

PAMELA measurements of high energy cosmic ray positrons

Laura Rossetto

PhD defence, June 11th 2012, Stockholm

Cosmic ray positrons

- Electrons account for ~ 2% of the cosmic ray particles
 - → electrons and positrons lose energy very efficiently as they propagate
 - → they can probe acceleration and propagation mechanisms in a galactic region of ~ 1 kpc
- positrons are believed to be mainly secondary particles: p + p \rightarrow π^{\pm} , K^{\pm} π^{\pm} \rightarrow μ^{\pm} + ν_{μ} \rightarrow e^{\pm} + ν_{e} K $^{\pm}$ \rightarrow μ^{\pm} + ν_{μ} , π^{0} + π^{\pm}

The PAMELA experiment

P. Picozza et al., 2007, Astrop. Phys., 27

- Launch: 15th June 2006
- height of $\sim 1.3 \text{ m}$
- mass of 470 kg
- time-of-flight system
- magnetic spectrometer
- electromagnetic calorimeter
- neutron detector
- anticoincidence system

electromagnetic calorimeter

- → 44 silicon sensor planes (x-y) interleaved with 22 tungsten planes
- \rightarrow total depth = 16.3 $X_0 \sim 0.6 \lambda$
- → lepton hadron separation

Electromagnetic and hadronic showers

- electromagnetic showers
 - → characterised by a pronounced central core surrounded by a halo
- hadronic showers
 - → broader
 - → any maximum lies deeper in the calorimeter for a given incident energy
 - \rightarrow electromagnetic component induced by π^0

100 GeV positron

100 GeV proton

PAMELA positron fraction

- Positron fraction measured between 1.5 GeV and 100 GeV
- result based on the data collected between July 2006 and February 2008 (total acquisition time of ~ 500 days)

Simulation studies of π^0 contamination

- Study the π^0 produced in hadronic showers within the context of the positron analysis
- the study has been performed using Geant3 simulations
 - the number of π^0 has been artificially increased by changing every π^{\pm} produced into π^0 (without modifying the cross section of protons!!)

• simulations in the range 20 - 100 GeV and 100 - 300 GeV

- Study distributions of shower profile variables as function of the rigidity
 - → identify what variables permit an efficient discrimination between positrons and protons

Analysis in the energy range 20 – 100 GeV

 χ^2 constructed using 6 shower profile variables

$$\chi^2 < 5$$

- → positron selection efficiency ~ 57%
- \rightarrow proton contamination of order of 10^{-5}

8

Analysis in the energy range 100 – 300 GeV

 χ^2 constructed using 8 shower profile variables

$$\chi^2 < 8$$

- → positron selection efficiency ~ 52%
- \rightarrow proton contamination of order of 10^{-4}

Analysis in the energy range 100 – 300 GeV

$$\chi^{3} = \sum_{i=1}^{n} \chi^{3}_{\text{variable}[]} = \sum_{i=1}^{n} \frac{\left(\text{variable}[i] - \overline{\text{variable}[i]}\right)^{3}}{\sigma^{3}_{\text{variable}[]}}$$

 χ^3 constructed using 3 shower profile variables

$$\chi^3 > -10$$

- → positron selection efficiency ~ 50%
- \rightarrow proton contamination of order of 10^{-4}

Multivariate analysis approach

- As a cross—check to the results obtained with the χ^2 method, a multivariate approach has also been applied to flight data in the energy range 100-300 GeV
- the MultiLayers Perceptron (MLP) neural network has been used
 - \rightarrow the training process has been applied to the **signal** sample (**simulated positrons**) and to the **background** sample (**simulated protons** in the **only**- π^0 case)
 - → the resulting weights have been applied to simulations and to flight data

Multivariate analysis approach

100 - 300 GeV

simulated positrons

negatively charged particles in flight data

simulated protons

positively charged particles in flight data

Positron flux

• The number of positron events selected using the χ^2 method have been also used to evaluate the positron flux

$$\Phi(E) = \frac{N(E)}{\varepsilon(E)} \cdot \frac{1}{T_{live} \cdot G(E) \cdot \Delta(E)}$$

 $N(E) \rightarrow number of particles$

 ε (E) \rightarrow total efficiency

 $T_{live} \rightarrow live time$

 $G(E) \rightarrow geometrical factor$

 Δ (E) \rightarrow width of the energy bin

Positron flux

Positron flux

Conclusions

- A method which uses shower profile variables in the calorimeter has been tested on simulations in two energy ranges (20-100 GeV) and 100-300 GeV)
- a possible neutral pion contamination of hadronic showers has also been studied
- this method has been then applied to flight data
 - → the rise of the positron fraction has been confirmed
 - → the **positron fraction** and the **positron flux** have been evaluated up to ~ 300 GeV
- new experimental data are needed (e.g. AMS-02)

SPARES!

Cosmic ray positrons

- Electrons account for ~ 2% of the cosmic ray particles
 - → positrons can probe acceleration and propagation mechanisms in a galactic region of ~ 1 kpc (synchrotron radiation, inverse Compton scattering)
- positrons are believed to be mainly secondary particles: p + p \rightarrow π^{\pm} , K^{\pm}

- pure secondary production without reacceleration
- · − leaky–box model
- -- diffusion model

- Study distributions of shower profile variables as function of the rigidity
 - → identify what variables permit an efficient discrimination between positrons and protons
- construct the χ^2 variable

$$\chi^{2} = \sum_{i=1}^{n} \chi^{2}_{\text{variable}[i]} = \sum_{i=1}^{n} \frac{\left(\text{variable}[i] - \overline{\text{variable}[i]}\right)^{2}}{\sigma^{2}_{\text{variable}[i]}}$$

→ mean and standard deviation have been tuned on the simulated positron sample

20 - 100 GeV

distribution in the rigidity interval (30-32) GV

Simulated positrons

20 - 100 GeV

mean =
$$0.5367 + 0.0001929 \cdot R$$

$$\sigma = -0.6308 + e^{-0.423 - 0.0001909 \cdot R}$$

Analysis in the energy range 100 – 300 GeV

 χ^3 constructed using 3 shower profile variables

$$\chi^3 > -10$$

- → positron selection efficiency ~ 50%
- → proton contamination of order of 10⁻⁴
 (normal and only- π^0 case)

- Method tested on simulations in the energy ranges 20 100 GeV and 100 300 GeV
 - → applied to the flight data set collected between July 2006 January 2010 (~ 1200 days)

- in the energy range 100 300 GeV the positron fraction is dependent on the selection on the χ^3 variable
 - → a possible proton contamination needs to be estimated

How is it possible to estimate the proton contamination?

100 - 300 GeV

Rigidity (GV)	N_{e^+}	N_{e^-}	e ⁻ selection efficiency	$N_{e^+} / (N_{e^+} + N_{e^-})$
28 - 42	47	587	38.9 %	0.074 ± 0.017
42 - 65	11	148	23.1 %	0.069 ± 0.030
65 - 100	3	21	7.5 %	$0.125 {}^{+}_{-} {}^{0.177}_{0.087}$

Rigidity (GV)	N_{e^+}	N_{e^-}	e ⁻ selection efficiency	$N_{e^+} / (N_{e^+} + N_{e^-})$
100 - 200	4	30	10.6 %	$0.118 ^{+\ 0.137}_{-\ 0.074}$
200 - 300	1	1	0.5 %	$0.500 \stackrel{+}{-} \stackrel{1.322}{_{0.336}}$
100 - 300	5	31	6.6 %	$0.139 ^{+~0.136}_{-~0.080} (stat.)$
100 - 300	5	31	6.6 %	$0.139^{+\ 0.136}_{-\ 0.120}\ (stat.+syst.)$
100 - 300	$6.1 {}^{+\ 6.9}_{-\ 4.9}$	38	8.1 %	$0.138 {}^{+\ 0.138}_{-\ 0.101}$

Multivariate analysis approach

Fit range	N_{e^+}	N_{e^-}	$N_{e^+} / (N_{e^+} + N_{e^-})$
$[-1 \; , 1]$	13.7 ± 4.1	85.8 ± 8.8	0.138 ± 0.037
[0 , 1]	16.2 ± 4.7	81.4 ± 8.5	0.166 ± 0.043
$[0\ , 0.7]$ with constant	6.3 ± 3.7	66.2 ± 6.2	0.087 ± 0.047
χ^2 and χ^3 method	5	31	$0.139 ^{+~0.136}_{-~0.080} (stat.)$
χ^2 and χ^3 method	$6.1 {}^{+\; 6.9}_{-\; 4.9}$	38	$0.138 ^{\ +\ 0.138}_{\ -\ 0.101}$

