–π0 case

• tracker reconstructed rigidity 
  R = 47.6 GV  (R = c·p / Z·e)

• the shower development is 
  similar to an hadronic cascade

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

Simulation studies ofSimulation studies of π π 00 contamination contamination
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Simulation studies ofSimulation studies of π π 00 contamination contamination

Hadronic shower development 
in the only–π0 case

• tracker reconstructed rigidity 
  R = 41.6 GV  (R = c·p / Z·e)

• the shower development is 
  similar to an electromagnetic 
  cascade   problematic!!
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• Evaluate the π0 contamination in positron selection when 
  following the “Nature analysis” approach

• the positron selection cuts used on Nature have been applied to 
   positron and proton simulated samples 

  
• distributions of the energy fraction (q3) have been compared 
with 
  positively charged particles in flight data in order to investigate 
  the π0 contamination

I – The “Nature analysis” approachI – The “Nature analysis” approach

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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28 – 42 GV28 – 42 GV

q3 q3 ≥≥ 0.5  selects  0.5  selects  3 protons – only- 3 protons – only-ππ0 0 (simulations)(simulations)
                                                                71 positive flight particles 71 positive flight particles   3/71 = 0.042  3/71 = 0.042

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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42 – 65 GV42 – 65 GV

q3 q3 ≥≥ 0.52  selects  0.52  selects  4 protons – only- 4 protons – only-ππ0 0 (simulations)(simulations)
                                                                    39 positive flight particles 39 positive flight particles   4/39 = 0.102  4/39 = 0.102

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

Fraction of energy along the track
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65 – 100 GV65 – 100 GV

q3 q3 ≥≥ 0.52  selects  0.52  selects  2 protons – only- 2 protons – only-ππ0 0 (simulations)(simulations)
                                                                    19 positive flight particles 19 positive flight particles   2/19 = 0.105  2/19 = 0.105

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

Fraction of energy along the track
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I – Positron fractionI – Positron fraction

Nature resultssimulations

q3 ≥ 0.5 

q3 ≥ 0.52 

q3 ≥ 0.52 

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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I – Positron fractionI – Positron fraction

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

O. Adriani et al., 2009, Nature, 458 
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I – Positron fractionI – Positron fraction

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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•  The q3 distribution of positively charged particles in flight data 
   are well reproduced by two distributions of simulated events: 
                        protons – only-π0 case (q3 < 0.5)
                        positrons (q3 ~ 0.5 – 0.6)

•  no double peak q3 distribution for simulated protons in the 
   only-π0 case 

• the positron fraction evaluated from proton simulations in the 
  only-π0 case is compatible with the positron fraction values 
  published in Nature
                        it is unlikely that the rise in the positron  
                            fraction is due to π0 contamination of
                            hadronic showers

I – ConclusionsI – Conclusions

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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• π0 contamination above 100 GeV ???

• study new positron selection cuts using shower profile variables 
  in the calorimeter

• standard positron selection cuts have been applied to simulated 
   positron and proton samples in the range E = 20 – 100 GeV

    find out what shower profile variables in the calorimeter 
        permit the most efficient positron selection

    study positron selection efficiency and the related proton 
        contamination

II – A new approach for positron identificationII – A new approach for positron identification

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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qtot  total energy deposited in the calorimeter
qtrack  energy deposited in the strips along the track and in the neighbouring 
                 strips on each side
qmax  the maximum energy detected in a strip
qcyl  energy deposited in a cylinder of radius 8 strips around the shower axis 
             (2ρM = 8.5 strips)
qtr  energy deposited in a cylinder of radius 4 strips around the shower axis 
qpresh  energy deposited in a cylinder of radius 2 strips around the shower 
                 axis and only in the first 4 planes of the calorimeter
qtotimp = qtot / rigidity
qm = qmax / qtrack
q1 = qcyl / qtot
q2 = qtrack / qtr
q3 = qtrack / qtot
qt1 = qtrack / qcyl
nstrip  total number of strips hit in the calorimeter
ncyl  number of strips hit in a cylinder of radius 8 strips around the shower axis 
ncore  number of strips hit in a cylinder of radius 2ρM around the shower 
               axis and up to the calculated electromagnetic shower maximum

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – Shower profile variablesII – Shower profile variables
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• study distributions of variables as function of the rigidity
       identify what variables permit an efficient discrimination 
           between positrons and protons

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – A new approach for positron identificationII – A new approach for positron identification

– positrons
– protons

– positrons
– protons

ncyl  number of strips hit in a cylinder of 
             radius 8 strips around the shower axis 

qtot  total energy deposited in the calorimeter
qlast  energy deposited in a cylinder of radius 4 
              strips around the shower axis and only in 
              the last 4 planes of the calorimeter
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• study distributions of variables as function of the rigidity
       identify what variables permit an efficient discrimination 
           between positrons and protons

• construct the variable CALCHI

       CALCHI = ∑i χ2
variable[i]

                            = ∑i (variable[i] – meanvariable[i] )2 / σ2
variable[i]

         mean and standard deviation have been tuned on the   
           simulated positron sample

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – A new approach for positron identificationII – A new approach for positron identification
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fit of mean and fit of mean and σσ distributions as function of the rigidity  distributions as function of the rigidity 

20 – 100 GeV

q2 distribution in the q2 distribution in the 
rigidity bin (30 – 31) GV rigidity bin (30 – 31) GV 

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

q2 = qtrack / qtr
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20 – 100 GeV

meanmeanq2 q2 = 0.6634 + 0.0001213 = 0.6634 + 0.0001213 ·· R  R 

σσq2 q2 = 0.02085 – 0.0001339 = 0.02085 – 0.0001339 ·· R  R 

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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Selections related to the transverse shower profile variables:Selections related to the transverse shower profile variables:

• meanncore – 3 · σncore < ncore < meanncore + 3 · σncore

• ncyl > meanncyl – 3 · σncyl 

• meanqcyl/ncyl – 3 · σqcyl/ncyl < qcyl/ncyl < meanqcyl/ncyl + 3 · σqcyl/ncyl

• qpresh > 50 

• qtot/nstrip > 6

• CALCHI < CALCHICALCHI < CALCHIcutcut  

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – Positron selection efficiency studyII – Positron selection efficiency study
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meanmeanqcyl/ncyl qcyl/ncyl – 3 – 3 · · σσqcyl/ncylqcyl/ncyl < qcyl/ncyl <  < qcyl/ncyl < meanmeanqcyl/ncyl qcyl/ncyl + 3 + 3 · · σσqcyl/ncylqcyl/ncyl

– positrons
– protons

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – Positron selection efficiency studyII – Positron selection efficiency study
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• Many combinations of different shower profile variables have 
  been used in order to obtain the best positron selection 
  efficiency with the smallest proton contamination

CALCHI = ∑i χ2
variable[i]

                 = χ2
ncore + χ2

q3 + χ2
qpresh + χ2

ncyl + χ2
qcyl/ncyl + χ2

qtot/nstrip

 

• the selection efficiencies were studied for different values of 
  CALCHICALCHIcutcut

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – Positron selection efficiency studyII – Positron selection efficiency study
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20 – 100 GeV

– positrons
– protons – only-π0 case
– protons – normal case

CALCHI < 6 
selects 55.4% of positrons

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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Positron selection efficiencies for different CALCHI values and 
corresponding proton contamination

proton contamination  =  p efficiency / eproton contamination  =  p efficiency / e++ efficiency efficiency

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 

II – Positron selection efficiency studyII – Positron selection efficiency study
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• A new approach based on selections on shower profile variables 
  was studied and tested on simulations in the energy range 
  20 – 100 GeV

• a combination of six variables permit an efficient positron
  selection (e.g. ~ 0.50 considering CALCHI < 5)

• these selections yield no proton contamination in the 
  normal case sample

• the proton contamination in the only-π 0 case sample is of order 
  of 10-5 (considering CALCHI < 5)

II – ConclusionsII – Conclusions

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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• PAMELA calorimeter  discrimination between electromagnetic and 
                                            hadronic showers induced by leptons and hadrons

• study the electromagnetic component in hadronic showers produced by π0 
  using GEANT3 simulations 
   artificially boosted the number of π0 produced in hadronic showers 
       (only-π 0 case simulations)

   I – the “Nature analysis” approach were applied to simulations
         the positron fraction is in good agreement with the one published in 
             Nature (O. Adriani et al., 2009, Nature, 458)
         it is unlikely that the rise in the positron fraction is due to π0 
             contamination of hadronic showers

   II – a new approach based on selections on shower profile variables was
          studied and tested on simulations in the energy range 20 – 100 GeV
           a positron selection efficiency of ~ 0.50 was found with a 
               proton contamination of order of 10-5

SummarySummary

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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• Extend the PAMELA positron fraction to E > 100 GeV

• a new approach, based on selections on shower profile
  variables, was tested on simulations in the energy range 
  20 – 100 GeV

• this new approach will be applied on positive charged particles 
  in flight data  
                        reproduce the positron fraction

• this method will be studied at higher energies, up to ~ 300 GeV
   the shower profile variables will be optimised at higher energies

• measurement of the positron fraction for E > 100 GeV could solve the 
  problem about primary positron production models

OutlookOutlook

Laura Rossetto  –  Licentiate seminar  –  November 10th 2010, Stockholm 
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Thank you!!!Thank you!!!
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