PILOT'S OPERATING HANDBOOK

and FAA APPROVED AIRPLANE FLIGHT MANUAL

CESSNA AIRCRAFT COMPANY

1980 MODEL 172 N

THIS DOCUMENT MUST BE CARRIED IN THE AIRPLANE AT ALL TIMES.

Serial No. 17272908
Registration No.N662/D

THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PLLOT BY CAR PART 3 AND CONSTITUTES THE FAA APPROVED AIRPLANE FLIGHT MANUAL.

COPYRIGHT * 1979
CESSNA AIRCRAFT COMPANY WICHITA, KANSAS, USA

THIS MANUAL WAS PROVIDED FOR THE AIRPLANE IDENTIFIED ON THE TITLE PAGE ON \qquad . SUBSEQUENT REVISIONS SUPPLIED BY CESSNA AIRCRAFT COMPANY MUST BE PROPERLY IN. SERTED.

Welcome to the ranks of Cessia ownersl Your Cessna has been designed and constructed to give you the most in performance, economy, and comfort. It is our desire that you will find flying it, either for business or pleasure, a pleasant and profitable experience.

This Pilot's Operating Handbook has been prepared as a guide to help you get the most pleasure and utility from your airplane. It contains information about your Cessna's equipment, operating procedures, and performance; and suggestions for its servicing and care. We urge you to read it frem cover to cover, and to reter to it frequenty.

Our interest in your flying pleasure has not ceased with your purchase of a Cessna. World-wide, the Cessna Dealer Organization backed by the Cessna Customer Services Department stands ready to serve you. The following services are offered by most Cessna Dealers:

- THE CESSNA WARRANTY, which provides coverage for parts and labor, is available at Cessna Dealers worldwide. Specific benefits and provisions of warranty, plus other important benefits for you, are contained in your Customer Care Program book, supplied with your airplane. Warranty service is available to you at authorized Cessna Dealers throughout the world upon presentation of your Customer Care Card which establishes your eligibility under the warranty.
- FACTORY TRAINED PERSONNEL to provide you with courteous expert service.
- FACTORY APPROVED SERVICE EQUIPMENT to provide you efficient and accurate workmanship.
- A STOCK OF GENUINE CESSNA SERVICE PARTS on hand when you need them.
- THE LATEST AUTHORITATIVE INFORMATION FOR SERVICING CESSNA AIRPLANES, since Cessna Dealers have all of the Service Manuals and Parts Catalogs, kept current by Service Letters and Service News Letters, published by Cessna Aircraft Company.

We urge all Cessna owners to use the Cessna Dealer Organization to the fullest.
A current Cessna Dealer Directory accompanies your new airplane. The Directory is revised frequently, and a current copy can be obtained from your Cessna Dealer. Make your Directory one of your cross-country flight planning aids; a warm welcome awaits you at every Cessna Dealer.

PERFORMANCE - SPECIFICATIONS

SPEED:
Maximum at Sea Level 125 KNOTS
Cruise, 75% Power at 8000 Ft 122 KNOTS
CRUISE: Recommended lean mixture with fuel allowance forengine start, taxi, takeoff, climb and 45 minutesreserve.
75% Power at 8000 Ft Range 455 NM
40 Gallons Usable Fuel Time 3.8 HRS
75% Power at 8000 Ft Range 600 NM
50 Gallons Usable Fuel Time 5.0 HRS
Maximum Range at $10,000 \mathrm{Ft}$ Range 575 NM
40 Gallons Usable Fuel Time 6.1 HRS
Maximum Fange at $10,000 \mathrm{Ft}$ Range 750 NM
50 Gailons Usable Fuel Time 7.9 HRS
RATE OF CLIMB AT SEA LEVEL 770 FPM
SERVICE CEILING 14,200 FT
TAKEOFF PERFORMANCE:
Ground Roll 775 Fr
Total Distance Over 50-Ft Obstacle 1390 FT
LANDING PERFORMANCE:
Ground Roll 520 FT
Total Distance Over 50-Ft Obstacle 1250 FT
STALL SPEED (CAS):
Flaps Up, Power Off 50 KNOTS
Flaps Down, Power Off 44 KNOTS
MAXIMUM WEIGHT:
Ramp 2307 LBS
Takeoff or Landing 2300 LBS
STANDARD EMPTY WEIGHT: Skyhawk 1403 LBS
Skyhawh II 1430 LBS
MAXIMUM USEFUL LOAD: Skyhawk 904 LBS
Skyhawk II 877 LBS
BAGGAGE ALLOWANCE 120 Lus
WING LOADING: Potnds/Sq Ft 13.2
POWER LOADING: Pounds/HP 14.4
FUEL CAPACITY: Totel
Standard Tanks 43 GAL.
Long Range Tanks 54 GAL.
OLL CAPACITY 6 QTS
ENGINE: Avco Lycoming O-320-H2AL
160 BHP at 2700 RPM
PROPELLER: Fixed Pitch, Diameter 75 IN.

COVERAGE

The Pilot's Operating Handbook in the airptane at the time of delivery from Cessna Aircraft Compary contains information applicable 10 the 1980 Model 172 N atplane designated by the serial number and registration namber shown on the Tale Page of this handbook.

REVISIONS

Changes and/or additions to this handbook will be covered by revisions published by Cessnd Aircralt Company. These revisions are distributed to all Cessna Dealers and to owners of U.S. Registered aircralt according to FAA records at the time of revision issuance.

Revisions should be examined immediately upon receipt and incorporated in this handbook.

NOTE

It is the responsibility of the owner to maintain this handbook in acurent status when it is being used ior operational purposes.

Owners should contact their Cessna Dealer whenever the revisionstatus of their handbook is in question.

A revision bar will extend the full lengith of new or revised text and/or illustrations added on new or presently existing pages. This bar will be located adjacent to the applicable revised atea on the outer margin of the page.

All revised pages will carry the revision number and date on the applicable page.
The following Log of Eflective Pages prorides the dates of issue for originat and revised papes, and a listing of all pages in the handbook. Pages affected by the current revision are indicared by an asterisk (*) preceding the pages listed.

LOG OF EFFECTIVE PAGES

Dates of isstue for original and revised pages are:	
Page Date	Page Date
Title 1 fuly 1979	5-22 Blank................. ${ }^{\text {I July } 1979}$
Assigriment Record 1 fuly 1979	6-1 I July 1979
ithru it 1] July 1979	6.2 Blank. 1 duly 7979
*iii 15 November 1979	6-3 thru 6-23............. 1 July 1979
iv......................... . 1 July 1979	6-24 Blank. 1 july 1979
1-1 thru 1-3 7 July 1979	7-1 thru 7-17 1 July 1979
*1.4 15 November 1979	*7-18 15 November 1979
1.5 thru 1-9 I July 1979	7-19 thru 7-40 1 July 1979
1-10 Blank. \ddagger Juiy 1979	8-1 1 Ityly 1979
2-1 I Juiy 1979	8-2 Blank. 7 July 1979
2-2 Elank. I July 1979	B-3 thru 8-9 1 July 9979
2-3 thru 2-12 1 , juy 1979	* $6-70$ thru 8.11 15 November 1979
3-1 thru 3-9 7 July 1979	8-12 thru 8-17 1 July 1979
3-10 Blank. 1 July 1979	8-18 alank. 1 July 1979
$3-11$ thru $3-78$............ 1 July 1979	9-1 thru 9-2 1 July 1979
4-7 thru 4-20 1 July 1979	
*4.21 15 November 1979	NOTE
4.22 thre 4-24 1 July 1979	Refer to Section 9 Table of Contents for
5-1 1 July 1979	supplements applicable to optional sys-
5-2 Blank. + 1 July 1979	tems.
5-3 thru 5-27 1 July 1979	

TABLE OF CONTENTS

SECTION
GENERAL 1
LIMITATIONS 2
EMERGENCY PROCEDURES 3
NORMAL PROCEDURES 4
PERFORMANCE. 5
WEIGHT \& BALANCE/
EQUIPMENT LIST 6
AIRPLANE \& SYSTEMS DESCRIPTIONS 7
AIRPLANE HANDLING, SERVICE \& MAINTENANCE 8
SUPPLEMENTS
(Optional Systems Description \& Operating Procedures) 9

SECTION 1 GENERAL

TABLE OF CONTENTS

Page

Three View . 1-2
Introduction . 1-3
Descriptive Data . 1-3
Engiae . 1-3
Propelier . 1-3
Fuel . 1-3
Oil . 1-4
Maximum Certificated Weights 1.5
Standard Airplane Weights $1-5$
Cabin And Entry Dimensions 1-5
Baggage Space And Entry Dimensions 1-5
Specific Loadings . 1-5
Symbols, Abbreviations And Terminology 1-6
General Airspeed Terminology And Symbols $1-6$
Meteorological Terminology 1-6
Engine Powex Terminology 1-7
Airplane Performance And Flight Planning Terminology . . . 1-7
Weight And Balance Temminology 1-8

Figure 1-1. Three View

INTRODUCTION

This handbook contains 9 sections, and includes the material required to be furnished to the pilot by CAR Part 3. It also contains supplemental data supplied by Cessna Airoraft Company.

Section 1 provides basle data and information of general interest. It also contains definitions or explanations of symbols, abbreviations, and torminology commonly used.

DESCRIPTIVE DATA

ENGINE

Number of Engines: 1.
Engine Manufacturer: Aveo Lycoming.
Engine Model Number: O-320-H2AD.
Engine Type: Normally-aspirated, direct-drive, air-cooled, horizontally. opposed, carburetor equipped, four-cylinder engine with 320 cu . in. displacement.
Horsepower Rating and Engine Speed: 160 rated BHP at 2700 RPM.

PROPELLER

Propeller Manufacturer: McCauley Accessory Division.
Propeller Model Number: 1C160/DTM7557.
Number of Blades: 2.
Propeller Diameter, Maximum: 75 inches. Minimum: 74 inches.
Propeller Type: Fixed pitch.

FUEL

Approved Fuel Grades (and Colors):
100LL Grade Aviation Fuel (Blue).
100 (Formerly 200/130) Grade Aviation Fuel (Green).
NOTE
Isopropyl alcohol or ethylene glycol monomethyt ether may be added to the fuel supply Additive concentrations shall not exceed 1% for isopropyl alcohol or $.15 \%$ for ethylene glyool monomethyt ether. Refer to Section 8 for additional information.

Fuel Capactis:
Standard Tanks:
Total Capacity: 43 gallons.
Total Capacity Each Tank: 21.5 gallons.
Total Usable: 40 gallons.
Long Range Tanks:
Total Capacity: 54 gallons.
Total Capacity Each Tank: 27 gallons.
Total Usable: 50 gallons.

NOTE

To ensure maximum fuel capacity when refueling and minimize cross-feeding wher parked on a sloping surface, place the fuel selector valve in either LEFT or RIGHT position.

OIL

Oil Grade (Specification):

MIL-L-22851 Ashless Dispersant Oil: The airplane was delivered from the factory with SAE 20 W - 50 ashless dispersant aircraft engine oil. Ashless dispersant aircraft engine oil must be used for all operating conditions.

NOTE

Use a minimum of 75% power for cruise during the first 50 hours of operation or until ofl consumption stabilizes. Service the engine oil system with aviation anhless dispersent oil only.

Required Viscosity for Temperature Range:
MrL-L-22851 Ashless Dispersant Ot1:
SAE 20W-50 or SAE $15 W$ - 50 for all temperatures.

NOTE

If multi-viscostyy ashless dispersant aircraft engine oil is not available, the following ashless dispersant aircraft engine oil may be used.

SAE 50 above $60^{\circ} \mathrm{F}$ ($18^{\circ} \mathrm{C}$).
SAE 40 between $30^{\circ} \mathrm{F}^{\prime}\left(-1^{\circ} \mathrm{C}\right)$ and $90^{\circ} \mathrm{F}^{\prime}\left(32^{\circ} \mathrm{C}\right)$.
SAE 30 between $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ and $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$.
SAE 20W 30 below $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ to $70^{\circ} \mathrm{F}^{\circ}\left(21^{\circ} \mathrm{C}\right)$.
OLI Capacity:
Sump: 6 Quarts.
Total: 7 Quarts (if oil filter installed).

MAXIMUM CERTIFICATED WEIGHTS

Ramp. Normal Category: 2307 lbs .
Utility Category: 2007 Ibs.
Takeoff. Normal Category: 2300 lbs .
Utility Category: 2000 lbs .
Landing, Normal Category: 2300 Ibs.
Utility Category: 2000 lbs.
Weight in Baggage Compartment, Normal Category:
Baggage Area 1 (or passenger on child's seat) - Station 82 to 108: 120 lbs. See note below.
Baggage Area 2-Station 108 to 142: 50 lbs . See note below.
NOTE
The maximum combined weight capacity for baggage arbas 1 and 2 is 120 lbs.

Weight in Baggage Compartment, Utility Category: In this category, the baggage compartment and rear seat must not be occupled.

STANDARD AIRPLANE WEIGHTS

Standard Empty Woight, Skyhawk: 1403 lbs. Skyhawk II: 1430 lbs .
Maximum Useful Load:
Skyhawk:
Skyhawi I:

Normal Category
904 lbs. 977 lbs.

UtiLity Category

 604 lbs. 577 lbs.
CABIN AND ENTRY DIMENSIONS

Detailed dimensions of the dabin interior and entry door openingsare illustrated in Section 6 .

BAGGAGE SPACE AND ENTRY DIMENSIONS

Dimensions of the baggage area and baggage door opening are illustrated in detail in Section 6.

SPECIFIC LOADINGS

Wing Loading: $13.2 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$.
Power Loading: $14.4 \mathrm{lbs} . / \mathrm{hp}$.

SYMBOLS, ABBREVIATIONS AND TERMINOLOGY

GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS

KCAS	Knots Calibrated Airspeed is indicated airspeed corrected for position and instrument error and expressed in knots. Knots calibreted airspeed is equal to KTAS in standard atmosphere at sea level.
KLAS	Knots Indicated Airspeed is the speed shown on the airspeed indicator and expressed in knots.
KTAS	Knots True Airspeed is the airspeed expressed in knots relative to undisturbed air which is KOAS corrected for altitude and temperature.
V_{A}	Manuevering Speed is the maximum speed at whick you may use abrupt control travel.
$V_{\text {FE }}$	Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position.
V_{NO}	Maximum Structural Cruising Speed is the speed that should not be exceeded except in smooth air, then only with caution.
V_{NE}	Never Exceed Speed is the speed limit that may not be exceeded at any time.
V_{S}	Stalling Speed or the minimum steady flight speed at which the airplane is controllable.
${ }^{\mathrm{V}} \mathrm{s}_{\mathrm{o}}$	Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configu. ration at the mosw forward center of gravity.
V_{X}	Best Angle-of-Climb Speed is the speed which restalts in the greatest gain of altitude in a given horizontal distance.
V_{Y}	Best Rate-of-Climb Speed is the speed which results in the greatest gain in altitude in a given time.

METEOROLOGICAL TERMINOLOGY

OAT
Outside Air Temperature is the free air static temperature.

It is expressed $1 n$ ether degrees Celsius or degrees Fainrenheit.

Standard Standard Temperature is $15^{\circ} \mathrm{C}$ at sea level pressure alti* Tempera- tude and decreases by $2^{\circ} \mathrm{C}$ for each 1000 feet of altitude.

Pressure Pressure Alttitude is the altitude read from an altimeter Altitude when the aitimeter's berometric scale has been set to 29.92 inches of mercury (10.3 mb).

ENGINE POWER TERMINOLOGY

BHP	Brake Horsepower is the power developed by the engine.
RPM	Hevolutions Per Minute is engine speed.
Static	Static RPM is engine speed attained during a futl-throttle
RPM	engine runup when the airplane is on the ground and stationary.

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

	Demonstrated Crosswind Velocity is the velocity of the
strated	crosswind component for which adequate control of the
Crosswind	airplane during takeoff and landing was actually demon-
Velocity	strated during certification tests. The value shown is not considered to be limiting.
Usable Fuel	Usable Fuel is the fuel available for flight planning.
Unusable Fuel	Unusable Fuel is the quantity of fuel that can not be safely used in flight.
GPY	Gallons Per Hour is the amount of fuel (in gallons) consumed per hour.
NMPG	Nautical Miles Per Gallon is the distance (in nautioal miles) which can be expected per gallon of fuel consumed at a specific encine power setting and/or flight configuration.
g	g is acceleration due to gravity.

WEIGHT AND BALANCE TERMINOLOGY

Reference Datum	Reference Datum is an imaginary vertical plane from which all horizontal distances are measured for balance purposes.
Station	Station is a location along the airplane fuselage given it terms of the distance from the reference datum.
Arm	Arm is the horizontal distance from the reference datum to the center of gravity (C.G.) of an itom.
Moment	Moment is the product of the weight of an item multiplied by its arm. (Moment divided by the constant 1000 is used in this handbook to simplify balance calculations by reductng the number of digits.)
Center of Gravity (C.G.)	Center of Grawity is the point at which an airplane, or equipment. would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
$\begin{aligned} & \text { C.G. } \\ & \text { Arm } \end{aligned}$	Center of Gravity Am is the arm obtatned by adding the atrplane's individual moments and dividing the sum by the total weight.
C.G. Limits	Center of Gravity Limits are the extreme center of gravity locations within which the airplame must be operated at a given weight.
Standard Empty Weight	Standard Empty Weight is the weight of a standard airplane, including unusable fuel, full operating fluids and full engine oil.
Basic Empty Weight	Baslo Empty Weight is the standard empty welght plus the weight of optional equipment.
Useful Load	Useful Load is the differemeo between ramp weight and the basic empty weight.
Maximum Ramp Weight	Maximum Ramp Weight is the maximum weight approved for ground maneuver. (It includes the weight of start, taxi, and runup fuel.)
Maximum Takeoff Weight	Maximum Takeoff Weight is the maximum weight ap* proved for the start of the takeoff run.

Maximum Maximum Lending Welgint is the maximum weight apLanding Weight

Tare T'are is the weight of chocks, blochs, stands, ote. used when weighing an adxplane, and is included in the scale readings. Tare is deducted from the seale reading to obtain the actual (net) airplane weight.

SECTION 2 LIMITATIONS

TABLE OF CONTENTS

Introduction 2-3
Airspeed Limitatlons 2-4
Airspeed Indicator Markings $2-5$
Power Plant Limitations $2-5$
Power Plant Instrument Markings 246
Weight Limits 2-6
Normal Category 2-6
Utility Category 2-7
Center Of Gravity Limits 2-7
Normal Categoxy 2-7
Utility Category $2-7$
Maneuver Limits 2.7
Normal Category $2-7$
Utility Category 2.7
Flight Load Factor Limits 2.8
Normal Category $2-8$
Utility Categrory $2-8$
Kinds Of Operation Limits 2.9
Fuel Limitations 2.9
Other Limitations 2.9
Flap Limitations $2-9$
Placards 2-10

INTRODUCTION

Section 2 includes operating limitations, instrument markings, and basio placards necessary for the safe operation of the airplane, its engine, standard systems and standard equipment. The limitations included in this section and in Section 9 have been approved by the Federal Aviation Administration. Observance of these operating limitations is reguired by Federal Aviation Regulations.

NOTE

Refer to Section 9 of this Pilot's Operating Handbook for amended operating limitations. operating procedures. performance data and other neeessary information for airplanes equipped with specific options.

NOTE
The airspeeds Listed in the Airspeed Limitations chart (ftgure 2-1) and the Airspeed Indicator Markings chart (figure 2-2) are based on Airspeed Calibration data shown in Section 5 with the normal static source. If the alternate static source is being used, ample margins should be observed to allow for the airspeed calibration variations between the normal and alternate static sources as shown in Section 5.

Your Cessna is certificated under FAA Type Certificate No. 3A12 as Cessna Model No. 172 N .

AIRSPEED LIMITATIONS

Aisspeed limitations and their operational significance are shown in figure 2-1. Maneuvering speeds shown apply to normal category operan tions. The utitity category maneuvering speed is 97 KIAS at 2000 pounds.

	SPEED	Kcas	KıAS	REMARKS
V_{NE}	Never Exceed Speed	158	158	Do not exceed this speed in any operation.
$\mathrm{VNO}_{\text {NO }}$	Maximum Structura! Cruising Speed	126	127	Do not axceed this speed except in smooth air, and then only with caution
$\mathrm{V}_{\text {A }}$	Maneuvering Speed: 2300 Pounds 1950 Pounds 1600 Pounds	$\begin{aligned} & 96 \\ & 88 \\ & 80 \end{aligned}$	$\begin{aligned} & 97 \\ & 89 \\ & 80 \end{aligned}$	Do not make full or abrupt control movements above this speed.
VFE	Maximum Flap Extended Speed: $\begin{aligned} & 10^{\circ} \text { Fraps } \\ & 10^{\circ}-40^{\circ} \text { Flaps } \end{aligned}$	$\begin{array}{r} 110 \\ 87 \end{array}$	$\begin{array}{r} 110 \\ 85 \end{array}$	Do not exceed this speed with flaps down.
	Maximum Wincow Dpen Speed	158	158	Do not exceed this speed with windows open.

Figure 2"1. Airspeed Limitations

AIRSPEED INDICATOR MARKINGS

Atrspeed fndicator markings and their color code significance are shown in figure 2-2.

MARKING	Kias value OR RANGE	SIGNIFICANCE
White Are	33-85	Full Flap Operating Range. Lower limit is maximum weight $V_{S_{o}}$ in landing configuration. Upper limit is maximum speed permissible with flaps extended.
Green Arc	44-127	Normal Operating Range. Lower limit is maximum weight V_{S} at most forward C.G. with flaps retracted. Upper limit is maximum structural cruising speed.
Yellow Arc	127-158	Operations must be conducted with caution and only in smooth air.
Red line	158	Maximum speed for all operations,

Figure 2-2. Airspeed Indicator Markings

POWER PLANT LIMITATIONS

Engine Manufacturer: Avco Lycoming.
Engine Model Number: O-320-H2AD.
Engine Operating Limits for Takeofi and Continuous Operations:
Maximum Power: 160 BHP rating.
Maximum Engine Speed: 2700 RPM.

NOTE

The static RPM range at full throttle (carburetor heat off and full rich mixture) is 2280 to 2400 RPM.

Maximum Oil Temperature $245^{\circ} \mathrm{F}\left(118^{\circ} \mathrm{C}\right)$.
Oil Pressure, Minimum: 25 psi.
Maximum: 115 pst.
Propeller Manufacturer: McCauley Accessory Division.
Propeller Model Number: 1Ci60/DTM7557.
Propeller Diameter, Maximum: 75 inches.
Minimum: 74 inches.

'POWER PLANT INSTRUMENT MARKINGS

Power plant instrument maxkings and their color code significance are shown in figure en 3 .

INSTAUMENT	REO LINE	GREEN ARC	YELLOW ARC	RED LINE
	MNIMUMA LIMIT	NORMAL OPERATING	GAUTION RANGE	MAXIMUM をIMIT゙
Tachometer: Seat Level 5000 Feet 10000 Fee:	--	2100-2450 RPM 2100-2575 RPM 2100-2700 RPM	--.	2700 RPM
Oil Temperature	--	$100^{\circ}-245^{\circ} \mathrm{F}$	---	$245{ }^{\circ} \mathrm{F}$
Oil Pressure	25 psi	60-90 psi	.-.	115 psi
Fuel Ouantity (Standard Tanks)	E (1.5 Gal. Unusable Each Tank)	--.	---	- -
Fuel Ouantity (Long Range Tanks)	E 120 Gal. Unusable Each tank)	\ldots	- .	.-.
Suction	---	4.5-5.4 in. Hg	- -	- -

Pigure 2-3. Power Plant Instrument Markings

WEIGHT LIMITS

NORMAL CATEGORY

Maximum Ramp Weight: 2307 dbs.
Maximum Takeoff Weight: 2300 lbs .
Maximuma Landing Weight: 2300 Ibs .
Maximum Weight in Baggage Compartmont:
Baggage Area ((or passenger on child's seat) - Station 82 to 108: 120 lbs. See note below.
Baggage Area 2 - Station 108 to 142: 50 lbs . See note below.
NOTE
The maximum combined weight capacity for baggage areas 1 and 2 is 120 lbs .

UTILITY CATEGORY

Maximum Ramp Weight: 2007 Ibs.
Maximum Takeoff Weight: 2000 lbs.
Maximum Landing Weight: 2000 lbs.
Maximum Weight in Baggage Compartment: In the utility category, the baggage compartment and rear seat must not be occupied.

CENTER OF GRAVITY LIMITS

NORMAL CATEGORY

Center of Gravity Range:
Forward: 35.0 inches aft of datum at 1950 lbs . or less, with straight line variation to 38.5 inches aft of datum at 2300 lbs .
Aft: 47.3 inches aft of datum at all weights.
Reference Datum: Lower portion of front face of firewall.

UTILITY CATEGORY

Center of Gravity Range:
Forward: 35.0 inches aft of datum at 1950 lbs . or less, with straight line variation to 35.5 inches aft of datum at 2000 lbs .
Aft: 40.5 inches aft of datum at all weights.
Reference Datum: Lower portion of front face of firewall.

MANEUVER LIMITS

NORMAL CATEGORY

This aixplane is certificated in boti the normal and utility category. The normal category is applicable to aireraft intended for non-aerobatio operations. These include any maneuvers incidental to normal flying, stails (except whip stalls), lazy eights, chandelles, and turns in which the angle of bank is not more than 60°. Aerobatic maneuvers, including spins, are not approved.

UTILITY CATEGORY

This airplane is not designed for purely aerobatic flight. However, in the acquisition of varlous certiffeates such as commercial pilotand fight instructor, certain meneuvers are required by the FAA. All of these maneuvers are permitted in this airplane when operated in the utility category.

In the utility category, the baggage compartment and rear seat must not be occupied. No aerobatic maneuvers are approved except those insted below:

MANEUVER RECOMMENDED ENTRY SPEED*
Chandelles . 105 knots
Lazy Eights
Steep Turns
Spins
Stalls (Except Whip Stalls) Slow Deceleration

* Abrupt use of the controls is prohibited above 97 knots.

Aerobatics that may impose high loads should not be attempted. The important thing to bear in mind in flight meneuvers is that the airplane is clean in aerodynamic design and will build up speed quickly with the nose down. Proper speed control is an essential requirement for execution of any maneuver, and care should always be oxercised to avoid excessive speed which in turn can impose excessive loads. In the execution of all maneuvers, avoid abrupt use of controls. Intentional spins with flaps extended are prohibited.

FLIGHT LOAD FACTOR LIMITS

NORMAL CATEGORY

Fight Load Factors (Maximum Takeoff Weight - 2300 lbs .):

*Flaps Down +3.0 g
"The design load factors are 150% of the above, and in all oases, the structure meets or exceeds design loads.

UTILITY CATEGORY

*The design load factors are 150% of the above, and in all cases. the structure meets or exceeds design loads.

KINDS OF OPERATION LIMITS

The airplane is equipped for day VFR and may be equipped for night VFR and/or IFR operations. FAR Part 91 establishes the minimum required instrumentation and equipment for these operations. The reference to types of flight operations on the operating limitations placard reflects equipment installec as the time of Airworthiness Certificate issuance.

Fight into known icing conditions is prohibited.

FUEL LIMITATIONS

2 Standard Tanks: 21.5 U.S. gallons each.
Total Fuel: 43 U.S. gallons.
Usable Fuel (all fitght conditions): 40 U.S. gallons.
Jnusable Fuel: 3 U.S. gallons.
2 Long Range Tanks: 27 U.S. gallons each.
Total Fuel 54 U.S. gallons.
Usable Fuel (all fight conditions): 50 U.S. gallons.
Unusable Fuel: 4 U.S. gallons.

NOTE

To ensure maximum fuel capacity when refueling and minimize cross-feeding when parked on a sloping surface, place the fuel selector valve in either LEFT or RIGFT position.

Takeoff and land with the fuel selector valve handle in the BOTH position.
Fuel remaining in the tank after the fuel quantity indicator reads empty (red line) cannot be safely used in flight.

Approved Fuel Grades (and Colors):
100LL Grade Aviation Fuel (Blue).
100 (Formerly 100/130) Grade Aviation Fuel (Green).

OTHER LIMITATIONS

FLAP LIMITATIONS

Approved Takeoff Renge: 0° to 10°.
Approved Landing Range: 0° to 40°.

PLACARDS

The following information must be displayed in the form of composite or individual placards.

1. In fuil view of the pilot: (The "DAY-NIGHT-VFR-IFR" entry. shown on the example below, will vary as the airplane is equipped.)

The markings and placards installed in this airplare contain operating limitations which must be complied with when operating tinis airplane in the Normal Category. Other operating limitations which must be complied with when operating this airplane in this category or in the Utility Category are contained in the Pilot's Operating Handbook and FAA Approved Airplane Flight Mantait.

Normal Category	- No acrobatic maneuvers, including spins, approved.
Utility Category	- No acrobatic maneuvers a
	except those listed in the
	Pilot's Operating Handbook.
	Bagrage compartment and xear seat must not be occupied.
Spin Recovery	- Opposite rudder-forward elevator neutralize controls.

Flight into known tcing conditions prohibited.
This airplane is certified for the following fight operations as of date of original airworthiness certificate:

$$
\mathrm{DAY}-\mathrm{NIGHT}-\mathrm{VFR}-1 F R .
$$

2. On the fuel selector valve (standard tanims):

BOTH - 40 GAL. ALL FLIGHT ATTITUDES.
TAKEOFF, LANDING.
LEFT - 20 GAL. LEVEL FLIGHT ONLY
RIGHT - 20 GAL. LEVEL F'LIGHT ONLY OFF

On the fuel selector valve (long range tanks):

BOTH - 50 GAL ALL FLIGHT ATTITUDES. TAKEOFF, LANDING.
LEFT - 25 GAL LEVEL FLIGHT ONLY
RIGFT - 25 GAL. LEVEL FLIGHT ONLY OFF
3. Near fuel tank filler cap (standard tanks):

FUEL
100LL/ 100 MLN . GRADE AVIATION GASOLINE - CAP. 21.5 U.S. GAL.

Near fuel tank filler cap (long range tanks):

> FUEL
> 100LL/100 MIN. GAADE AVIATION GASOLINE CAP. 27 US. GAL.
4. Near wing flap switch:

AVOID SLIPS WITH FLAPS EXTENDED

5. On flep control tndicator:

| 0° to $10^{\circ} \quad$(Partial flap range with blue color
 code and 110 kt callout; also.
 mechanical detent at $\left.10^{\circ}.\right)$ |
| :---: | :--- |
| 10° to $40^{\circ} \quad$(Indices at thesepositions wtth white
 color code and 85 kt callout; also,
 mechanical detent at 10° and $\left.20^{\circ}.\right)$ |

6. In baggage compartment:

120 POUNDS MAXIMUM BAGGAGE AND/OR AUXILIARY PASSENGER FORWARD OF BAGGAGE DOOR LATCH

50 POUNDS MAXIMUM
BAGGAGE AFT OF BAGGAGE DOOR LATCH
MAXIMUM 120 POUNDS COMBINED
FOR ADDITYONAL LOADING INSTRUCTIONS SEE WEIGHT AND BALANCE DATA
7. A calibration card is provided to indicate the accuraoy of the magnetic compass in 30° increments.
8. On oil filler cap:

$$
\begin{aligned}
& \text { OLL } \\
& 6 \text { QTS }
\end{aligned}
$$

9. On controi lock:

CONTROL LOCK - REMOVE BEFORE STARTLNG ENGINE
10. Near airspeed indicator:

路 EMERGENCY PROCEDURES

 SECTION 3
TABLE OF CONTENTS

Page

Introduction . 3-3
Atrspeeds For Emergency Operation 3-3
OPERATIONAL OHECKLISTS
Engine Failures . $3+3$
Engine Failure During Takeoff Rur 3-3
Engine Failure Immediately After Takeoff 3-4
Engine Failure During Flight 3-4
Forced Landings . 3×4
Emergency Landing Without Engine Power 3-4
Precautionary Landing With Engine Power 3-4
Ditching . $3-5$
Fires . 3-5
During Start On Ground 3-5
Engine Fire In Flight . 3-6
Electrical Fire In Flight 3-6
Cabin Fire . $3-7$
Wing Fire . 3.7
loing . 3-7
Inadvertent Icing Encounter 3-7
Static Source Blockage (Erroneous Instrument Reading
Suspected) $3-8$
Landing With A Flat Main Tire 3-8
Electrical Power Supply System Malfunctions 3-8
Ammeter Shows Excessive Rate of Charge (Full Scale Defiection)3-8
Low.Voltage Light Illuminates During
Flight (Ammeter Indicates Discharge) 3-9
AMPLIFIED PROCEDURES
Engine Failure 3-11
Forced Landings 3-12
Landing Without Elevator Control 3-12
Fires 3-12
TABLE OF CONTENTS (Continued)Page
Emergency Operation In Clouds (Vacuum System Fatlure) 3.13
Executing A $180^{\circ} \mathrm{Tu} \mathrm{rn}$ In Clouds 3-13
Emergency Descent Through Clouds 3-13
Recovery From A Spiral Dive 3.14
Inadvertent Flight Into Icing Conditions 3-14
Static Source Blocked 3-14
Spins 3-15
Rough Engine Operation Or Loss Of Power 3-10
Carburetor Icing 3-16
Spark Plug Fouling 3-16
Magneto Malfunction 3-16
Low Oil Pressure 3-28
Electrical Power Supply System Malfunctions 3-17
Excessive Rate Of Charge 3-17
Insufficient Rate Of Charge $3 \cdot 17$

INTRODUCTION

Section 3 provides checklist and amplafied procedures for coping with emergencies that may occur. Emergencles caused by airplane or engine malfunctions are extremely rare if proper preflight inspections and maintenance are practiced. Extoute weather emergencies can be minimized or eliminated by careftal flight planning and good judgment when unexpected weather is encountered. However, should an emergency arise. the basio guidelines described in this section should be considered and applied as necessary to correct the problem. Emergency procedures associated with ELT and other optional systems cen be found in Section 9 .

AIRSPEEDS FOR EMERGENCY OPERATION

Engine Fature After Takeoff:
Wing Flaps Up 65 KIAS
Wing Flaps Down 60 KIAS
Maneuvering Speed:
2300 Lbs 97 KIAS
1950 Lbs 89 KIAS
1600 Lbs 80 KLAS
Maximum Glide 65 KIAS
Precautionary Landing With Engine Power co KIAs
Landing Without Engine Power:
Wing Flaps Up 65 KIAS
Wing Flaps Down 60 KLAS
OPERATIONAL CHECKLISTS

ENGINE FAILURES

ENGINE FAILURE DURING TAKEOFF RUN

1. Throttle -- IDLE.
2. Brakes - APPLY.
3. Wing Flaps -- RETRACT.
4. Mixture - IDLE CUT-OFF.
5. Ignition Switch -- OFF.
6. Master Switch -- OFF.

ENGINE FAILURE IMMEDIATELY AFTER TAKEOFF

1. Airspeed ** 65 KIAS (flaps UP).

60 KIAS (flaps DOWN).
2. Mixture -- IDLE CUT-OFF.
3. Fuel Selector Valve - OFF.
4. Ignition Switch \rightarrow OFF'.
5. Wing Fleps -- AS REQUIRED.
6. Master Switch -- OFF.

ENGINE FAILURE DURING FLIGHT

1. Airspeed -- 65 KLAS.
2. Carburetor Heat .. ON.
3. Fuel Selector Valve -- BOTH.
4. Mixture-- FICH .
5. Ignition Switoh - BOTH (or START if propeller is stopped).
6. Primer -- IN and LOCKED.

FORCED LANDINGS

EMERGENCY LANDING WITHOUT ENGINE POWER

1. Airspeed -- 65 KtAS (flaps UP).

60 सtAS (flaps DOWN).
2. Mixture-- IDLE CUT-OFF.
3. Fuel Selector Valve .. OFF.
4. Ignition Switch - OFF.
5. Wing Flaps ... AS REQUIRED (40° recommended).
6. Master Switch - OFF.
7. Doors … UNLATCH PRIOR TO TOUCHDOWN.
B. Touchdown -- SLIGHTLY TAIL LOW.
9. Brakes ${ }^{+}$APPLY HEAVILY.

PRECAUTIONARY LANDING WITH ENGINE POWER

1. Wing Flepp -20°.
2. Airspeed -- 60 KIAS.
3. Selected Field -- FLY OVER, noting texrain and obstructions. then retract flaps upon reaching a safe altitude and airspeed.
4. Avionics Power Switch and Electrical Switches -- OFF.
5. Wing Flaps -- 40° (on final approach).
6. Airspeed - 60 KIAs.
7. Master Switch -- OFF.
8. Doors .. UNLATCH PRIOR TO TOUCHDOWN.
9. Touchdown -- SLIGHTLY TAIL LOW.
10. Ignition Switeh -- OFF.
11. Brakes -- APPLY HEAVILX

DITCHING

1. Racio -- TRANSMIT' MAYDAY on 121.5 MHz giving location and intentions and SQUAWK 7700 if transponder is installed.
2. Heavy Objects (in baggage area) -. SECURE OR JEMTISON.
3. Approach -- High Winds, Heavy Seas ... INTO THE WIND.

Light Winds, Heavy Swells ** PARALLEL TO
SWELLS.
4. Wing Flaps $+20^{\circ}-40^{\circ}$.
5. Power - ESTABLISH 300 FT/MIN DESCENT AT 55 KIAS.

NOTE

If no power is a vailable, approachat 65 KIAS with flaps up or at 60 KIAS with 10° flaps.
6. Cabin Doors - UNLATCH.
7. Touchdown \cdots LEVEL ATTITUDE AT ESTABLISHED RATE OF DESCENT.
8. Face .- CUSHION at touchdown with folded coat.
9. Airplane -- EVACUATE through cabin doors. If necessary, open window and flood cabin to equalize pressure so doors can be opened.
10. Life Vests and Raft $\times \mathrm{MNFLATE}$.

FIRES

DURING START ON GROUND

1. Cranking -- CONTINUE, to get a start which would suck the flames and accumulated fuel through the carburetor and into the engine.

If engine starts:
2. Power -- 1700 RPM for a few minutes.
3. Engize -- SHUTDOWN and inspect for damage.

If engine fails to start:
4. Throttle . FULL OPEN.
5. Mixture - IDLE CUT-OFF.
6. Cranking - CONTINUE.
7. Fire Extinguisher--OBTAIN (have ground attendants obtain if not installed).
8. Engine -. SECURE.
a. Master Switch -- ORF.
b. Ignition Switch \cdot OFF.
c. Fuel Selector Valve - OFF.
9. Fire-- EXTINGUISH using fire extinguisher, wool blanket, or dirt.
10. Fire Damage .- INSPECT, repair camage or replace damaged components or wiring before conducting another flideht.

ENGINE FIRE IN FLIGHT

1. Mixture . IDLE CUT-OFF.
2. Fuel Selector Valve -- OFF.
3. Master Switch -- OFF.
4. Cabin Heat and Air -- OFF (except overhead vents).
5. Airspeed .. 100 KIAS (If fire is not extimguished. increase glide speed to find an airspeed which will provide an incombustible mixture).
6. Foxced Landing \cdots EXECUTE (as described in Emergency Landing Without Engine Power).

ELECTRICAL FIRE IN FLIGHT

1. Mester Switeh *-OFF.
2. Avionics Power Switch .- OFF.
3. AII Other Switches (except igntion switoh) -- OFF.
4. Vents/Cabin Air/Heat ... CLOSED.
5. Fire Extinguisher -- ACTIVATE (if available).

WARNING

After discharging an extinguisher within a closed cabin, ventilate the cabin.

If fire appears out and electrical power is necessary forcontinuance of flight:
6. Master Switch -- ON.
7. Circuit Breakers -- CHECK for fanlty circuit, do not reset.
8. Radio Switches -- OFF.
9. Autonics Power Swttch .. ON.
10. Radio/Electrical Switches + ON one at a time, with delay after each until short dirctio is localized.
11. Vents/Cabin Aix/Heat -- OPEN when it is ascertained that fire is completely extinguished.

CABIN FIRE

1. Master Switch . - OFF.
2. Vents/Cabin Alr/Heat -.. CLOSED (to avoid drafts).
3. Fire Extinguisher -- ACTIVATE (if available).

WARNING

After discharging an extinguisher within a closed cabin. ventilate the cabin.
4. Land the axplane as soon as possible to inspect for damage.

WING FIRE

1. Navigation Light Switch -- OFF.
2. Pitot Heat Switch (if installed) -- OFF.
3. Strobe Light Switeh (if installed) -- OFF.

NOTE

Perform a sideslip to keep the flames away from the fuel tank and cabin, and land as soon as possible using flaps only as required for final approach and touchdown.

ICING

INADVERTENT ICING ENCOUNTER

1. Turn pitot heat switch ON (if installed).
2. Turn back or change altitude to obtain an outside air temperature that is less conducive to ioing.
3. Pull cabin heat control full out and open defroster outlets to obtain maximum windshield defroster airflow. Adjustcabin air control to get maximum defroster heat and airflow.
4. Open the throttle to increase engine speed and minimize ice buildup on propeller blades.
5. Watch for signs of carburetor air filter ice and apply carburetor
heat as required. An unexplained loss in engine speed could be caused by carburetor ice or air intake filter ice. Lean the mixture for maximum RPM, if carburetor heat is used contimuously.
6. Plan a landing at the nearest airport. With an extremely rapid ice build-up, select a suitable "off airport" landing site.
7. With an ice accumulation of $1 / 4$ inch or more on the wiag leading edges, be prepared for significantly higher stall speed.
8. Leave wing flaps retracted. With a severe ice build-up on the horizontal tail, the change in wing wake airflow direction caused by wing flap extension could result in a loss of elevator effectiveness.
9. Open left window and, if practical, scrape ice from a portion of the windshield for visibility in the landing approaoh.
10. Perform a landing approah using a forward slip, if necessary, for improved visibility.
11. Approach at 65 to 75 KIAS depending upon the amount of the accumulation.
12. Perform a lamding in level attitude.

STATIC SOURCE BLOCKAGE (Erroneous Instrument Reading Suspected)

2. Alternate Static Source Valve -- PULL ON.
3. Airspeed .- Consult appropriate calibration tables in Section 5.

LANDING WITH A FLAT MAIN TIRE

1. Approach -- NORMAL.
2. Touchdown--GOOD TIRE FIRST, hold airplane off flat tire as long as possible.

ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS

AMMETER SHOWS EXCESSIVE RATE OF CHARGE (Full Scale Deflection)

1. Alternator -- OFF.
2. Alternator Circuit Breaker -- PULL.
3. Nonessential Electrical Equipment - OFF.
4. Flight -- TERMINATE as soon as practical.

LOW-VOLTAGE LIGHT ILLUMINATES DUAING FLIGHT (Ammeter Indicates Discharge)

NOTE

Illumination of the Low-voltage light may occur during low RPM conditions with an electrical load on the system such as during a low RPM tuki. Under these conditions, the light will go outat higher RPM. The master switch need not be recycled since an over-voltage oondition has not occurred to de-activate the alternator system,

1. Avionics Power Switch -- OFF.
2. Alternator Circuit Breaker -- CHECK IN.
3. Master Switch .- OFF (both sides).
4. Master Switch - ON.
5. Low-Voltage Light ... CHECK OFF.
6. Avionics Power Switch -- ON.

If low-voltage light intuminates agatim:
7. Alternator .. OFF.
8. Nonessential Radio and Electrical Fquipment .- OFF.
9. Fight -- TERMINA'IE as soon as practioal.

1

AMPLIFIED PROCEDURES

ENGINE FAILURE

If an engine failure occurs during the takeoff run. the most important thing to do is stop the airplane on the remaiaing runway. Those extra items on the checklist will provide added safety after a failure of this type.

Prompt lowering of the nose to maintain airspeed and establish aglide attifude is the first response to an engine failure after takeoff. In most cases, the landing should be planned straight ahead with oniy small changes in direction to avoid obstructions. Altitude and airspeed are seldom sufficient to execute a 180° gliding turn necessary to return to the runway. The checklist procedures assume that adequate time exists to secure the fuel and ignition systems prior to touchdown.

After an engine failure in flight, the bestgide speed as shown infgure $3-1$ should be established as quickly as possible. While gliding toward a suitable landing area, an effort should be made to identify the cause of the failure. If time permits, an engine restart should be attempted as shown in the checklist. If the engine cannot be restarted, a forced landing without power mitust be completed.

Figure 3-1. Maximum Glide

FORCED LANDINGS

If all attempts to restart the engine fail and a forced landing is imminent, select a suitable field and prepare for the landing as discussed under the Emergency Landing Without Engine Power checklist.

Before attempting an "off airport" landing with engine power available, one should fly over the landing area at a safe but low altitude to inspect the terrain for obstructions and surface conditions. proceeding as discussed under the Precautionary Landing With Engine Power checklist.

Prepare for ditching by securing or jettisoning heavy objects located in the baggage area and collect folded coats for protection of occupants' face at touchdown. Transmit Mayday message on 121.5 MHz giving location and intentions and squawk 7700 if a fransponder is installed. Avoid a landing flare because of difficulty in judging height over a water surface.

LANDING WITHOUT ELEVATOR CONTROL

Trim for horizontal flight (with an airspeed of approximately 60 KIAS and flaps set to 20°) by using throttle and elevator trim controls. Then to not change the elevator trim control setting; control the glide angle by adjusting power exclusively.

At flareout, the nose-down moment resulting from power reduction is an adverse factor and the airplane ray hit on the nose wheel. Consequently, at flareout, the elevator trim control should be adjusted toward the full nose-up position and the power adjusted so that the airplane will rotate to the horizontal attitude for touchdown. Close the throttle at touchdown.

FIRES

Although engine fires are extremely rare in flight, the steps of the appropriate checklist should be followed if one is encountered. After completion of this procedure, execute a forced landing. Do not attempt to restart the engine.

The initial indication of an electrical fire is usually the odor of burning insulation. The checklist for this problem should result in elimination of the fire.

EMERGENCY OPERATION IN CLOUDS (Vacuum System Failure)

In the event of a vacuum system fallure during flight, the directional indicator and ettitude indicator will be disabled, and the pilot will have to rely on the turn coordinator if he inadvertently flies into clouds. The following instructions assume that only the electrically-powered turn coordinator is operative, and that the pilot is not completely proficient in instrument flying.

EXECUTING A 180° TURN IN CLOUDS

Upon inadvertently entering the clouds, an immediate plan should be made to turn back as follows:

1. Note the compass heading.
2. Note the time of the minute hand and observe the position of the sweep second hand on the clock.
3. When the swog second hand indioates the nearest halfminute, initiate a standard rate left turn, holding the turn coordinator symbolic airplane wing oppostte the lower left index mark for 60 seconds. Then roll beck to level flight by leveling the miniature airplane.
4. Cheok ecouracy of the turn by observing the compass heading which should be the reciprocal of the original heading.
5. If necessary, adjust heading primarily with skidding motions rather than rolding motions so that the compess will read more accurately.
6. Maintain altitude and airspead by cautious application of elevator controk. Avoid overcontrolling by keeping the hande off the control wheel as much as possible and steering only with rudder.

EMERGENCY DESCENT THROUGH CLOUDS

If conditions preciude reestablishment of VFR flight by a 180° turn, a descent through a cloud deck to VFR conditions may be appropriate. If possible, obtain radio clearance for an emergency descent through clouds. To guard against a spiral diwe, choose an easterly or westerly heading to minimize compass card swings due to changing bank angies. In addition. keep hands off the control wheel and steer e strelght course with rudder control by monitoring the turn coordinator. Oocasionally cheok the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let-down condition as follows:

1. Apply full rich mixture.
2. Use full carburetox heat.
3. Reduce power to set up a 500 to $800 \mathrm{ft} / \mathrm{min}$ rate of descent.
4. Adjust the elevator trim and rudder trim (if installed) for a stabilized descent at 70-80 KIAS.
5. Keep hande off the control wheel.
6. Monitor turn coordinator and make corrections by rudder alone.
7. Check trend of compass card movement and make cautious corrections with rudder to stop the turn.
8. Upon breaking out of clouds, resume normal cruising flight.

RECOVERY FROM A SPIRAL DIVE

If a spiral is encountered, proceed as follows:

1. Close the throttle.
2. Stop the turn by using coordinated aileron and rudder control to align the symbolic airplane in the turn coordinator with the horizon reference line.
3. Cautiously apply elevator back pressure to slowly reduce the airspeed to 80 KIAS.
4. Adjust the elevator trim control to maintain an 80 KIAS glide.
5. Keep hands off the control wheel, using rudder control to hold a straight heading. Adjust rudder trim (if installed) to relieve unbalanced rudder force.
6. Apply carburetor heat.
7. Clear engine occasionally, but avoid using enough power to distury the trimmed glide.
8. Jpon breaking out of clouds, resume normal crising flight.

INADVERTENT FLIGHT INTO ICING CONDITIONS

Flight into icing conditions is prohibited. An inadvertent encounter with these conditions can best be handled using the checklist procedures. The best procedure, of course, is to turn back or change altitude to escape ictnce conditions.

STATIC SOURCE BLOCKED

If erroneous readings of the static source instruments (airspeed, altimeter and rate-of-climb) are suspected, the alternate static source valve should be pulled on, thereby supplying static pressure to these instruments from the cabin.

NOTE

In an emergency on airplanes not equipped with an alternate static source, cabin pressure dar be supplied to the statio pressure instruments by breaking the glass in the face of the rate of-climb indicator.

With the alternate static source on, adjust indicated airspeed slighty during climb or approach according to the alternate static source airspeed calibration table in Section 5, appropriate to vent/window(s) configuration, causing the airplane to be flown at the normal operating speeds.

Maximum airspeed and altimeter variation from normal is 4 knotsand 30 feet over the normal operating range with the window(s) closed. With window(s) open. larger variations occur near stall speed. However, maximum altimeter variation remains within 50 feet of normal.

SPINS

Should an inadvertent spin occur, the following recovery procedure should be used:

1. RETARD THROTTLE TO IDLE POSITION.
2. PLACE AILERONS IN NEU'TRAL POSITION.
3. APPLY AND HOLD FULL RUDDER OPPOSITE TO THE DIRECTION OF ROTATION.
4. JUS' AFTEA THE RUDDER REACHES THE STOP, MOVE THE CONTROL WHEEL BRISKLY FORWARD FAR ENOUGH TO BFEAK THE STALL. Full down elevator may be required at aft center of gravity loadings to assure optimum recoveries.
5. HOLD THESE CONTROL INPUTS UNTIL ROTATION STOPS. Fremature relaxation of the control inputs maty extend the recovery.
6. AS ROTATION STOPS, NEUTRALIZE RUDDER, AND MAKE A SMOOTH RECOVERY FROM THE RESULTING DIVE.

NOTE

If disorientation precludes a visual determination of the direction of rotation, the symbolic airplane in the furn coordinator may be referred to for this information.

For additional information on spins and spin recovery, see the discussion under SPINS in Normal Procedures (Section 4).

ROUGH ENGINE OPERATION OR LOSS OF POWER

CARBURETOR ICING

A gradual loss of RPM and eventual engine roughness may result from the formation of carburetor ice. To clear the ice, apply full throttle and pull the carburetor heat knob full out until the engine runs smoothly; then remove carburetor heat and readjust the throttle. If conditions recuire the continued use of carburetor heat in cruise finght, use the minimum amount of heat necessary to prevent ice from forming and lean the mixture for smoothest engine operation.

SPARK PLUG FOULING

A slight engine roughness in fiight may be caused by one or more spark plugs becoming fouled by carbon or lead deposits. This may be verified by turming the ignition switch momentarily from BOTH toeither L or R position. An obvious power loss in single ignition operation is evidence of spark plug or magneto trouble. Assuming that spark plugs are the more likely cause, Iean the mixture to the recommended lean setting for cruising flight. If the problem does not olear up in several minutes, determine if a richer mixture setting will produce smoother operation. If not, proceed to the nearest airport for repairs using the BOTH position of the ignition switch uniess extreme roughness dictates the use of a single ignition position.

MAGNETO MALFUNCTION

A sudden engine roughness or misfiring is ustally evidence of magneto problems. Switching from BOTH to etther L or R ignition switch position will identify whteh magneto is matfunctioning. Select different power settings and entichen the mixture to determine if continued operation on BOTH magnetos is practicable. If not, switch to the good magneto and proceed to the nearest airport for repairs.

LOW OIL PRESSURE

If low oil pressure is accompanied by normal oil temperature, there is a possibility the oil pressure gage or relief valve is malfunctioning. A leak in the line to the gage is not necessarity cause for an immediate precautionary landing because an orifice in this line will prevent a sudden loss of oil from the engine sump. However, alanding at the nearest airport would be advisable to inspect the source of trouble.

If a total loss of oil pressure is accompanied by a rise in oil temperature, there is good reason to suspect an engine failure is imminent. Reduce
engine power immediately and select a suitable forced Ianding field. Use only the minimum power required to reach the desired touchdown spot.

ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS

Malfunctions in the electrical power supply system can be detected by periodic monitoring of the ammeter and low-voltage warning light: however, the cause of these matfunctions is usually difficult to determine. A broken alternator drive belt or wiring is most likely the cause of alternator failures, although other factors could cause the problem. A damaged or improperly adjusted alternator control unit can also cause malfunctions. Problems of this nature constitute an electrical emergency and should be dealt with immediately. Electrical power malfunctions usually fall into two categories: excessive rate of charge and insufficient rate of charge. The following paragraphs describe the recommended remedy for each situation.

EXCESSIVE RATE OF CHARGE

After engine starting and heavy electrical usage at low engine speeds (such as extended texting) the battery condition will be low enough to accept above normal charging during the initial part of aflight However. after thirty minutes of cruising flight, the ammeter should be indicating less than two needle widths of charging current. If the charging rate were to remain above this value on a long filight, the battery would overheat and evaporate the electrolyte at an excessive rate.

Electronic components in the electricel system can be adversely affected by higher than normal voltage. The alternator control unit includes an over-voltage sensor which normally will automatically shut down the alternator if the charge voltage reaches approximately 31.5 volts. If the over-voltage sensor malfunctions or is tmproperly adjusted, as evidenced by an excessive rate of charge shown on the ammeter, the altermator should be turned off, alternator circuit breaker pulled, nonessential eleotrical cquipment turned off and the fight terminated as soonas practical.

INSUFFICIENT RATE OF CHARGE

NOTE

Illumination of the low-voltage light and ammeter discharge indications may ocour during low RPM conditions with an electrical load on the system, such as during a low

Abstract

RPM taxi. Under these conditions, the light widl go out at higher RPM. The master switch need not be reoycled since an over-voltage condition has not occurred to de-activate the alternator system.

If the over-voltege sensor should shut down the alternator, or if the alternator circuit breaker should trip, adischarge rate will be shown on the ammeter followed by illumination of the low-voltage warning light. Since this may be a "nuisance" trip-out, an attempt should be made to reactivate the alternator system. To do this, furn the avionics power switch off, check that the alternator circuit breaker is in, then turn both sides of the master switoh off and then on again. If the problem no longer exists, normal alternator charging will resume and the low-voltage light will go off. The avionics power switch may then be turned back on. If the light illuminates again, a malfunction is confirmed. In this event, the flight should be terminated and/or the current drain on the battery minimized because the battery can supply the electrical system for only a limited period of time. If the emergency occurs at night, power must be conserved for later use of the landing lights and flaps during landing.

SECTION 4 NORMAL PROCEDURES

TABLE OF CONTENTS

Introduction . 4-3
Speeds For Normal Operation 4-3
CHECKLIST PROCEDURES
Preflight Inspection . 4-5
Cabin . 4-5
Empennage . 4-5
Right Wing, Trailing Edge 4-5
Right Wing . 4-5
Nose . 4-6
Left Wing . 4-6
Loft Wing, Leading Edge 4-6
Left Wing. Trailing Edge $4-6$
Before Starting Engine . 4-6
Starting Engine . 4-7
Before Takeoff . 4.7
Takeoff . 4-8
Normal Tiakeoff . 4-8
Short Field Takeoff . 4-8
Enroute Climb . $4-8$
Cruise . $4 * 9$
Descent . 4-9
Before Landing . 4-9
Landing . 4-9
Normal Landing . 4-9
Short Field Landing 4-9
Balked Landing . 4*10
After Landing . 4-10
Securing Airplane . 4×10
AMPLIFIED PROCEDURES
Starting Engine . 4-11
Taxiing . 4-11

1 Juity 1979 4.1
TABLE OF CONTENTS (Continued)
Page
Before Takeotif 4-13
Warm-Up 4-13
Magneto Check 4-13
Alternator Check $4-13$
Taireoff 4-13
Power Cheok 4-13
Wing Flap Settings 4-14
Crosswind Takeoff 4-15
Enroute Climb 4-15
Cruise 4-15
Leaning With A Cessna Eoonomy Mxxture Indicator (EGT). 4-17
Stalls $4-17$
Spins 4-17
Lancing 4-19
Normal Landing $4-19$
Short Field Landing 4-20
Crosswind Landing 4-20
Balked Landing 4-20
Cold Weather Operation 4-21
Starting 4-21
Flight Operations $4 * 23$
Hot Weather Operation 4-23
Noise Abatement 4-23

INTRODUCTION

Section 4 provides checklist and amplified procedures for the condict of normal operation. Normal prooedures associated with optional systems can be found in Section 9 .

SPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a maximum weight of 2300 pounds and may be used for any lesser weight. However, to achieve the performance specified in Section 5 for takeoff distance, the speed appropriate to the particular weight must be used.

Takeoff, Flaps Up:

Normal Climb Out 70-80 KIAS
Short Field Takeoff, Flaps 10°, Speed at 50 Feet 53 KIAS
Enroute Climb, Flaps Up;
Normal, Sea Level 75-85 KIAS
Normal, 10,000 Feet 70-80 KIAS
Best Rate of Climb, Sea Level 73 KIAS
Best Rate of Climb, 10,000 Feet 68 K KAS
Best Angle of Climb, Sea Level 59 KiAS
Best Angle of Climb, 10,000 Feet 61 KIAS
Landing Approach:
Normal Approach, Flaps Up 60.70 KLAS
Normal Approach, Flaps 40°. $55 \cdot 65$ KIAS
Short Field Approach. Flaps 40°. 59 KlAS
Balked Landing:
Maximum Power, Flaps 20°. 55 KIAS
Maximum Recommended Turbulent Air Penetration Speed:
2300 Lbs
97 KIAS
1950 Lbs . 89 KIAS
1600 Lbs . 80 KIAS
Maximum Demonstrated Crosswind Velocity:
Takeoff or Landing
15 KNOTS

NOTE
Visually check afrplane for general condition during walk-around inspection. In cold weather, remove even small acournulations of frost, ice or snow from wing, tail and control surfaces. Also, make sure that control suxfeces contain no internal accumutations of ice or debris. Prior to fight, cheok that pitotheater (ff instaIled) is warm to touch within 30 seconds with battery and pitot heat switches on. If a night flight is planned, check operation of all lights, and make sure a flashlight is available.

Figure 4-1. Preflight Inspection

CHECKLIST PROCEDURES

PREFLIGHT INSPECTION

(1) CABIN

1. Pilot's Operating Handbook -- AVAILABLE IN THE AIRPLANE.
2. Control Wheel Lock **REMOVE.
3. Ignition Switch \times ORF.
4. Avionics Power Switch -- OFF.
5. Master Switch - ON.

WARNING

When turning on the master switch, using an external power source, or puling the propeller through by hand, treat the propeller as if the ignition switch were on. Do not stand, nor allow anyone else to stand, within the are of the propeller, since a loose or broken wire, or a component malfunction, could cause the propelier to rotate.
6. Fuel Quantity Indicators ** CHECK QUANTITY.
7. Master Switch -- OFF'.
B. Static Fressure Alternate Source Valve (if installed) - OFF.
9. Baggage Door ** CHECK, lock with key if child's seat is to be occupied.

(2) EMPENNAGE

1. Rudcer Gust Look .- REMOVE.
2. Tail Tie-Down \ldots DISCONNECT.
3. Control Surfaces . . CHECK freedom of movement and security.

(3) RIGHT WHNG Trailing Edge

1. Aileron *. CHECK freedom of movement and security.

(4) RIGHT WING

1. Wing Tie-Down -- DISCONNECT.
2. Main Wheel Tire -- CHECK for proper inflation.
3. Before first flight of the day and after each refueling, use sampler oup and dxain small quantity of fuel from fuel tank sump quick* drain valve to check for water, sediment, and proper fuel grade.
4. Fuel Quantity - CHECK VISUALLX for desired level.
5. Fuel Filler Cap + SECURE.

(5) NOSE

1. Engine Otl Level . . OHECK, do not operate with less than four quarts. Fill to six quarts for extended flight.
2. Before first flight of the day and after each refueling. pull out strainer drain knob for about four seconds to clear fuel strainer of possible water and sediment. Check strainer drain closed. If water ts observed, the fuel system may contain additional water, and further draining of the system at the strainer, fuel tank sumps, and fuel selector valve drain plug wrill be necessary.
3. Propeller and Spinner - CHECK for nicks and security.
4. Landing Light(s) - CHECK for condition and cleanliness.
5. Carburetor Air Finter * CHECK for restrictions by dust or othex foreign matter.
6. Nose WheeI Strut and Tire - - CHECK for proper inflation.
7. Nose Tie-Down - DISCONNECT.
8. Static Source Opening (left side of fuselage) - CHECK for stoppage.

(6) LEFT WING

1. Main Wheel Tire -- CHECK for proper inflation.
2. Before first flight of the day and after each refueling, use sampler cup and drain small quantity of fuel from fuel tank sump quickdrain valve to check for water, sediment and proper fuel grade.
3. Fuel Quantity -- CHECK VISUALLY for desired level.
4. Fuel Filler Cap -- SECURE.

(7) LEFT WING Leading Edge

1. Pitot Tube Cover - REMOVE and check opening for stoppage.
2. Fuel Tank Vent Opening -- CHECK for stoppage.
3. Stall Warning Opening -- CHECK for stoppage. To check the system, place a clean handkerchief over the vent opening and apply suction; a sound from the warning horn will confirm system operation.
4. Wing Tie-Down - DISCONNECT.
(8) LEFT WING Trailing Edge
5. Aileron \ldots CHECK for freedom of movement and security.

BEFORE STARTING ENGINE

1. Preflight Inspection \cdots COMPLETE.
2. Seats, Belts, Shoulder Harnesses -- ADJUST and LOCK,
3. Fuel Selector Valve -. BOTH.
4. Avionios Power Switch. Autopilot (if instelled), Electrical Equipment - OFF.

CAUTION

The avionics power switch must be OFF durang engine start to prevent possible damage to avionics.
5. Brakes -. TEST and SET.
6. Circuit Breakers -. CHECK IN.

STARTING ENGINE

1. Mixture - RICH .
2. Carburetor Heat -. COLD.
3. Mester Switch -- ON.
4. Prime - AS RBQUIRED (2 to 6 strokes; none if engine is warm).
5. Throtile - OPEN $1 / 8$ INCH.
6. Propeller Area - CLEAR.
7. Ignition Switch -- START (release when engine starts)
8. Oil Pressure -. CHECK.
9. Flashing Beacon and Navigation Lights -- ON as required.
10. Avionics Power Switeh -- ON.
11. Radios .. ON.

BEFORE TAKEOFF

1. Parking Brake -- SET.
2. Cabin Doors and Window(s) -- CLOSED and LOCKED.
3. Flight Controls * FREE and CORRECT
4. Flight Ynstruments - SET.
5. Fuel Selector Valve -. BOTH.
6. Mixture - RICH (below 3000 feet).
7. Elevator Trim and Rudder Trim (if installed) -" TAKEOFF.
8. Throttle -. 1700 RPM.
a. Magnetos -- CHECK (RPM drop should not exceed 125 RPM on either magneto or 50 RPM dtfferential between magnetos).
b. Carburetor Heat - CHECK (for RPM drop).
c. Engine Instruments and Ammeter + CHECK.
d. Suction Gage -- CHBCK .
e. Throttle -. 1000 RPM or LESS.
9. Radios -- SET.
10. Autopilot (Xf installed) -- OFF.
11. Air Conditioner (if installed) +. OFF.
12. Strobe Lights -- AS DESIRED.
13. Throttle Friction Look -- ADJUST.
14. Brakes . . RELEASE.

TAKEOFF

NORMAL TAKEOFF

1. Wing Flaps $+0^{\circ} \cdot 10^{\circ}$.
2. Carburetor Heat - COLD.
3. Throttle -. FULL OPEN.
4. Elevator Control -- LIFT NOSE WHEEL (at 55 KLAS).
5. Climb Speed -- 70-80 KLAS.

SHORT FIELD TAKEOFF

1. Wing Flaps -- 10°.
2. Carburetor Heat $+\cdots$ COLD.
3. Brakes "- APPLY.
4. Throttie . FULL OPEN.
5. Mixture - RICH (above 3000 feet, LEAN to obtain maximum RPM).
6. Brakes -- RELEASE.
7. Elevator Control -- SLICHTLY TAIL LOW.
8. Climb Speed -53 KIAS (until all obstacles are cleared).

ENROUTE CLIMB

1. Airspeed --70-85 KIAS.

NOTE

If a maximum performance climb is necessary, use speeds shown in the Rate Of Climb chart in Section 5.
2. Throttle -- FULL OPEN.
3. Mixture - HICH (above 3000 feet, LEAN to obtain maximum RPM).

CRUISE

1. Power -- 2200-2700 RPM (no more than 75% is recommended).
2. Elevator and Rudder Trim (if installed) -- ADJUST.
3. Mixture - LEAN.

DESCENT

1. Fuel Selector Valve -- BOTH.
2. Mixture -- ADJUST for smooth operation (full rich for idle power).
3. Power -- AS DESIRED.
4. Carburetor Heat -- FULL HEAT AS REQUIRED (to prevent carburetor icings.

BEFORE LANDING

1. Seats, Belts, Harnesses -" SECURE.
2. Fuel Selector Valve \cdots BOTH.
3. Mixture ... RiCH.
4. Carburetor Heat - - ON (apply full heat before reducing power).
5. Autopilot (if installed) -- OFF.
6. Air Conditioner (if installed) .. OFF.

LANDING

NORMAL LANDING

1. Airspeed - 60-70 KIAS (flaps UP).
2. Wing Flaps -- AS DESIRED $\left(0^{\circ}-10^{\circ}\right.$ below 110 KIAS, $10^{\circ}-40^{\circ}$ below 85 KIAS).
3. Airspeed -- 55-65 KIAS (flaps DOWN).
4. Touchdown - MAIN WHEELS FIRST.
5. Landing Roll -- LOWER NOSE WHEEL GENTLY.
6. Braking -- MINIMUM REQUTAED.

SHORT FIELD LANDING

1. Airspeed --60-70 KLAS (flaps UP).
2. Wing Flaps * FULL DOWN (40°).
3. Airspeed -59 KIAS (until flare).
4. Power .- REDUCE to idle after clearing obstacle.
5. Touchcown - MAIN WHEELS FIRST.
6. Brakes -- APPLY HEAVILY.
7. Wing Flaps -- RETRACT.

BALKED LANDING

1. Throttie - FULL OPEN.
2. Cerburetor Heat -. COLD.
3. Wing Flaps -- 20° (immediataly).
4. Climb Spead -- 55 KIAS .
5. Wing Flaps -- 10° (until obstacles are cleared).

RETRACT (after reaching a safe altitude and 60 KIAS).

AFTER LANDING

1. Wing Flaps -. UP.
2. Carburetor Heat -- COLD.

SECURING AIRPLANE

1. Parking Brake -- SET.
2. Aviontes Power Switoh, Electrical Equtpment. Autopilot (if installed) -- OFF.
3. Mixture -- XDLE CUT-OFF (pulled full out).
4. Ignition Switch -- OFF.
5. Master Switch -- OFF.
6. Control Lock -- INSTALL.

AMPLIFIED PROCEDURES

STARTING ENGINE

During engine starting, open the throttle approximately $1 / 8 \mathrm{inch}$. In warm temperatures, one or two strokes of the primer should be sufficient. In cold weather, up to six strokes of the primer may be necessary. If the engine is warm, no priming will be required. In extremely cold tempera. tures, it may be necessary to continue priming while cranking the engine.

Weak intermittent firing followed by puffs of black smoke from the exhaust stack indioates overpriming or flooding. Excess fuel can be cleared from the combustion chambers by the following procedure: set the mixture control full lean and the throttie full open; then crank the engine througli several revolutions with the starter. Repeat the starting procedure without any additional priming.

If the engine is tnderprimed (most likely in cold weather with a cold engine) it will not fire at all, and additional priming will be necessary. As soon as the cylinders begin to fire, open the throttle slightly to keep it running.

After starting, if the oil gage does not begin to show pxessure within 30 seconds in the summertime and about twice that long in very cold weather, stop engine and investigate. Lack of oil pressure can cause serious engine damage. After starting, avoid the use of carburetor heat unless ioing conditions prevail.

NOTE

Additional details coneerning cold weather starting and operation may be found under COLD WEATHER OPERA TION paragraphs in this section.

TAXIING

When texiing, it is important that speed and use of brakes be held to a minimum and that all controls be utilized (see Taxiing Diagram, figure 4 2) to maintain directional control and balance.

The carburetor heat control knob should be pushed full in during all ground operations unless heat is absolutely necessary. When the knob is puiled out to the heat position, air entering the engine is not filtered.

CODE

NOTE
Strong quartering tail winds require caution. Avoid sudden bursts of the throttle and sharp braking when the alrplane is in this attitude. Use the steerable nose wheel and rudder to maintain direction.

Figure 4-2. Taxiing Diagram

Taxiing over loose gravel or cinders should be done at low engine speed to avoid abrasion and stone damage to the propeller tips.

BEFORE TAKEOFF

WARM-UP

If the engine accelerates smoothly, the airplane is ready for takeoff. Since the engine is closely cowled for efficient in-flight engine cooling, precautions should be taken to avoid overheating during prolonged engine operation on the ground. Also, long periods of ifling may cause fouled spark plugs.

MAGNETO CHECK

The magneto cheok should be made at 1700 RPM as follows. Move ignition switch first to R position and note RPM. Next move switch bacin to BOTH to clear the other set of plugs. Then move switch to the L position. note RPM and return the switch to the BOTH position. RPM drop should not exceed 125 RPM on either magneto or show greater than 50 RPM differential between magnetos. If there is a doubt concerning operation of the igrition system, RPM checks athigher engine speeds will usually confirm whether a deficiency exists.

An absence of RPM drop may be an indication of faulty grounding of one side of the ignition systern or should be cause for suspicion that the magneto timing is set in advanoe of the setting specified.

ALTERNATOR CHECK

Prior to flights where verification of proper alternator and alternator control unit operation is essential (such as night or instrument flights). a positive verification can be made by loading the electrical system momentarily (3 to 5 seconds) with the landing light or by operating the wing flaps during the engine runup (1700 RPM). The ammeter will remain within a needle width of its intitial reading if the alternator and alternator control unit are operating properly.

TAKEOFF

POWER CHECK

It is important to check full-throttle engine operation early in the
takeoff run. Any stgn of rough engine operation or sluggish exgine acceleration is good cause for discontinuing the takeoff. If this occurs, you are justified in making e thorough full-throttle static runup before another takeoff is attempted. The engine should run smoothly and turn approximately 2280 to 2400 RPM with carburetor heat off and mixture full rich.

NOTE

Carburetor heat should not be used during takeoff unless it is absolutely necessary for obtaining smooth engine accel* eration.

Full throttle runtus over loose gravel are especially harmful to propeller tips. When takeoffs must be made over a gravel surface, it is very important that the throttle be advanced slowly. This allows the airplane to start rolling before high RPM is developed, and the gravel will be blown back of the propeller rather than pulled into it. When unavoidable small dents appear in the propeller blades, they should be immediately corrected as described in Section 8 under Propeller Care.

Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.

After full throttie is applied, adjust the throttle friction lock clockwise to prevent the throttle from creeping back from a maximum power position. Similar friction lock adjustments should be made as required in other flight conditions to maintain a fixed throttle setting.

WING FLAP SETTINGS

Normal takeoffs are accomplished with wing flaps $0^{\circ}-10^{\circ}$. Using 10° wing flaps reduces the ground roll and total distance over an obstacle by approximately 5 percent. Flap deflections greater than 10° are not approved for takeoff. If 10° wing flaps are used for takeoff, they should be left down until all obstacles are cleared and a safe flap retraction speed of 60 KIAS is reached. On a short field, 10° wing flaps and an obstacle clearance speed of 53 KIAS should be used.

Soft or rough field takeoffs are performed with 10° flaps by lifting the airplane off the ground as soon as practical in a slightly tail-low attitude. If no obstacles are ahead, the airplane should be leveled off immediately to accelerate to a higher climb speed. When departing a soft field with an aft C.G. loading, the elevator trim should be adjusted towards the nose down direction to give comfortable control wheel forces during the initial climb.

CROSSWIND TAKEOFF

Takeoffs into strong crosswinds normally are performed with tho minimum flap setting necessary for the field length, to minimize the drift angle immediately alter takeoff. With the ailerons partially deflected into the wind, the airplane is accelerated to a speed slightly higher than normal, then pulled off abruptiy to prevent possible settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

ENROUTE CLIMB

Normal cimbs are performed with flaps up and full throttle and at speeds 5 to 10 knots higher than best rate-of-climb speeds for the best combination of performance, visibility and engine cooling. The mixture should be full rich below 3000 feet and may be leaned above 3000 feet for smoother operation or to obtain maximum RPM. For maximum rate of climb, use the best rate-of-climb specds shown in the Rate-of-Climb chart in Section 5 . If an obstruction dictates the use of a steep climb angle, the best angle-of-climb speed should be used with flaps up and meximum power. Climbs at speeds lower than the best rate of climb speed should be of short duretion to improve engine cooling.

CRUISE

Normal cruising is performed between 55% and 75% power. The engine RPM and oorresponding fuel consumption for various altitudes oan be determined by using your Cessna Power Computer or the data in Section 5 .

NOTE

Cruising should be done at a manimum of 75% power until a total of 25 hours has accumulated or oil consumption has stabilized. Operation at this higher power will ensure proper seating of the rings and is applicable to new engines, and engines in service following cylinder xeplacement or top overhaul of one or more cyinders.

The Cruise Performance Table, figure 4.3, iliustrates the true airspeed and nautical miles per gallon during eruise for various altitudes and percent powers. This table should be used as a guide, along with the available winds aloftinformation, to determine the most favorable aititude and power setting for a given trip. The selection of cruise altitude on the basis of the most favorable wind conditions and the use of low power settings are signifieant factors that should be considered on every trip to reduee fuel consumption.

To achieve the recommended lean mixture fuel consumption figures shown in Section 5, the mixture should be leaned until engine RPM peaks and drops $25-50 \mathrm{RPM}$. At lower powers it may be necessary to enrichen the mixture shightiy to obtain smooth operation.

Should it be necessary to cruise at higher than 75\% power, the mixture should not be leaned more than is required to provide peak RPM.

Carburetor ice, as evidenced by an unexplained drop in RPM, can be removed by application of full carburetor heat. Upon regaining the ortginal RPM (with heat off), use the rainimum ampunt of heat (by trial and error) to prevent ice from forming. Since the heated air causes a richer mixture, readjust the mixture setting when carburetor heat is to be used continuously in oruise fight.

The use of full carburetor heat is recommenced during flight in heavy rain to avoid the possibility of engine stoppage due to excessive water ingestion or carburetor ice. The mixture setting should be readjusted for smoothest operation. Power changes should be made cauttously, followed by prompt adjustment of the mixture for smoothest operation.

	75% POWER		65\% POWER		55\% POWER	
ALTITUDE	KTAS	NMPG	KTAS	NMPG	KTAS	NMPG
Sea Level	114	13.5	107	14.8	100	16.1
4000 Feet	118	14.0	111	15.3	103	16.6
8000 Feet	122	14.5	115	15.8	106	17.1
Standard Conditions						

Figure 4-3. Cruise Performance Table

MIXTURE DESCAIPTION	EXHAUST GAS TEMPEAATURE
RECOMMENDED LEAN (Piot's Operating Handbook and Power Computer)	$50^{\circ} \mathrm{F}$ Rich of Peak EGT
EEST ECONOMY	Peak EGT

Figure 4-4. EGT Table

LEANING WITH A CESSNA ECONOMY MIXTURE INDICATOR (EGT)

Exhaust gas temperature (EGT) as shown on the optional Cessna Economy Mixture dndicator may be used as an aid for mixtare leantng in cruising fight at 75% power or less. To adjust the mixture, using this indicator, lean to establish the peak EGT as a reference point and then errichen the mixture by the desired inerememt based on figure 4-4.

As noted in this table, operation at peak EGT provides the best fuel economy. This results in Approximately 4% greater range than shown in this handbook accompanied by approximately a 3 knot decrease in speed.

Under some conditions, engine roughness may oceur while operating at peak EGT. In this case, operate et the Recommended Lean mixture. Any change in aldtude or throttle position will require a recheck of EGT indication.

STALLS

The stall characteristios are conventional and aural warning is provided by a stall warning horn which sounds between 5 and 10 knots above the stall in all configurations.

Power-off stall speeds at maximum weight for both forward and aft C.G. positions are presented in Section 5 .

SPINS

Intentional spins are approved in this airplane within certain restriet-
ed loadings. Spins with baggage loadings or occupied rear seat(s) are not approved.

However, before attempting to perform spins several items should be carefutly considered to assure a safe flight. No spins should be attempted without first having received dual instruction both in spin entries and spin recovertes from e qualified instructor who is familiar with the spin characteristios of the Cessna 172 N .

The cabir should be clean and all loose equipment (including the microphone and rear seat belts) should be stowed or secured. For a solc flight in which spins will be conducted, the copilot's seat belt and shoulder harness should also be secured. The seat belts and shoulder harnesses should be adjusted to provide proper restraint during all anticipated flight conditions. However, caxe should be taken to ensure that the pilot can easily reach the flight controls and produce maximum control travels.

It is reoommended that, where feasible, entries be accomplished at high enough altitude that recoveries are completed 4000 feet or more above ground level. At least 1000 feet of altitude loss should be allowed for a 1 turn spin and recovery, while a 6 -furn spin and recovery may require somewhat more than twice that amount. For example, the recommended entry altitude for a 6 -turn spin would be 6000 feet above ground level. In any case, entries should be planned so that recoveries are completed well above the minimum 1500 feet above ground level required by FAR 91.71. Another reason for using high altitudes for practicing spins is that a greater field of view is provided which will asstst in maintaining pilot orientation.

The normal entry is made from a power-off stall. As the stall is approached, the elevator control should be smoothly pulled to the full aft position. Just prior to reaching the stall "break", rudder control in the desired direction of the spin rotation should be applied so that full rudder deflection is reached almost simultaneously with reaching full aft elevator. A slightly greater rate of deceleration than for normal stall entries, application of ailerons in the direction of the desired spin, and the use of power at the entry will assure more consistent and positive entries to the spin. As the airplane begins to spin, reduce the power to idle and return the ailerons to neutral. Both elevator and rudder controls should be held full with the spin until the spin recovery is initiated. An inadvertent relaxation of either of these controls could result in the development of anose-down spiral.

For the purpose of training in spins and spin recoveries, a 1 or 2 turn spin is adequate and should be used. Up to 2 turns, the spin will progress to a fairly rapid rate of rotation and a steep attitude. Application of recovery controls will produce prompt recoveries (within $1 / 4$ turn). During ex-
tended spins of two to three turns or more, the spin will tend to change into a spiral. particularly to the right. This will be accompanied by an increase in airspeed and gravity loads on the atrplane. If this occurs, recovery should be accomplished quickity by leveling the wings and recovering from the resulting dive.

Regardless of how many turns the spin is held or how it is entered, the following recovery technique should be used:

1. VERHFY THAT THROTTLE IS IN IDLE POSITION AND AILER. ONS ARE NEUTRAL.
2. APPLY AND HOLD FULL RUDDER OPPOSITE TO THE DIRECTION OF ROTATION.
3. JUST AFTER THE RUDDER REACHES THE STOP, MOVE THE CONTROL WHEEL BRISKLY FORWARD FAR ENOUGH TO BREAK THE STALL.
4. HOLD THESE CONTAOL INPUTS UNTIL ROTATION STOPS.
5. AS ROTATION STOPS, NEUTRALIZE RUDDER, AND MAKE A SMOOTH RECOVERY FROM THE RESULTING DIVE.

NOTE

If disorientation precludes a visual determination of the direction of rotation, the symbolic airplane in the turn coordinator may be referred to for this information.

Variations in basic airplane rigging or in weight and balance due to installed equipment or right seat occupancy can cause differences in behavior, particuiarly in extended spins. These differences are nomal and will result in variations in the spin characteristics and in the spiraling tendencies for spins of more than 2 turns. However, the recovery technique should always be used and will result in the most expeditious recovery from any spin.

Intentional spins with flaps extended are prohibited, since the high speeds whtch may ocour during recovery are potentially damaging to the flap/wing structure.

LANDING

NORMAL LANDING

Normal landing approsches can be made with power-on or power-off with any flap setting destred. Surface winds and air turbulence are usually the primary factors in determining the most comfortable approach speeds.

Steep slips should be avoided with flap settings greater than 20° due to a slight tendency for the elevator to oselllate under certain combinations of airspeed, sideslip angle, and center of gravity loadings.

NOTE

Carburetor heat should be applied prior to any significant. reduction or closing of the throttle.

Actual touohdown should be made with power-off and on the main wheels first to reduce the landing speed and subsectient need for braking the landing roll. The nose wheel is lowered to the runway gently after the speed has diminished to avoid unnecessary nose gear loads. This procedure is especially important in rough or soft field landings.

SHORT FIELD LANDING

For a short field landing in smooth air conditions, make an approach at the minimum recommended airspeed with futl flaps using enough power to control the glide path. (Slightly higher approach speeds should be used under turbulent air conditions.) After all approach obstacles are cleared, progressively reduce power and maintain the approach speed by lowering the nose of the airplane. Touchdown should be made with power off and on the main wheels first. Immediately after touchdown, lower the nose wheel and apply heavy braking as required. For maximum brake effectiveness, retract the flaps, hold the control wheel full back, and apply maximum brake pressure without sliding the tires.

CROSSWIND LANDING

When landing in a strong crosswind, use the minimum flap setting required for the field length. If flap settings greater than 20° are used in sideslips with full rudder deflection, some elevator oscillation may be felt at normal approach speeds. However, this does not affect control of the airplane. Although the crab or combination method of drift correction may be used, the wing-low method gives the best control. After touchdown, hold a straight course with the steerable nose wheel and occasional braking if necessary.

The maximum allowable crosswind velocity is dependent upon pilot capability as well as aircraft limitations. With average pilot technique, direct crosswinds of 15 knots can be handled with safety.

BALKED LANDING

In a balked landing (go-around) climb, reduce the flap setting to 20° immediately after full power is applied. If obstacles must be cleared during
the go-around climb, reduce the wing flap setting to 10° and maintain asafe airspeed until the obstacles are cleared. Above 3000 feet, lean the mixture to obtain maximum RPM. After cleering any obstacles, the fiaps may be retracted as the airplane aceelerates to the normal fiaps-up climb speed.

COLD WEATHER OPERATION

STARTING

Prior to starting on cold mornings, it is advisable to pull the propeiler through severat times by hand to "break loose" or "limber" the oil, thus conserving batitery energy.

NOTE

When puiling the propeller through by hand, treat it as if the ignition switch is turned on. A loose or broken ground wire on either magneto could cause the engtne to fire.

When air temperatures are below $20^{\circ} \mathrm{F}\left(-6^{\circ} \mathrm{C}\right)$, the use of an external preheater and an external power source are recommended whenever possible to obtatn positive starting and to reduce wear and abuse to the engine and eleotrical system. Pre-heat will thaw the oil trapped in the oil cooler, which probably will be congealed prior to starting in extremely cold temperatures. When using an external power source, the position of the master switch is important. Refer to Section 9. Suppiements, for Ground Service Plug Receptacle operating details.

Cold weather starting procedures are as follows:

Witit Prehent:

1. With ignition switch OFF and throtsle closed, prime the engine four to eight strokes as the propeller is being tirned over by hand.

NOTE
Use heavy strokes of primer for best atomization of fuel. After priming, push primer all the way in and turn to locked position to avoid possibility of engine drawing fuel through the primer.
2. Propeller Area -CLEAR .
3. Avionics Power Switch - OFF.
4. Master Switch -- ON.

1 Juiy 1979
Revision 1-15 November 1979
5. Mixture -- FULL RICH.
6. Throttle - OPEN $1 / 8$ INCH.
7. Ignition Switeh - . START.
8. Release ignition switch to BOTH when engine starts.
9. Oil Pressure .. CHECK.

Without Preheat:

1. Prime the engine six to ten strokes while the propeller ts being turned by hand with the throttle closed. Leave the primer charged and ready for a stroke.
2. Propeller Area -- CLEAA.
3. Avionics Power Switch .. OFF.
4. Master Switch .- ON.
5. Mixture .. FVLL FICH.
6. Ignition Switch - - START.
7. Pump throttle rapidly to full open twice. Return to $1 / 8$ inch open position.
8. Helease ignation switch to BOTH when engine starts.
9. Continue to prime engane until it is running smoothly, or aiternately, pump throttle rapidly over first $1 / 4$ of total travel.
10. Oil Pressure -- CHECK.
11. Pull carburetor heat knob full on after engine has started. Leave on until engine is running smoothly.
12. Primer - LOCK.

NOTE

If the engine does not start during the first few attempts, or if engine firing diminishes in strength, it is probable that the spark plugs have been frosted over. Preheat must be used before another start is attempted.

CAUTION

Pumping the throttle may cause raw fuel to accumulate in the intake air duct. creating aftre hazard in the event of a backfire. If this occurs, maintain a cranking action to suok flames into the engine. An outside attendant with a fire extinguisher is advised for cold starts without preheat.

During cold weather operations no indioation will be apparent on the oil temperature gage prior to takeoff if outside air temperatures are very cold. After a suitable warm-up period (2 to 5 minutes at 1000 RPM), accelerate the engine several times to higher engine RPM. If the engine accelerates smoothly and the oil pressure remains normal and steady, the airplane is ready for takeoff.

FLIGHT OPERATIONS

Takeof is made normally with carburetor heat off. Avoid excessive leaning in cruiso.

Carburetor heat may be used to overcome any occasional engine roughness due to ice.

When operating in temperatures below $\cdot 18^{\circ} \mathrm{C}$, avoid using partiad carburetor heat. Partial heat may increase the carburetor air temperature to the 0° to $21^{\circ} \mathrm{C}$ range, where icing is critical thader certain atmospheric conditions.

HOT WEATHER OPERATION

Refer to the general warm temperature starting information under Starting Engine in this section. Avoid prolonged engine operation on the ground.

NOISE ABATEMENT

Increased emphasts on improving the quality of our environment requires renewed effort on the part of all pilots to minimize the effect of airplane noise on the public.

We, as pilots, can demonstrate our concem for environmental im provement, by application of the following suggested procedures, and inereby tend to build public support for eviation:

1. Pilots operating aircraft under VFR over outcoor assemblies of persons, recreational and park areas, and other noise-sensitive areas should make every effort to fly not less than 2000 feet above the surface, weather permitting, even though flight at a lower level may be consistent with the provisions of government regulations.
2. During departure from or approach to an aixport, climb after takeoff end descent for landing should be made so as to avoid prolonged flight at low altitude near noise-sensitive axeas.

NOTE

The above recommended procedures do not apply where they would confliot with Air Traffic Control clearances or instructions, or where, in the pilot's judgrient, an altitude
of less than 2000 feet is necessary for him to adequately exercise his duty to see and avoid other airoraft.

The certificated noise level for the Model 172N at 2300 pounds maximum weight is $73.8 \mathrm{~dB}(\mathrm{~A})$. No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.

SECTION 5 PERFORMANCE

TABLE OF CONTENTS

Page

Introduction 5-3
Use of Perfomance Charts 5-3
Sample Problem 5-3
Takeoff 5-4
Cruise 5-5
Fuel Reguired $5 \cdot 5$
Landing $5-6$
Demonstrated Operating Temperature $5-7$
Figure 5-1, Airspeed CaIibration - Nomal Static Source 5-8
Airspeed Calibration - Alternate Static Source 5-9
Figure 5-2. 'lemperature Conversion Chart 5-10
Figure 5-3, Stall Speeds $5-11$
Figure 5-4, 'Takeoff Distance - 2300 Lbs 5-12
Takeoff Distance * 2100 Lbs and 1900 Lbs 5-13
Figure 5-5, Maximum Rate Of Climb 5-14
Figure 5-6, Time, Fuei. And Distance To Climb 5-15
Figure 5-7, Cruise Performance $5 \cdot 16$
Figure 5-8, Range Profile - 40 Gallons Fuel 5-17
Range Profile - 50 Gallons Fued 5-18
Figure 5-9, Encurance Proftie - 40 Gallons Fuel 5-19
Endurance Profile - 50 Gallons Fuel 5-20
Figure 5-10, Landing Distance $5-21$

INTRODUCTION

Performance data charts on the following pages are presented so that you may know what to expect from the airplane under verious conditions, and also, to facilitate the planing of ilights in detail and with xeasonable accuracy. The data in the charts hasbeen computed from actual flight tests with the airplene and engine in good condition and using average piloting techniques.

It should be noted that the performance information presented in the range and endurance profile charts allows for 45 minutes reserve fuel at the specifted power setting. Fuel flow data for cruise is based on the recommended lean mixture setting. Some indeterminate variables such as mixture leaning technique, fuel metering characteristios, engine and propelier condition, and air turbulence may account for variations of 10% or more in renge and endurence. Therefore, ft is important to utilize all available information to estimate the fuel required for the particular flight.

USE OF PERFORMANCE CHARTS

Pexformance cata is presented in tabular or graphical form to illustrate the effect of different variables. Sufficiently detailed information is provided in the tables so that conservative values can be selected and used to determine the particular performance figure with reasonable accuracy.

SAMPLE PROBLEM

The following sample flight problem utilizes information from the various charts to determine the predicted performance data for a typical flight. The following information is known:

AIRPLANE CONFIGURATION

Takeoff weight
Usable fuel
TAKEOFF CONDITIONS
Fieid pressure altitude
Temperature
Wind component along runway
Fiold length

2300 Pounds
40 Gallons

1500 Feet
$28^{\circ} \mathrm{C}$ ($16^{\circ} \mathrm{C}$ above standard)
12 Knot Headwind 3500 Feet

CRUISE CONDITIONS
Total distance
Pressure altitude
Temperature
Expected wind enroute
LANDING CONDITIONS
Field pressure altitude
Temperature
Field length

320 Nautical Miles
5500 Feet
$20^{\circ} \mathrm{C}\left(16^{\circ} \mathrm{C}\right.$ above standard)
10 Knot Headwind

2000 Feet
$25^{\circ} \mathrm{C}$
3000 Feet

TAKEOFF

The takeoff distance chart, figure 5×4, should be consuited, keeping in mind that the distances shown are based on the short field technigue. Conservative distances can be established by reading the chart at the next higher value of weight, altitude and temperature. For example, in this particular sample problem, the takeoff distance information presented for a weight of 2300 pounds, pressure altitude of 2000 feet and a temperature of $30^{\circ} \mathrm{C}$ should be used and results in the following:

Ground roll
Total distance to clear a 50 -foot obstacle

1045 Feet
1885 Feet

These distances are well within the available takeoff field length. However, a correction for the effect of wind may be made based on Note 3 of the takeoff chart. The correction for a 12 knot headwind is:

$$
\frac{12 \text { Knots }}{9 \text { Knots }} \times 10 \%=13 \% \text { Decrease }
$$

This resuits in the following distances. corrected for wind:

Ground roll, zerowind	1045
Decrease in ground rold	
(1045 feet $\times 13 \%$)	136
Corrected ground roll	909 Feet
Total distance to clear a	
50 -foot obstacle, zero wind	1885
Decrease in total distance	
(1885 feet × 13\%)	245
Corrected total distance to clear 50-foot obstacle	1640 Fee

CRUISE

The cruising altitude should be selected based on a consideration of trip length, winds aloft, and the airplane's performance. A typicalertising aititude and the expected wind enroute have been given for this sample problem. However, the power setting selection for cruise must be determined based on several considerations. These include the oruise perfor* mance characteristics presented in figure 5-7, the range profile chart presented in figure $5-8$, and the endurance profile chart presented in figure 5-9.

The relationship between power and range is illustrated by the range profile chart. Considerable fuel savings and longer range result when lower power settings are used. For this sample problem, a crutse power of approximately 65% will be used.

The cruise performance chart, figure 5-7, is entered at 6000 feet altitude and $20^{\circ} \mathrm{C}$ above standard temperature. These values most nearly correspond to the planned altitude and expected temperature conditions. The engine speed chosen is 2500 RPM, which results in the following:

Power	64%
True airspeed	114 Knots
Crufse fuel flow	7.1 GPH

The power computer may be used to determine power and fuel consumption more acourately during the flight.

FUEL REQUIRED

The total fuel requirement for the fight may be estimated using the performance information in figures 5-6 and 5-7. For this sample problem, figure $5-6$ shows that a climb from 2000 feet to 6000 feet requires 1.3 galions of fuel. The corresponding distance during the climb is 9 nautical miles. These values are for a standard temperature and axe sufficiently accurate for most fight planning purposes. However, a further correction for the effeot of temperature may be made as noted on the climb chart. The approximate effect of a non-standard temperature is to increase the time, fuet, and distance by 10% for each $10^{\circ} \mathrm{C}$ above standard temperature, due to the lower rate of climb. In this case, assuming a temperature $16^{\circ} \mathrm{C}$ above standard, the correction would be:

$$
\frac{16^{\circ} \mathrm{C}}{10^{\circ} \mathrm{C}} \times 10 \%=16 \% \text { Increase }
$$

With this factor included, the fuel estimate would be calculated as follows:

Fuel to climb, standard temperature	1.3
Increase due to non-standard temperature	
$\quad(1.3 \times 16 \%)$	
Corrected fuel to climb	0.2

Using a similar procedure for the distance to climb results in 10 nautical miles.

The resultart cruise distance is:

Total distance	320
Climb distance	$\stackrel{10}{310}$ Nautical Miles
Cruise distance	

With an expected 10 knot headwind, the ground speed for cruise is predioted to be:

$$
\begin{aligned}
& 114 \\
& \frac{-10}{104} \text { Knots }
\end{aligned}
$$

Therefore, the time required for the cruise portion of the trip is:

$$
\frac{310}{104} \text { Nautical Miles }=3.0 \text { Hours }
$$

The fuel required for cruise is:

$$
3.0 \text { hours } \times 7.1 \text { gallons } / \text { hour }=21.3 \text { Gallons }
$$

The total estimated fuel required is as follows;

Engine start, taxi, and takeoff	1.1
Climb	1.5
Cruise	21.3
Total fuel required	23.9 Gallons

Once the flight is underway, ground speed checks will provide a more accurate basis for estimating the time enroute and the corresponding fuel required to complete the trip with ample reserve.

LANDING

A procedure similar to takeoff should be used for estimating the landing distance at the destination airport. Figure 5-10 presents lending
distance information for the short field technique. The distances corresponding to 2000 feet and $30^{\circ} \mathrm{C}$ are ats follows:
Ground roll $\quad 590$ Feet
Total distance to clear a 50 -foot obstacle $\quad 1370$ Feet

A correction for the effect of wind mey be made based on Note 2 of the landing chart using the same procedure as outlined for takeoff.

DEMONSTRATED OPERATING TEMPERATURE

Satisfactory engine cooling has been demonstrated for this airplane with an outside air temperature $23^{\circ} \mathrm{C}$ above standard. This is not be to considered as an operting limitation. Reference shoutd be made to Section 2 for engine operating limitations.

AIRSPEED CALIBRATION

NORMAL STATIC SOURCE

CONDITION:

Power required for lewel flight or maximum rated RPM diwe,

FLAPS UP K1AS KCAS		$\begin{aligned} & 50 \\ & 56 \end{aligned}$				$\begin{aligned} & 90 \\ & 89 \end{aligned}$	$\begin{array}{r} 100 \\ 99 \end{array}$	$\begin{aligned} & 110 \\ & 109 \end{aligned}$	I				
									120	130	140	150	160
									119	129	139	149	160
FLAPS 10°													
KIAS	40	50	60	70	80	90	100	110					---
KCAS	49	55	62	71	80	90	99	108		---			
FLAFS 40°													
KIAS	40	50	60	70	80	85		-..	-.	-..	-	.-.	-..
KCAS	48	55	63	72	82	87	...	- -	---		---.

Figure 5-1. Airspeed Calibration (Sheet 1 of 2)

AIRSPEED CALIBRATION Alternate static source

HEATER/VENTS AND WINDOWS CLOSED

FLAPS UP	40	50	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$	$\begin{aligned} & 80 \\ & 82 \end{aligned}$	$\begin{aligned} & 90 \\ & 91 \end{aligned}$	$\begin{aligned} & 100 \\ & 101 \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \end{aligned}$	$\begin{aligned} & 120 \\ & 121 \end{aligned}$	$\begin{aligned} & 130 \\ & 131 \end{aligned}$	$\begin{aligned} & 140 \\ & 141 \end{aligned}$
NORMAL KIAS											
ALTERNATE KIAS	39	51									
FLAPS $10{ }^{\circ}$											
NORMAL KIAS	40	50	60	70	80	90	100	110	--.	---	---
ALTERNATE KJAS	40	\$1	61	71	81	90	99	108	-..	--.	.-.
FLAPS 40°											
NORMAL KIAS	40	50	60	70	80	85	---	--	--.	---	---
ALTERNATE KIAS	38	50	60	70	79	83	. .	-- -	--.		

HEATER/VENTS OPEN AND WINDOWS CLOSED

FLAPS UP NORMAL KIAS ALTERNATE KIAS											
	40	50	60	70	90	90	100	110	120	130	140
	36	48	59	70	80	89	99	108	118	128	139
FLAPS 10°											
NORMAL KIAS	40	50	60	70	80	90	100	110	---	---	---
ALTERNATE KIAS	38	49	59	69	79	98	97	106	.-.	-.-	
FLAPS 40°											
NOFMAL KIAS	40	50	60	70	80	85	-.-	-	--.	--	---
ALTEANATE KIAS	34	47	57	67	77	81	*--	\cdots	-.-	-..	--.

WINDOWS OPEN

FLAPS UP											
NORMAL KIAS	40	50	60	70	80	90	100	110	120	130	140
ALTERNATE KIAS	26	43	57	70	82	93	103	173	123	133	143
FLAPS 10'											
NORMAL KIAS	40	50	60	70	80	90	100	110	---	-.-	---
ALTEANATE KIAS	25	43	57	69	80	91	101	111	---	\cdots	
F $£ \mathrm{APS} 40^{\circ}$											
NOAMAL KIAS	40	50	60	70	80	85	---	-.-	-	-..	-- -
ALTERNATE KIAS	25	41	54	67	78	84	-.-	-	-	. -	--

Figure 5-1. Airspeed Calibration (Sheet 2 of 2)

TEMPERATURE CONVERSION CHART

Figure 5-2. Temperature Conversion Chart

STALL SPEEDS

CONDITIONS:
Power Ott
NOTES:

1. Maximum altitude foss during a stall recovery may be as much as 180 feet.
2. KIAS values are approximate.

MOST REARWARD CENTER OF GRAVITY

$\begin{gathered} \text { WEIGHT } \\ \text { LES } \end{gathered}$	$\begin{gathered} \text { FLAP } \\ \text { DEFLECTION } \end{gathered}$	ANGLE OF BANK							
		0		30°		45°		60°	
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS
2300	UP	39	50	42	54	47	59	56	71
	10°	38	47	40	51	45	56	64	66
	40°	31	44	33	47	37	52	45	62

MOST FORWARD CENTER OF GRAVITY

$\begin{gathered} \text { WEIGHT } \\ \text { LAS } \end{gathered}$	FLAP DEFLECTION	ANGLE OF bank							
		0°		30°		45°		60°	
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS
2300	UP	44	53	47	57	52	63	62	75
	10°	44	51	47	55	52	61	62	72
	40°	33	47	35	51	39	56	47	66

Figure 5.3. Stall Speeds

TAKEOFF DISTANCE
 MAXIMUM WELGHT 2300 LBS
 SHORT FIELD

1. Short field technique as specified in Section 4 .
2. Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a fuil throttle,
static runup.
3. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10%
for each 2 knots.
4. For operation on a ory, grass runway, incresse distances by 15% of the "ground roll" figure.
Full Thrortle Prios to Brake Release Paved, Level, Dry Runway Zero Wind
NOTES:
5. For operation on a ofy, grass runway, incresse distances by 15% of the "ground roll" figure.

$\left\|\begin{array}{c} \text { WEIGHT } \\ 1 B S \end{array}\right\|$	TAKEOFF SPEED KIAS		PRESS ALT FT	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$	
			GRND ROLL	TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL TO CLEAR 50 FT'OBS	GRND ROLL	TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL to clean 50 FT OBS	GRND ROLL	TOTAL to clear 50 FT OBS	
	$\begin{array}{\|l} \hline \mathrm{LFT} \\ \mathrm{OFF} \end{array}$	$\begin{gathered} \mathrm{AT} \\ 50 \mathrm{FT} \end{gathered}$											
2300	48	53	S.L.	695	1250	745	1340	805	1440	885	1545	925	1655
			1000	760	1370	820	1475	880	1585	950	1705	1020	1830
			2000	835	1510	900	1625	970	1750	1045	1885	1120	2030
			3000	920	1670	990	1800	1070	1940	1150	2095	1235	2260
			4000	1010	1850	1090	2000	1180	2165	1270	2340	1365	2535
			5000	1115	2060	1205	2235	1300	2425	1405	2635	1510	2860
			6000	1235	2310	1335	2515	1440	2740	1555	2985	1675	3265
			7000	1370	2610	\$480	28.50	1600	3125	1730	3430	1865	3775
			8000	1520	2975	1645	3270	1780	3610	1925	4000	2080	4465

Figure 5-4. Takeoff Distance (Sheet 1 of 2)
TAKEOFF DISTANCE 2100 LBS AND 1900 LBS

SHORT FIELD

REFER TO SHEET 1 FOR APPROPRIATE CONDITIONS AND NOTES.

WEIGHT LBS	TAKEOFF SPEED KIAS		PRESS ALT FT	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		
				TOTAL										
	$\begin{aligned} & 1+F T \\ & O F F \end{aligned}$	$\begin{gathered} \mathrm{AT} \\ 50 \mathrm{FT} \end{gathered}$		$\left\|\begin{array}{l} \text { GRND } \\ \text { ROLL } \end{array}\right\|$	TO CLEAR 50 FT OBS	GRND ROLI	TO CLEAR 50 FT OBS	GRND ROLL	TOCLEAR 50 FT OBS	GRND ROLL	To clear 50 F'T OBS	GRND ROLL	To clear 50 FT O8S	
2100	46	51		S.L.	560	1020	605	1095	650	1770	700	1250	750	1340
			1000	615	1115	665	1195	715	1285	765	1375	820	1470	
			2000	675	1225	725	1315	785	1410	840	1515	905	1625	
			3000	740	1345	800	1445	860	1555	925	1670	995	1795	
			4000	815	1485	880	1600	950	1720	1020	1855	1095	1995	
			5000	900	1645	970	1775	1045	1915	1125	2065	1210	2225	
			6000	990	1825	1070	1975	1155	2135	1245	2310	1340	2505	
			7000	1095	2040	1185	2210	1280	2400	1380	2605	1485	2835	
			8000	1215	2295	1315	2495	1420	2720	1530	2955	1650	3245	
1900	43	48	S.L.	450	820	480	880	520	940	555	1000	595	1070	
			1000	490	885	525	960	565	1025	610	1095	655	1770	
			2000	535	980	580	1050	620	1120	665	1200	715	1280	
			3000	590	1070	635	1150	680	1230	735	1315	785	1410	
			4000	645	1175	695	1260	750	1355	805	1450	865	1555	
			5000	710	1295	765	1390	825	1495	890	1605	955	1725	
			6000	785	1430	845	1540	910	1655	980	1785	1055	1920	
			7000	865	1585	935	1710	1005	1845	1085	1990	1165	2145	
			8000	955	1765	1030	1905	1115	2060	1200	2230	1290	2410	

MAXIMUM RATE OF CLIMB

CONOITIONS:
Flaps Up
Fult Thrette

NOTE:
Mixfore leaned above 3000 feet for meximum PPM.

WEIGHT LBS	PRESS ALT FT	CLIMB SPEED KIAS	AATE OF CLIMB - FPM			
	SLL	73	$-20^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
	2000	72	765	815	755	695
	4000	71	655	600	650	590
	6000	70	545	495	445	485
	8000	69	440	390	335	385
	10.000	68	335	285	230	280
	12,000	67	230	180	\cdots	\cdots

Figure 5-5. Maximum Rate of Climb

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUN RATE OF CLIMB

CONDITIONS:
Flaps Up
Full Throttie
Standard Temperature
NOTES:

1. Add 1.1 galtons of fuel for engire start, taxi and takeoff ailowance.
2. Mixture feaned above 3000 feet for maximum RPM.
3. Increase time, fuel and distance by 10% for each $10^{\circ} \mathrm{C}$ above standard temperature.
4. Distances shown are based on zero wind.

WEIGHT LBS	Pressume Altitude FT	$\begin{gathered} \text { TEMP } \\ { }^{\circ} \mathrm{C} \end{gathered}$	CLIMB SPEED KIAS	$\begin{aligned} & \text { RATE OF } \\ & \text { CLLMB } \\ & \text { FPM } \end{aligned}$	FROM SEA LEVEL		
					TIME MiN	FUEL USED GALLONS	$\begin{aligned} & \text { DISTANCE } \\ & \text { MMN } \end{aligned}$ $N M$
2300	S.L.	15	73	770	0	0.0	0
	1000	13	73	725	9	$0.3{ }^{\circ}$	2
	2000	11	72	675	3	0.6	3
	3000	9	72	630	4	0.9	5
	4000	7	71	580	6	1.2	8
	5000	5	71	535	8	1.6	10
	6000	3	70	485	10.	1.9	12
	7000	1	69	440	12	2.3	15
	8000	-1	69	390	15	2.7	19
	9000	-3	68	345	17	3.2	22
	10,000	-5	68	295	21	3.7	27
	11.000	-7	67	250	24	4.2	32
	12,000	-9	67	200	29	4.9	38

Figure 5-6. Time, Fuel, and Distance to Climb

SECTION 5
PERFORMANCE

CRUISE PERFORMANCE

CONDITIONS:
2300 Pounds
Recommended Lean Mixture

$\begin{gathered} \text { PAESSUARE } \\ \text { ALTITUDE } \\ \text { FT } \end{gathered}$	RPM	$\begin{aligned} & 20^{\circ} \mathrm{C} \text { BELOW } \\ & \text { STANDARD TEMP } \end{aligned}$			STANDARD TEMPERATURE			$20^{\circ} \mathrm{CABOVE}$ STANDARD TEMP		
		$\begin{gathered} 96 \\ 8 \mathrm{HP} \end{gathered}$	KTAS	GPH	$\begin{gathered} \% \\ \text { BriP } \end{gathered}$	KTAS	GPH	$\underset{\mathrm{BH}}{\%}$	KTAS	GP\%
2000	2500	---	--.		75	116	8.4	71	115	7.9
	2400	72	111	8.0	67	111	7.5	63	110	7.1
	2300	64	106	7.1	60	105	6.7	56	105	6.3
	2200	56	101	6.3	53	100	6.1	50	99	5.8
	2100	50	95	5.8	47	94	5.6	45	93	5.4
4000	2550	7-	…	\cdots	75	118	8.4	71	118	7.9
	2500	76	116	8.5	71	115	8.0	67	115	75
	2400	68	111	7.6	64	110	7.1	60	109	6.7
	2300	60	105	6.8	57	105	6.4	54	104	6.1
	2200	54	100	6.1	51	99	5.9	48	98	5.7
	2100	48	94	5.6	46	93	5.5	44	92	5.3
6000	2600	\cdots	116	--	75	120	8.4	71	120	7.9
	2500	72	116	8.1	67	115	7.6	64	114	7.1
	2400	64	110	7.2	60	109	68	57	109	6.4
	2300	57	105	6.5	54	104.	6.2	52	103	5.9
	2200	59	99	5.9	49	98	5.7	47	97	5.5
	2100	46	93	5.5	44	92	5.4	42	91	5.2
8000	2650 2600	76	120	8.6	75	122 120 118	8.4			
	2600	76 68	120		71 64	120	8.9	67 60	119 119	7.5 6.8
	[24000	68	115 110	7.7	64 58	114 109	6.5	55	108	6.2
	2300	55	104	6.2	52	103	6.0	50	102	5.8
	2200	49	98	5.7	47	97	5.5	45	96	5.4
10,000	2650	76	122	8.5	71	122	8.0	67	121	7.5
	2600	72	120	8.1	68	119	7.6	64	118	7.1
	2500	65	114	7.3	61	114	6.8	58	112	6.5
	2400	58	109	6.5	55	108	6.2	52	107	6.0
	2300	52	103	6.0	50	102	5.8 5.4	48	107 95	
	2200	47	97	5.6	45	96	5.4	44	95	5.3
\$2,000	2600	68	119	7.7	64	118	7.2	61	117	
	2500	62	114 108 108	6.9	58 53	113 107	6.5 6.0		117 106	6.2 5.8
	2400 2300	56 50	108	5.3	53 48	107 101	6.0 5.6	51 46	106 100	5.8 5.5
	2200	46	96	5.5	44	95	5.4	43	94	5.3

Figure 5-7. Cruise Performance

RANGE PROFILE
 45 MINUTES RESERVE 40 GALLONS USABLE FUEL

CONDITIONS:
2300 Pounds
Recommended Lean Mixture for Cruise
Standard Temperature
Zero Wind

NOTE:

This chart allows for the fuel used for engine start, taxt, takeoff and climb, and the distance during cilmb.

Figure 5-8. Range Protile (Sheet 1 of 2)

RANGE PROFILE
 45 MiNUTES RESERVE 50 GALLONS USABLE FUEL

CONDITIONS:
2300 Pounds
Recommencied Lean Mixture for Cruise
Stancard Temperature
Zero Wind
NOTE:
This chart allows for the fuel used for engine start, tax:, takeoff and climb, and the distance during climb

Figure 5-8. Range Profile (Sheet 2 of 2)

ENDURANCE PROFILE
 45 MINUTES RESERVE 40 GALLONS USABLE FUEL

CONDITIONS:
2300 Pouncts
Fecommended Lean Mixture for Cruise
Standard Temperature
NOTE:
This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during climb.

Figure 5-9. Endurance Profile (Sheet 1 of 2)

ENDURANCE PROFILE
 45 MINUTES RESERVE 50 GALLONS USABLE FUEL

CONDITIONS:
2300 Pounds
Recommended Lean Mixture for Cruise
Standard Temperature
NOTE:
This chart allows for the fuet used for engine start, taxi, takeoth and cimb, and the time during alimb.

Figure 5-9. Endurance Profilc (Sheet 2 of 2)

CONDITIONS: Flaps 40° Power Off Maximum Graking Paved, Level, Dry Rurnway Zero Wind			SHORT FIELD									
Short field technique as specified in Section 4. Decrease distances 10% for each 9 knots headwind. For operation with tailwincis up to 10 knors, inerease dist for each 2 knots For operation on a dry, grass runway, increase distances by 45% of the "ground roll" figure.												
$\underset{\text { WEIGHT }}{\text { LBS }}$	SPEED AT EO FIKIAS	PRESS AL'T' FT	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$	
			GRND nOLL.	TOTAL. TO Clear 50 FT O8S	GRND ROLL	total TO CLEAB 50 FT O8S	GRND ROLL	total TO CLEAR䔍 FH O OBS	GRND ROLL	TOTAL TO CIEAR 50 FT OBS	GRND ROLL	TOTAL TO ClEAR 50 FT OBS
2300	59	S.L.	495	1205	510	1235	530	1265	545	1295	565	
		1000	510	1235	530	1265	550	1300	565	1330	585	1365
		2000	530	1265	550	1300	570	1335	590	1370	610	1405
		3000	550	1300	570	1335	590	1370	610	1405	630	1440
		4000	570	1335	590	1370	615	1410	635	1445	655	1480
		5000	590	1370	615	1415	635	1450	655	1485	680	1525
		6000	615	1415	640	1455	660	1490	685	1535	705	1570
		7000	840	1455	860	1495	685	1535	710	1575	730	1615
		8000	665	1500	690	1540	710	1580	735	5620	760	

Figure 5"10. Landing Distance

SECTION 6 WEIGHT \& BALANCE/ EQUIPMENT LIST

TABLE OF CONTENTS
Page
Introduction 6-3
Airplane Weighing Procedures 6×3
Neight And Balance 6-6
Equipment List $6 \cdot 13$
\square

INTRODUCTION

This section describes the procedure for establishing the basic empty weight and moment of the airplane. Sample forms are provided for reference. Procedures for calculating the weight and moment for various operations are also provided. A comprehensive list of all Cessna equipment available for this airplane is included at the back of this section.

It should be noted that specific information regarding the weight, arm, moment and installed equipment list for this airplane can only be found in the appropriate weight and balance records carried in the airplane.

It is the responsibility of the pilot to ensure that the airplane is loaded properly.

AIRPLANE WEIGHING PROCEDURES

1. Preparation:
a. Inflate tires to recommended operating pressures.
b. Remove the fuel tank sump quick-drain fittings and fuel selector valve drain plug to drain all fuel.
c. Remove oll sump drain plug to drain all oit.
d. Move sliding seats to the most forward position.
e. Raise flaps to the fulliy retracted position.
f. Place all control surfaces in neutral position.
2. Leveling:
a. Place scaies under each wheel (minitnum scale oapacity, 500 pounds nose, 1000 pounds each main).
b. Deflate the nose tire and/or lower or raise the nose strut to properly center the bubble in the level (see fifure 641).
3. Weighing:
a. With the airplane level and brakes releasad, record the waight shown on each soale. Deduct the tare, if any, from each reading.
4. Measuring:
a. Obtain measurement A by measuring horizontally (along the airplane center line) from a line stretohed between the main wheel centers to a plumb bob dropped from the firewall.
b. Obtain measurement B by measuring horizontally and paralIel to the atrplane center line, from center of nose wheel axle, left side, to a plumb bob dropped from the line between the main wheel centers. Repeat on right side and average the measurements.
5. Using weights from item 3 and measurements from item 4, the airplane weight and C.G. can be determined.
6. Basic Empty Weight may be cetermined by completing figure 6-1.

Datum
Sta. 0.0
(Firewasl, Front Face,

Scale Position	Scale Reading	Tare	Symbol	Met Woight
Left Wheel			L	
Fight Wheel			R	
Nose Wheel			N	
Sum of Net Waights (As Weighed)		W		

$$
X=A F M=[A]-\frac{(N) \times(B)}{w} ; X=1
$$

1 N

Item			
Airplane Weight (From Item 6, page e-3)			
Add Oil: No Oil Finter (6 Ots at 7.5 Lbs/Galt		-14.0	
With Oil Filter 17 Ots at $7.5 \mathrm{Lbs} / \mathrm{Gal}$)		-14.0	
Add Unusabie Fuel: Std. Tanks (3 Gat at 6 Lbs/Gal)		46.0	
		46.0	
Equipment Changes			
Atrplane Basic Empty Weight			

Figure 6"1. Sample Airplane Weighing
SAMPLE WEIGHT AND BALANCE RECORD

$\begin{array}{r} 0001 / \\ \text { zuewow } \end{array}$	19	$\begin{array}{r} \text { OOOD } \\ \text { zuewow } \end{array}$	$\begin{aligned} & {\left[u_{1}\right]} \\ & w_{y} \end{aligned}$	$\begin{aligned} & \{91\} \\ & 2 M \end{aligned}$	$\begin{array}{r} \text { 0001/ } \\ \text { 2uawow } \end{array}$	$\begin{aligned} & \text { qul } \\ & \text { wity } \end{aligned}$	$1 \mathrm{~m}$	NOTLdyos	30	uf	31.80
LHGIBM 人 1 dWB OISVG SNINNNE		t) OBAON3\%			1+10300\%				ONW3.1		
		39NVHO LHSİM									
g38wn gevd					yagwnn TVIbas				3900W 3nvodyly		

Figure 6-2. Sample Weight and Balance Record

WEIGHT AND BALANCE

The following information will enable you to operate your Cessna within the prescribed weight and center of gravity limitations. To figure weight and balance, use the Sample Problem, Loading Graph, and Center of Gravity Moment Envelope as follows:

Take the basic empty weight and moment from appropriate weightand balance records carried in your airplane, and enter them in the column titied YOUR AIRPLANE on the Sample Loading Problem.

NOTE

In addition to the basicempty weight and moment notedon these records, the C.G. arm (fuselage station) is also shown, but need not be used on the Sample Loading Problem. The moment which is shown must be divided by 1000 and this value used as the moment/ 1000 on the loading problem.

Use the Loading Graph to determine the moment/ 1000 for each additional item to be carried; then list these on the loading problem.

NOTE

Loadng Graph information for the pilot, passengers and baggage is based on seats positioned for average occupants and baggage loaded in the center of the baggage areas as shown on the Loading Arrangements diagram. For loadings which may differ from these, the Sample Loading Problem lists fuselage stations for these items to indicate their forward and aft C.G. range limitations (seat travel and baggage area limitation). Additional moment calculations, basod on the actual weight and C.G. arm (fuselage station) of the item being loaded, must be made if the position of the load is different from that shown on the Loading Graph.

Total the weights and moments/1000 and plot these values on the Center of Gravity Moment Envelope to determine whether the point falls within the envelope, and if the loading is acceptable.

Figure 6-3. Loading Arrangements

CABIN HEIGHT MEASUREMENTS

DOOR OPENING DIMENSIONS

	$\begin{gathered} \text { WDDH } \\ \text { (TOP) } \end{gathered}$	$\begin{gathered} \text { WIDIH } \\ \text { (BOTIOM) } \end{gathered}$	$\begin{aligned} & \text { HEOHY } \\ & \text { (FRONT) } \end{aligned}$	HEIGMT 	$\begin{gathered} \text { حWIDTH } \\ \text { - WW WINDOW } \\ \text { WINE } \end{gathered}$
CABINDOOR	$32^{\prime \prime}$	$37 \times$	40^{+1}	41.	* CABIN FLOOR
BAGGAOEDOOR	154**	15/4'	71"	21^{12}	

CAEIN WIDTH MEASUREMENTS

Figure 6-4. Internal Cabin Dimensions

Figure 6-5. Sample Loading Problem
\{SWUGOOTM) LHSIヨM QVO7


```
SECTION 6
WEIGHT & BALANCE/
EQUIPMENT LIST
EQUIPMENT LIST
```


AIRPLANE G.G. LOCATION - MILLIMETERS AFT OF DATUM (STA. 0.0)

(SONOOd) LHPIFM ZNv7dUIV QBavOT

EQUIPMENT LIST

The following equipment list is a comprehensive list of all Cessna equipment available for this airplane. A separate equipment list of items installed in your specific airplane is provided in your aircraft file. The following list and the specific list for your airplane have a similar order of listing.

This equipment list provides the following information:
An item number gives the identification number for the item. Each number is prefixed with a letter which identifies the descriptive grouping (example: A. Powerplant \& Accessories) under which it is listed. Suffix letters identify the equipment as a required item, a standard item or an optional item. Suffix letters are as follows:
$-R=$ required items of equipment for FAA certification
-S = standard equipment items
$-\mathrm{O}=$ optional equipment items replacing fequired or standard items

- A = optional equipment items which are in addition to required or standard items

A ceference drawing column provides the drawing number for the item.
NOTE

If additional equipment is to be installed, it must be done in accordance with the reference drawing, accessory kit instructions, or a separate FAA approval.

Columns showing weight (in pounds) and arm (in inches) provide the weight and center of gravity location tor the equipment.
note
Unless otherwise indicated, true values (not net change values) for the weight and arm are shown. Positive arms are distances aft of the airplane datum; negative arms are distances forward of the datum.

NOTE

Asterisks (*) after the item weight and arm indicate complete assembly installations. Some major components of the assembly are listed on the lines immediately following. The summation of these major components does not necessarily equal the complete assembly installation.

			 11 INW \vec{N} N of ofot thond NHNEN 1111		
$\begin{aligned} & \text { 邑 } \\ & 5 \\ & 5 \end{aligned}$	Mrionor 		NNSt min m ？ 		$\begin{aligned} & \text { or- } \\ & \text { ó } \end{aligned}$
		C．Eeectrical systems			
$\begin{aligned} & \text { 온 } \\ & \text { ㅍ } \\ & \text { 른 } \end{aligned}$	$\begin{gathered} N \\ \underset{\sim}{E} \end{gathered}$				$\frac{\square 1}{19}$

		emonumbeo nam comooro opean' el Ftimane 1-1						
$\begin{aligned} & \text { 盆 } \\ & \stackrel{y}{3} \end{aligned}$		nminuningió HANTMNTN	-oy	orsumet- 	$1+\mathrm{rac}$ -0"80			mog_{-2}
				tinumen $\mathrm{M} \rightarrow-\mathrm{m}$ © -100 c munain musunar				
$\begin{aligned} & \text { 욜 } \\ & \text { 플 } \\ & \hline 1 \end{aligned}$					$4 \times \cos$ $4 \mathbf{H}_{4}^{4}$	la		

CESSNA
MODEL 172N

ITEM H0	EQUIPFENT LIST DESGRIPTION	REF DRAWING	WT LBS	ARW INS
	A．NTENNA GMERGFNCY ICCAYOR TRANSMITTER UUSED IN ranaigat	$\begin{gathered} C 599511-0109 \\ م 479419-4 \end{gathered}$	3． 3.5	122．0
	TPANSMITTER（DE \＆M DMELT－6－1C）	C589511－0113	3.3	116.4
H3！－A－1		$3917262-1$	9：2＊	121．0＊
	CONTQDLLER－AMPL：FIER IURN CDORDINATOR（NET CFNNG）（Gー3ONA）	$\begin{aligned} & 3930144-5 \\ & 423 \geq 0-00 \geq 8 \end{aligned}$	1.3	13.1
	WTNF TASTALEATION ISERVDIS 3.9 LESAT 6Q E NCHESI（PA－4Q5）	352 $2632-1$	6.1	68．$\overline{1}$
431－a－2	vav－7－martc zona laF3g5i CONTROLLER－AMPLIFIER \＆MOUNT	$\begin{aligned} & 3919163-1 \\ & 6 A-395 A \end{aligned}$	10．4＊	46．2\％
	O54～R GYAD 1NSTALLATION NET CHANGE	5591054	0.6	1：
	D9Gーח TURN COCROTNATCR MET CHANGE	$42321-0028$	0.3	
	WING TNSTALEATICN SSERVO IS 3.91 .85 AT 63．9［NCHES）（PA－495）	5522532－1	6.1	63.1
H74～n	relar inctallation BASIC AVIDNICS文IT－－OEDUIAED HITH IST	$\begin{aligned} & 2479909-4 \\ & 3910186-2 \end{aligned}$	9．4．0＊	52.0
	INNT NAV／G．GM FACIORY INSTALLATION ONLY	31－86－2		22．6＊
	RAOIO GOOLING INSTL． NOISE FILTEQrAUOIO iON ALTERNATOR：	$\begin{aligned} & 3939208 \\ & 3940148-1 \end{aligned}$	1．1	10.2 -26.1
	CGM ANTENNA CABLE	3951122－3	0.4	27.8
	OMNI ANTFNNA CABIE	3959122－4	0.6	115.0
	LH YHF COM ANTENNA LATIO	$3960102 \sim 10$	0.	220.9
	CABTN SPFAKGQ INSTL	$3970123-5$		37.9
	MIKF TNSTL－HANDHELD	3979124	$\mathrm{O}_{4}+3$	17.2
	HFADPATNE INSTALLAJHCN AUDIO CONTRML PANEL INSTL	$3970125-4$	9.2	14.2
H＊7－4	ANTFNNA F ORUPLER KIT REGURRED WITH 2ND	3919185－2	1.0	37.5
	WNIT NAV／CCM FACTGRY INSTALLATIEN			
$\begin{aligned} & H 43-A \\ & H 55-A \end{aligned}$	AVIONICS OPT IGN O NAV－GーNATTC WT NG PROV	25 $656532-29$	I 0.7	88.2
		C596530－7151	0.3	13.0
45	PAOOEO HEADPHONES K MCRCPHONE，REQUIRES F99～O ALL ？UODOSE CONTROL WHEEL	6596531－0101	1.1	13.0
	J．SPECIAL CPTHCN PACKAGES			
J～\％－A	SKYHAWK IT FGUIOMENT CONSISTS OF TTEMS	9599510	26．5＊	48．0＊


```
REVISED WEIGHT AND BALANCE
    10%04%7
    6Dec 2019
```

A/C MAKE + MODEL: Cessna 172N
S/N: 17272908
REG. NO : N6621D
OLD DATA FROM $06 / 15 / 15$
EMPTY WEIGHT : 1474.00
C. G. : 38.95
MOMENT : 57406.94

NEW DATA

EMPTY WEIGHT:
C. G. :

MOM. :
1458.25
39.00
56867.30

MICHAEI A. FROST
A\&P 2191811 IA

SECTION 7 AIRPLANE \& SYSTEMS DESCRIPTIONS

TABLE OF CONTENTS

Introduction . 7-3
Airframe . 7-3
FLight Controls . 748
Trim System . 7.8
Instrument Parel . 788
Ground Control . 749
Wing Fiap System . 7-10
Landing Gear System 7-10
Baggage Compartment . 7-11
Seats . 7-11
Seat Belts And Shoulder Harnesses 7-12
Seat Belts . 7-12
Shoulder Harnesses 7-12
Integrated Seat Belt/Shoulder Harnesses With Inertia, Reels 7-14
Entrance Doors And Cabin Windows 7-15
Control Locks . 7-18
Engine . 7-16
Engine Controls . 7n16
Engine Instruments 7-17
New Engine Break-In And Operation 7 -18
Engine Oil System . 7-18
Ignition-Starter System 7-19
Air Induction System 7-19
Exhaust System . 7-19
Carburetor And Priming System 7×19
Cooling System . 7-20
Propeller . 7-20
Fuel System . 7 720
Brake System . 7-23
Electrical System . 7-23
Master Switch . 7-25
Avionics Power Switch 7-25

1 July 1979 7~1
TABLE OF CONTENTS (Continued)
Page
Ammeter 7-26
Alternator Control Unit And Low Voltage Warning Light 7.26
Circuit Breakers And Fuses 7.27
Ground Service Plug Receptacle 7.27
Lighting Systems 7-27
Exterior Lithting 7.27
Interior Lighting $7-28$
Cabin Heating, Ventilating And Defrosting System 7-29
Pitot-Statio System And Instruments 7.31
Airspeed Indicator 7.31
Vertical Speed Indicator 7.32
Altimeter 7-32
Vacuum System And Instruments 7-32
Attitude Indicator 7 732
Directional Indicator 7-34
Suction Gage 7-64
Stall Warning System 7-34
Avionics Support Equipment 7-34
Audio Control Panel 7-35
Transmitter Selector Switch 7-35
Audio Selector Switches 7-35
Com Auto Audio Selector Switch 7-37
Com Both Audio Selector Switch 7-37
Auto Audio Selector Switch 7-38
Annunciator Lights Brightness And Test Switch 7-38
Sidetone Operation 7-38
Microphone - Headset Installations 7-39
Static Dischargers 7×40

INTRODUCTION

This section provides description and operation of the airplane and its systems. Some equipment described herein is optional and may not be installed in the airplane. Refer to Section 9, Supplements, for details of other optional systems and equipment.

AIRFRAME

The airplane is an ali-metal, four-place, high-wing, single-engine airplane equipped with tricycle landing gear and desigaed for general utility purposes.

The construction of the fuselage is a conventional formed sheet metal bulkhead, stringer, and shin design referred to as semimonocoque. Major iterns of structure are the front and rear carry'through spars to which the wings are attached, a bulkhead and forgings for matn landing gear attachment at the base of the rear door posts, and a bulkhead with attach fittings at the base of the forward coor posts for the lower attachment of the wing strits. Four engine mount stringers are also attachod to the forward door posts and extend forward to the firewall.

The externally braced wings, containing the fuel tanks, are constructed of a front and rearspar with formed sheet metal ribs, doublers, and stringers. The entire structure is covered with aluminum skin. The front spars are equipped with wing-to-fuselage and wing-to-strut attach fittings. The aft spars are equipped with wing to fuselage attach fittings, and are partial-span spars. Conventional hinged ailerons and single-slot type flaps are attached to the trading edge of the wings. The ailerons are constructed of a forward spar containing balance weights, formed sheet metal ribs and "V" type corrugated aluminum skin joined together at the trailing edge. The flaps are constructed basically the same as the ailerons, with the exception of the balance weights and the addition of a formed sheet metal leading edge section.

The empennage (tall assembly) consists of a conventional vertical stabilizer, rudder, horizontal stabilizer, and elevator. The vertical stabilizer consists of a spar, formed sheet metal ribs and reinforcements, a wraparound skin panel, formed leading edge skin and a dorsal. The rudder is constructed of a formed leading edge shin containing hinge halves, a center wrap-around skin panel, ribs, an aft wrap-around skin panel which is joined at the trailing edge of the rudder by a filler strip, and a ground adjustable trim tab at the base of the trailing edge. The top of the rudder incorporates a leading edge extension whioh contains a balance weight.

Figure 7-1. Flight Control and Trim Systems (Sheet 1 of 2)

CESSNA
MODEL 172N

SECTION 7 AIRPLANE \& SYSTEMS DESCRIPTIONS

Figure 7-1. Flight Control and Trim Systems (Sheet 2 of 2)

SECTION 7
AIRPLANE \& SYSTEMS DESCRIPTIONS

CESSNA MODEL 172N

Figure 7-2. Instrument Panel (Sheet 1 of 2)

※

Figure 7-2. Instrument Panel (Sheet 2 of 2)

The horizontal stabilizer is constructed of a forward and aft spar, ribs and stiffeners, center, left, and right wrap-around skin panets, and formed leading edge skins. The horizontal stabilizer also oontains the elevator trim tab actuator. Construction of the elevator consists of formed leading edge skins, a forward spar, aft channel, ribs, torque tube and bellcrank, left upper and lower "V" type corrugated skins, and right upper and lower " V " type corrugated skins incorporating a trailing edge cut-out for the trim tab. The elevator trim tab consists of a spar, rib, and upper and lower "V" type corrugated skins. The leading edge of both left and right elevator tips incorporate extensions which contain balance weights.

FLIGHT CONTROLS

The airplane's flight control system (see figure 7-1) consists of conventional aileron, rudder, and elevetor control surfeces. The control surfaces are mantually operated through mechanical linkege using a control wheel for the ailerons end elevator, and rudder/brake pedals for the rudder.

Extensions are available for the rudder/brake pedals. They consist of a rudder pedal face, two spacers and two spring clips. To install an extension, place the clip on the bottom of the extension under the bottom of the rudder pedal and snap the top clip over the top of the rudder pedal. Check that the extension is firmly in place. To remove the extensions, reverse the above procedtries.

TRIM SYSTEM

A manually-operated elevator trim system is provided; a rudder trim system may also be installed (see figure 7-1). Elevator trimming is accomplished through the elevator trim tab by utilizing the vertically mounted trim control wheel. Forward rotation of the trim wheel will trim nose-down; conversely, aft rotation will trim nose-up. Ruddex trimmith $\ddagger s$ accomplished through a bungee connected to the rudder control system and a trim lever, mounted on the control pedestal. Rudder trimming is accomplished by lifting the trim lever up to clear a detent, then moving it either left or right to the desired trim position. Moving the trim lever to the right will trim the airplane nose-right; conversely, moving the lever to the left will trim the airplane nose-left.

INSTRUMENT PANEL

The instrument panel (see figure 7.2) is designed around the basic " T " configuration. The gyros are losated immediately in front of the pilot, and axanged verticaily over the control column. The airspeed indicator and
altimeter are located to the left and right of the gyros, respectively. The remainder of the flight instruments are located around the basic "T". Engine instruments, fuel quantity indicators, an ammeter, and a lowvoltage warning light are near the left edge of the panel. Avionics equipment is stacked approximately on the centerline of the panel, with the right stide of the panel containing spece for additional instruments and avionics equipment. A switch and control panel at the lower edge of the instrument panel contains the primer, master and ignition switches, avionios power switch, circuit breakers, and electricat switches on the left side, with the engine controls, light intensity controls, and static pressure alternate source valve in the center. The right side of the switch and control panel contains the wing flap switch lever and position indtcator, cabin heat and air controls. cigar lighter, and mep compartment. A control pedestal, installed below the swith and control panel, contains the elevator trim control wheel and position indicator, and provides a bracket for the microphone. A rudder trim control lever may be installed below the trim wheel and microphone bracket. The fuel selector valve handle is located at the base of the pedestal. A parking brake handie is mounted below the switch and control panel in front of the pilot.

For details concerming the instruments, switches, circuit breakers, and controls on this panel, refer in this section to the description of the systems to which these items are related.

GROUND CONTROL

Effective ground control while taxiing is accomplished through nose wheel steering by using the rudder pedals; left rudder pedal to steer left and right rudder pedal to steer right. When a rudder pedai is depressed, a spring-loaded steering bungee (which is connected to the nose gear and to the rudder bars) will turn the nose wheel through an are of approximately 10° each side of centex. By applying either left or right brake, the degree of turn may be increased tp to 30° each side of center.

Moving the airplane by hand is most easily accomplished by attaching a tow bar to the nose gear strut. If a tow bar is not available, or pushing is required, use the wing struts as push points. Do not use the vertical or horizontal surfaces to move the airplatie. If the airplane is to be towed by vehicle, nevex turn the nose wheel more than 30° either side of center or structural damage to the nose gear could result.

The minimum turning radius of the airplane, using differential braking and nose wheel steering during taxi, is approximately 27 feet 5 and 1/2 inches. To obtain a minimum radius turn during ground handling, the airplane may be totatedaround either main landing gear by pressing down on a tailcone bulkhead just forward of the horizontal stabilizer to raise the nose wheel off the ground.

Figure 7-3. Wing Flap System

WING FLAP SYSTEM

The single-slot type wing flaps (see figure 7.3), are extended or retracted by positioning the wing flap switch lever on the instrument panel to the desired flap deflection position. The switch lever is moved up or down in a slotted panel that provides mechanical stops at the 10° and 20° positions. For flap settings greater than 10°, move the switch lever to the right to clear the stop and position it as desired. A scale and pointer on the left side of the switch lever indicates flap travel in degrees. The wing flap system circuit is protected by a 15 -ampere circuit breaker, labeled FLAP. on the left side of the switch and control panel.

LANDING GEAR SYSTEM

The landing gear is of the tricycle type with a steerable nose wheel, two main wheels, and wheel fairings. Shock absorption is provided by the tubuiar spring-steel main landing gear struts and the air/oil nose gear shock strut. Each matn gear wheel is equipped with a hydraulically actuated single-disc brake on the inboard side of each wheel, and an aerodynamic fairing over each brake.

BAGGAGE COMPARTMENT

The baggage compartment consisss of two areas, one extending from behind the rear passengers' seat to the aft cabin bulkhead, and an additional area aft of the bulkhead. Access to both baggage areas is gained through a lockable baggage door on the left side of the airplane, or from within the airplane cabin. A baggage net with eight tie-down straps is provided for securing baggage and is attached by tying the straps to tiedown rings provided tn the airplane. When loading the airpiane, children should not be placed or permitted in the baggage compartment, unless a child's seat is installed, and any material that might be hazardous to the airplane or occupants should not be placed anywhere in the airplane. For baggage area and door dimensions, refer to Section 6.

SEATS

The seating arrangement consists of two individually adjustable fourway or six-way seats for the pilot and front seatpassenger and asolid back or split-backed fixed seat for rear seat passengers. A child's seat (if instelled) is located at the aft cabin bulkhead behind the rear seat.

The four-way seats may be moved forwarc or aft, and the angle of the seat backs is infinitely adjustable. To position the seat, lift the tubular bandle below the center of the seat frame, slice the seat into position. release the handle and check that the seat is locked in place. The seat back angle is controtled by a cylinder lock release button which is spring* Loaded to the looked position. The release button is located on the right side, below the forward corner of the seatcushion. To adjust the angle of the seat back, push up on the release button, position the seat back to the desired angle and release the buttor. When the seat is not occupied, the seat back will automatically fold forward whenever the release button is pushed up.

The six-way seats may be moved forward or aft, and are infinitely adjustable for height and seat back angle. To position either seat, Lift the tubular hendle under the center of the seat bottom, slide the seat into position, release the handle, and check that the seat is locked in place. Raise or lower the seat by rotating the large crank under the inboard cornex of either seat. The seat baok angle is adjusted by rotating the small crank under the outboard corner of either seat. The seat bottom angle will change as the seat back angle changes, providing proper support. The seat back will also fold full forward.

The rear passengers' seat consists of a fixed one-piece seat bottom with either one-piece (adjustable to the vertical position or either of two reclining positions) or two-ptece (individually, infinitely adjustable) seat backs. The one piece back is adjusted by a lever located below the center of
the seat frame. Two-piece seat backs are adjusted by cylinder lock release buttons recessed into skirts located below the seat frame at the outboard ends of the seat. To adjust the one-piece seat back, raise the lever, position the seat back to the desired angle, release the lever and check that the back is locked in place. To adjust a two-piece seat back, push up on the cylinder iock release button (which is spring-Loaded to the iocked position), recline the seat back to the desired position, and release the button. When the seats are not occupied, either type of sent back will automatically fold forward whenever the lever is raised or the cylinder lock release button is pushed up.

A child's seat may be installed behind the rear passengers' seat in the forward baggage compartment, and is held in place by two brackets mounted on the floorboard. When not ocoupied, the sea, may be stowed by rotating the seat bottorn up and aft until it contacts the aft cabin bulkhead.

Headrests are available for any of the seat configurations except the child's seat. To adjust the headrest, apply enough pressure to it to raise or lower it to the desired level. The headrest may be removed at any time by raising it until it disengages from the top of the seet back.

SEAT BELTS AND SHOULDER HARNESSES

All seat positions are equipped with seat belts (see figure 744). The pilot's and front passenger's seats are also equipped with separate shoulder harnesses; shoulder harnesses are available for the rear seat positions. Integrated seat belt/shoulder harnesses with inertia reels can be furnished for the pilot's and front passenger's seat positions if desired.

SEAT BELTS

All of the seat belts are attached to fittings on the floorboard. The buckle half is inboard of each seat and the link half is outboard of each seat.

Touse the seat belts for the front seats, position the seat as desired, and then lengthen the link half of the belt as needed by grasping the sides of the link and pulling against the belt. Insert and lock the belt link into the buckle. Tighten the belt to a snug fit. Seat belts for the rear seat and the child's seat (if installed) are used in the same manner as the belts for the front seats. To release the seat belts, grasp the top of the buckle opposite the link and pull outward.

SHOULDER HARNESSES

Each front seat shoulder harness (see figure 7-4) is attached to a rear

SYANDARD SHOULDER
HARNESS

Figure "-4. Seat Belts and Ghoulder Harnesses
doorpost above the window Line and is stowed behind a stowage sheath above the cabin door. To stow the harness, fold it and place it behind the sheath. The rear seat shoulder harnesses are attached adjacent to the lower corners of the rear window. Each reer seat harness is stowed behind a stowage sheath above an aft side window. No harness is available for the child's seat.

To use a front or rear seat shoulder haxmess fasten and adjust the seat belt first. Lengthen the harness as required by pulling on the connecting link on the end of the harness and the narrow release strap. Snap the connecting link firmly onto the retaining stud on the seat belt link half. Then adjust to length. A properly adjusted harness will permit the cccupant to lean forward enowgh to sit completely erect but prevent excessive forward movement and contact with objects during sudden deceleration. Also, the pilot will want the freedom to reach all controls easily.

Removing the shoulder harness is accomplished by paIling upwardon the narrow release strap, and removing the harness connecting link from the stud on the seat belt link. In an emergency, the shoulder harmess may be removed by releasing the seat belt first, and allowing the harness, still attached to the link half of the seat belt, to drop to the side of the seat

INTEGRATED SEAT BELT/SHOULDER HARNESSES WITH INERTIA REELS

Integrated seat belt/shoulder harnesses with inertia reels are available for the pilot and front seat passenger. The seat belt/shoulder harnesses extend from inertia reels located in the cabin ceiling to attach points inboard of the two front seats. A separate seat belt half and buckle is located outboard of the seats. Inertia reels allow complete freedom of body movement. However, in the event of a sucden deceleration, they will lock automatically to protect the occupants.

NOTE

The inertia reels are located for maximum shoulder harness comfort and safe retention of the seat oocupants. This location requires that the shoulder harnesses cross near the top so that the right hand inertia reel serves the pilot and the left hand reel serves the front passenger. When fastening the harness, check to ensure the proper harness is being used.

To use the seat belt/shoulder harness, position the adjustable metal link on the harness just below shoulder level, pull the link and harness downward, and insert the link into the seat belt buckle. Adjust belt tension
across the lap by pulling upward on the shoulder harness. Removal is sccomplished by releasing the seat belt buckie, which will allow the inertia reel to pull the harness inboard of the seat.

ENTRANCE DOORS AND CABIN WINDOWS

Entry to, and exit from the airplane is accomplished through either of two entry doors, one on each side of the cabin at the front seat positions (refer to Section 6 for cabin and cabin door dimensions). The doors incorporate a recessed exterior door handle, a conventional intertor door handle, a key operated door lock (left door only), a door stop mechanism, and an openable window in the left door. An openable right door window is also available.

To open tho doors from outside the airplane, utilize the recessed door handle near the aft edge of either door by grasping the forward edge of the handle and puling outboard. To close or open the doors from inside the airplane, use the combination door handle and arm rest. The inside door handle has three positions and a placard at its base which reads OPEN, CLOSE, and LOCK. The handle is spring-loaded to the CLOSE (up) position. When the door has been pulled shut and letched, lock it by rotating the door handle forward to the LOCK position (fitsh with the arm rest). When the handle is rotated to the LOCK position, an over-center action will hold it in that position. Both cabin doors should be locked prior to flight, and should not be opened intentionally during flight.

NOTE

Accidental opening of a cabin door in flight due to improper closing does not constitute a need to land the airplane. The best procedure is to set up the airplane in a trimmed condition at approximately 75 KLAS, momentarily shove the door outward slightly, and forcefully ciose and lock the door.

Exit from the airplane is accomplished by rotating the door handle from the LOCK position, past the CLOSE position, aft to the OPEN position and pushing the door open. To lock the airplane, lock the right cabth door with the inside handle, close the left cabin door, end using the ignition key, lock the door.

The left cabin door is equipped with an openable window which is held in the closed position by a detent equipped latch on the lower edge of the window frame. To open the window, rotate the latch upward. The window is equipped with a spring"loaded retaining arm which will help rotate the
window ottward, and hold it there. An openable window is also available for the right door, and functions in the same manner as the left window. If required, either window may be opened at any speed up to 160 KIAS. The cabin top windows (if installed), rear side windows, and rear windows are of the fixed type and cannot be opened.

CONTROL LOCKS

A control lock is provided to lock the atheron and elevator control surfaces to prevent damage to these systems by wind buffeting while the airplane is parired. The lock consists of a shaped steel rod with a red metal flag attached to it. The flag is labeled CONTROL LOCK, REMOVE BEFORE STARTING ENGINE. To install the control lock, elign the hole in the top of the pilot's control wheel shaft with the hole in the top of the shaft collar on the instrument panel and insert the rod into the aligned holes. Installation of the lock will secure the ailerons in a neutral position and the elevators in a slightly trailitg edge down position. Proper instailation of the lock will place the red flag over the ignition switch. In areas where high or gusty winds oceur, a control surface lock should be installed over the vertical stabilizer and rudder. The control lock and any other type of locking device should be removed prior to starting the engine.

ENGINE

The airplane is powered by a horizontally-opposed, four-cylinder, overhead-valve, atr-cooled, carbureted engine with a wetsumpoil system. The engine is a Lycoming Model O-320-H2AD and is rated at 160 horsepowor at 2700 RPM . Major accessories inelude a starter and belt-driven alternator mounted on the front of the engine, and dual magnetos and a vacuum pump which are mounted on ant accessory drive pad on the rear of the engine. Provisions are also made for a full flow oil filter.

ENGINE CONTROLS

Engine power is controlled by a throttle located on the switch and control panel above the control pedestal. The throttle operates in a conventional manner; in the full forward position, the throttle is open, and in the full aft position, it is closed. A friction lock, which is a round knurled disk, is located at the base of the throttle and is operated by rotating the lock clockwige to increase friction or counterclockwise to decrease it.

The mixture control, mounted above the right corner of the control pedestal, is a red knob with raised points around the circumference and is equipped with a lock button in the end of the knob. The rich position is full forward, and full aft is the idle cut-off position. For small adjustments, the
control may be moved forward by rotating the knob clockwise, and aft by rotating the knob counterclockwise. For rapid or large adjustments, the knob may be moved forward or aft by depressing the lock button in theend of the control, and then positioning the control as destred.

ENGINE INSTRUMENTS

Engine operation is monitored by the following instruments: oil pressure gage, oil temperature gage, and a tachometer. An economy mixture ($E G T$) indicator and a carburetor air temperature gage are aiso avaitable.

The oil pressure gage, located on the left side of the instrument panel, is operated by oil pressure. A direct pressure oil line from the engine delivers oif at engine operating pressure to the oil pressure gage. Gage markings indicate that minimum idling pressure is 25 PSI (red line), the normal operating range is 60 to 90 PSI (green arc), and maximum pressure is 115 PSI (red line).

Oil temperature is indieated by a gage adjacent to the oil pressure gage. The gage ts operated by an electrical-resistance type temperature sensor which receives power from the airplane electrical system. Oil temperature limitations are the nomal operating range (green are) which is $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ to $245^{\circ} \mathrm{F}\left(118^{\circ} \mathrm{C}\right.$) , and the maximum (red line) which is $245^{\circ} \mathrm{F}$ $\left(118^{\circ} \mathrm{C}\right)$.

The engine-driven mechanical fachometer is located on the instrument panel to the left of the pilot's control wheel. The instrument is calibrated in increments of 100 R.PM and indicates both engine and propeller speed. An hour meter in the lower section of the dial records elapsed engine time in hours and tenths. Instrument markinge include the normal operating range (muitiple width green arc) of 2100 to 2700 RPM , and a maximum (red line) of 2700 RPM . The multiple width green arc hassteps at $2450 \mathrm{RPM}, 2575$ RPM, and 2700 RPM which indicate a 75% engine power setting at altitudes of sea level, 5000 feet, and 10,000 feet.

An economy mixture (EGT) indicator is available for the airplane, and is located on the right side of the instrument panel. A thermocouple probe in the tailpipe measures exhaust gas temperature and transmits it to the indicator. The indicator serves as a vistual aid to the pilot in adjusting oruise mixture. Exhaust gas temperature varies with fuel-to-air ratio, power, and RPM. However, the difference between the peak EGT and the EGT at the cruise mixture setting is essentially constant, and this provides a useful leantng aid. The indicator is equipped with amantaily positioned refereace pointer.

A carburetor air temperaturegage is available for the airplane. Details
of this gage are presented in Section 9, Supplements.

NEW ENGINE BREAK-IN AND OPERATION

The engine underwent a rum-in at the factory and is ready for the full range of use. It is, however, suggested that cruising be accomplished at a minimum of 75% power until a total of 50 hours has accumulated or oil consumption has stabilized. This will ensure proper seating of the rings.

ENGINE OIL SYSTEM

Oil for engine lubrication is supplied from a sump on the bottom of the engine. The capacity of the engine sump is six quarts (one additional quart is required if a full flow ofl fitter is instailed). Oil is drawn from the sump through an oil suction strainer screen into the engine-driven oil pump. From the pump, oil is routed to a bypass valve. If the oil is cold, the bypass valve allows the oil to bypass the oil cooler and go directly from the pump to the oil pressure screen (fuil flow oil filter if instailed). It the oil is hot, the bypass valve routes the oil out of the accessory housing and into a flexible hose leading to the oil cooler on the right, rear engine baffle. Pressure oil from the cooler returns to the accessory housing where it passes through the pressure strainer screen (full flow oil filter, if installed). The filter oil then enters a pressure relief valve which regulates engine oil pressure by allowing excessive oil to return to the sump while the balance of the oil is circulated to various engine parts for lubrication. Residual oil is returned to the sump by gravity flow.

An oil filler cap/oil dipstick is located at the rear of the engine near the centor. The filler cap/dipstick is accessible through an access door in the engine cowling. The engine should not be operated on less than four quarts of oil. For extended flight, fill to six quarts (dipstick indication only). For engine oil grade and specifications, refer to Section 8 of this handbook.

An oil quick-drain valve is available to replace the drain plug on the bottom of the oil sump, and provides quicker, cleaner draining of the engine oil. To drain the oil with this valve, slip a hose over the end of the valve and push upward on the end of the valve until it snaps into the open
position. Spring clips will hold the vaive open. After draining, use a suitable tool to snap the valve into the extended (closed) position and remove the drain hose.

IGNITION-STARTER SYSTEM

Engine ignition is provided by an engine-driven dual magneto, and two spark plugs in each cylinder. The right magneto fires the lower right and upper left spark plugs, and the left magneto fires the lower leit and upper right spark plugs. Normal operation is concucted with both magnetos due to the more complete burning of the fuel-air mixture with dual ignition.

Igrition and staxter operation is controlled by a rotary type switch localed on the left switch and control panel. The switch is labeled clockwise, OFF, R, L, BOTF, and START. The engine should be operated on both magnetos (BOTH position) except for megneto checks. The A and L positions are for ohecking purposes and emergency use only. When the switch is rotated to the spring-loaded START position. (with the master switch in the ON position), the starter contactor is energized and the starter will crank the engine. When the switch is released, it will automatically return to the BOTH position.

AIR INDUCTION SYSTEM

The engine air induction system recetves ram air through an intake in the lower front portion of the engine cowling. The intake is covered by an air filter which removes dust and other foreign matter from the induction air. Airflow passing through the filter enters an airbox. After passing through the airbox, Induction air enters the inlet ita the carburetor which is under the engine, and is then ducted to the enginecylinders through intake manifold tubes. In the event carburetor ice is encountered or the intake filter becomes blocked, altertate keated air can be obtained from a shroud around an exhaust riser through a duct to a valve, in the airbox, operated by the carburetor heat control on the instrument panel. Heated air from the shroud is obtained from an unfiltered outside sowrce. Use of full carburetor heat at full throttle will result in a loss of approximately 100 to 225 RPM .

EXHAUST SYSTEM

Exhaust gas from each cylinder passes through riser assemblies to a muffler and tailpipe. The muffler is constructed with a shroud around the outside which forms a heating chamber for cabin heater air.

CARBURETOR AND PRIMING SYSTEM

The engine is equipped with an up-draft, float-type, fixed jet carburetor
mounted on the bottom of the engine. The carburetor is equipped with an enclosed accelerator pump, an idle cut-off mechanism, and a manual mixture control. Fuel is delivered to the carburetor by gravity flow from the fuel system. In the carburetor, fuel is atomized, proportionally mixed with intake air, and delivered to the cylinders through intake manifold tubes. The proportion of atomized fuel to air may be controlled, within limits, by the mixture control on the instrument panel.

For easy starting in cold weather, the engine is acuipped with a manual prtmer. The primer is actually a small pump which drawa fuel from the fuel strainer when the plunger is pulled out, and injects it into the cylinder intake ports when the plunger is pushed back in. The plunger is equipped with a lock and, after being pushed full in, must be rotated either left or right until the knob cannot be pulled out.

COOLING SYSTEM

Ram air for engine cooling enters through two intake openings in the front of the engine cowling. The cooling airisdirected around the cylinders and other areas of the engine by baffling, and is then exhausted through an opening at the bottom aft edge of the cowling. No manual cooling system control is provided.

A winterization kit is available for the airplane. Details of this kitare presented in Section 9, Supplements.

PROPELLER

The airplane is equipped with a two-bladed, fixed-pitch, one-piece forged aluminum alloy propeller which is anodized to retard corrosion. The propeller is 75 inches in diemeter.

FUEL SYSTEM

The airplane may be equipped with either a standard fuel system or long range system (see figure 7-6). Both systems consist of two ventedfuel tanks (one in each wing), a four-position selector valve, fuel strainer, manual primer, and carburetor. Refer to figure 7-5 for fuel quantity data for both systems.

Fuel flows by gravity from the two wing tanks to a four-position selector valve, labeled BOTH. RIGHT, LEFT, and OFF. With the selector valve in etther the BOTH, LEFT, or FIGFT position, fuel flows through a strainer to the carburetor. From the carburetor, mixed ftel and atif flows to the cylinders through intake manifold tubes. The manual primer draws its

FUEL OUANTITY DATA \{J. S. GALLONS			
TANKS	TOTAL USABLE FUEL ALL FLIGHT CONDITIONS	TOTAL UNUSABLE FUEL	TOTAL FUEL VOLUME
STANDARD (21.5 Gat, Each	$40 \mid$	3	43
LONG RANGE (27 Gal. Each $)$	50	4	54

Figure 7 -5. Fuel Quantity Deta
fuel from the fuel strainer and injects it into the cylinder intake ports.
Fuel system venting is essential to system operation. Blockage of the system will result in decreasing fuel flow and eventual engine stoppage, Veating is accomplished by an interconnecting line from the right ftyel tank to the left tank. The left fuel tank is vented overboard through a vent line, equipped with a check valve, which protrudes from the bottom surface of the left wing near the wing strut. The right fuel tank filler capts also vented.

Fuel quantity is measured by two float-typefuel quantity transmitters (one in each tank) and indicated by two electically-operated fuel quantity indicators on the left side of the instrument panel. An empty tank is indicated by a red lite and the letter E. When an indicator shows an empty tank, approximately 1.5 gallons remain in a standard tank, and 2 gallons remain in a long range tank as unusuabie fuel. The indicators cannot be relied upon for acourate reedings during skids, slips, or unusual attitudes.

The fuel selector valve should be in the BOTH position for takeoff, climb, landing, and maneuvers that involve prolonged slips or skids. Operation from either LEFT or RIGHT tank is reserved for crutsing fight.

NOTE

When the fuel selector valve handle is in the BOTH position in cruising fhight, unequal fuel flow from each tank may occur if the wings are not maintained exactly level. Resuiting wing heaviness can be alleviated gradually by turning the selector valve handle to the tank in the "heavy" wing.

NOTE

It is not practad to measure the time required to consume

Figure 7-6. Fuel System (Stendard and Long Aange)

Abstract

all of the fuel in one tanic, and, after switching to the opposite tank, expect an equal duration from the remaining fuel. The airspace in both fuel tanks is interconnected by a vent line and, therefore, some sloshing of fuel between tanks can be expected when the tatks are neariy full and the wings are not level.

The fuel system is equipped with drain valves to provide a means for the examination of fuel in the system for contamination and grade. The system should be examined before the first flight of evary day and after each refueling, by using the sampler ctup provided to drain fuel from the wing tank sumps, and by thilizing the fuel strainer drain under an eccess panel on the right stde of the engine cowling. The fuel tanks should be filled after each flight to prevent condensation.

BRAKE SYSTEM

The airplane has a single-disc, hydranlically-actuated brake on each matin landing gear wheel. Each brake is connected, by a hydraulicline, to a master cylinder attached to each of the pilot's rudder pedals. The brates are operated by applying pressure to the top of either the left (pilot's) or right (copilot's) set of rudder pedals, which are interconnected. When the airplane is parked, both main wheal brakes may be set by utilizing the parking braike which is operated by a handle under the left side of the instrument panel. To apply the parking brake, set the brakes with the rudder pedals, pull the hatade aft, and rotate it 90° down.

For maximum brake dite, keep the brake system properly maintained, and minimize brake usage during taxi operations and landings.

Some of the symptoms of impending brake failure are: graduad decrease in braking action after brake application, noisy or dragging brakes, soft or spongy pedals, and excessive travel and weak braking action. If any of these symptoms appear, the brake system is in need of immediate attention. If, duxitgg taxi or landing roll, braking action decreases. let up on the pedals and then re-apply the brakes with heavy pressure. If the brakes become spongy or pedal travel increases, pumping the pedals should build braking pressure If one brake becomes weak or fails, use the other brake sparitigly while using opposite rudder, as required, to offset the good brake.

ELECTRICAL SYSTEM

The airplane is equipped with a 28-volt, direct-current electrical system (see figure 7×7). The system is powered by a belt-driven, 60 -amp

Figure 7-7. Electrical System
alternator and a 24-volt battery (a heavy duty battery is available), Iocated on the left forward side of the firewatl. Power is supplied to most general electrical and all avionics circuits through the primary bus bar and the aviontes bus bar, which are interconnected by an avionics power switch. The primary bus is on anytime the master switch is turned on, and is not affected by starter or external power usage. Both bus bars are on anytime the mastex and avionies power switches are turned on.

CAUTION

Prior to turning the master switch on or off, starting the engine or applying an external power source, the avionics power switoh, labeled AVIONICS POWER, should be turned off to prevent any harmful transient voltage from dameging the avionics equipment.

MASTER SWITCH

The master switch is a split-rocker fype switch labeled MASTER, and is ON in the up position and off in the down position. The right half of the switch, Labeled BAT, controls all electrical power to the airplane. The left half, labeled ALT, controls the altermator.

Normally, both sides of the master switch should be used simultaneously; however, the BAT side of the switch could be turned on separately to cheok equipment whtle on the ground. To check or use avionics equipment or radios while on the ground, the avtonies power switch must also be turned on. The ALT side of the switch, when placed in the off position, removes the alternator from the electrical system. With this switch in the off position, the entire electrical load is pleced on the battery. Continued operation with the alternator switch in the off position will reduce battery power low enough to open the battery contactor, remove power from the alternator field, and prevent alternator restart.

AVIONICS POWER SWITCH

Electrical power from the airplane primary bus to the avionics bus (see figure 7.7) is controlled by a toggle switch/circuit breaker labeled AVIONICS POWER. The switch is located on the left side of the switch end control panel and is ON th the up position and off in the down position. With the switch in the off position, no electrical power wild be applied to the avionics equipment, regardless of the position of the master switch or the individual equipment switches. The avionics power switch also functions as acirouit breaker. If an olectrical malfunction should occur and cause the circuit breaker to open, electrical power to the avionics equipment will be
interrupted and the switch widl automatically move to the off position. If this occurs, allow the circuit breaker to cool approximately two minutes before placing the switch in the ON position again. If the circuit breaker opens again, do not reset it. The avionics power switch should be placed in the off position prior to turning the master switch ON or off, starting the engine, or applying an external power source, and may be utilized in place of the individual avionics equipment switches.

AMMETER

The ammeter, located on the lower left side of the instrument panel, indicates the amount of current, in amperes, from the alternator to the battery or from the battery to the airplane electrical system. When the engine is operating and the master switch is turned on, the ammeter indicates the charging rate applied to the battery. In the event the alternator is not functioning or the electrical load exceeds the output of the alternator, the ammeter indicates the battery discharge rate.

ALTERNATOR CONTROL. UNIT AND LOW-VOLTAGE WARNING LIGHT

The airplane is equipped with a combination alternator regulator high-low voltage control unit mounted on the engine side of the firewall and a red warning light, labeled LOW VOLTAGE, on the left side of the instrument panel below the ammeter.

In the event an over-voltate condition occurs, the atternator control unit automatically removes alternator field current which shuts down the alternator. The battery will then supply system current as shown by a discharge rate on the ammeter. Under these conditions, depending on electrical system load, the low-voltage warning light will illuminate when system voltage drops below normal. The alternator control unit may be reset by turning the master switch off and back on again. If the warning light does not illuminate, normal alternator charging has resumed; however, if the light does illuminate again, a malfunction has occurred, and the flight should be terminated as soon as practicable.

NOTE

Illumination of the low-voltage light and ammeter discharge indications may occur during low RPM conditions with an electrical load on the system, such as during a low RPM taxi. Under these conditions, the light will goout at higher RPM. The master switch need not be recycled since an over-voltage condition has not occurred to de-activate the altermator system.

The warning light may be tested by turning on the landing lights and momentarily turning of the ALT portion of the master switch while leaving the BAT portion lurned on.

CIRCUIT BREAKERS AND FUSES

Most of the electrical circuits in the airplane are proteoted by "push-to" reset" type circuit breakers mounted on the left side of the switch and control parel. However, alternator output is protected by a "pull-off" type oixcuit breaker. In addtion to the tndividual circuit breakers, a toggle switch/circuit breaker, labeled AVIONICS POWER, on the left side of the switch and control panel also protects the avionios systems. The cigar' Ifghter is protected by a manualiy-reset type circuit breaker on the back of the lighter, and a fuse behind the instrument panel. The control wheel map light (if installed) is proteoted by the NAV LT circuit breaker and a fuse behind the instrument panel. Electrical circuits which are not protected by circuit breakers are the battery contactor closing (external power)circuit, clock circuit, and flight hour recorder circuit. These circuits are protected by fuses mounted adjacent to the battery.

GROUND SERVICE PLUG RECEPTACLE

A ground service plug receptacle may be instailed to permit the use of an external power souroe for cold weather starting and during lengthy maintenance work on the electrical and olectronic equipment. Details of the ground service plug receptacle are presented in Section 9, Supplements.

LIGHTING SYSTEMS

EXTERIOR LIGHTING

Conventional navigation lights are located on the wing tips and top of the rudder. A single landing light is located in the cowl nose cap. Dual landing/taxi lights are available and also located in the cowl nose cap. Additional lighting is available and includes a flashing beacon mounted on top of the vertical fin, a strobe light on each wing tip, and a courtesy light recessed into the lower surface of each wing slightly outboard of the cabin doors. Details of the strobe light system are presented in Section 9 , Supplements. The courtesy lights are operated by the DOME LIGHTS switch located on the overhead console; push the switch to the right to turn the lights on. The remaining exterior lights are operated by rocker switches located on the left switch and control panel; push the rocker up to the ON position.

The flashing beacon should not be used when flying through clouds or
overcast; the flashing light reflected from water iroplets or particies in the atmosphere, particularly at night, can produce vertigo and lose of orientation.

INTERIOR LIGHTING

Instrument panel and switch and control panel lighting is provided by flood lighting, integral lighting, and post lighting (if installed). Lighting intensity is controlled by a dual light dimming rheostat equipped with an outer knob labeled PANEL LT, and an inner knob labeled RADIO LT, located below the throttle. A slide-type switch (ifinstalled) on the overhend console, labeled PANEL LIGHTS, is used to select flood lighting in the FLOOD position, post lighting in the POST position, or a combination of post and flood lighting in the BOTH position.

Instrument panel and switch and control panel food Lighting consists of a single red flood ligit in the forward edge of the overhead console. To use flood Ifghting, move the slide switch in the overhead console, labeled PANBL LIGHTS, to the FLOOD position and rotate the outer knob on the light dimming rheostat, labeled PANEL LT, clockwise to the desired light intensity.

Post lights (finstalled) aremounted at the edge of each instrumentand provide direct lighting. To use post lighting, move the slide switch in the overhead console, labeled PANEL LIGHTS, to the POST position and rotate the outer knob on the light dimming rheostat, labeled PANEL LT, clockwise to obtain the desired light intensity. When the PANEL LIGHTS switoh is piaced in the BOTH position, the flood lights and post lights will operate simultaneously.

The engine instrument ciuster (if post lights are instelled), radio equipment, and magnetic compass have integral lighting and operate independently of post or flood lighting. The intensity of this lighting is controlled by the inner knob on the light dimming rheostat labeled RADIO LT; rotate the knob clockwise to obtain the desired light intensity. However, for daylight operation, the compass and engine instrument lights may be turned off while still maintaining maximum light intensity for the digital readouts in the radio equipment. This is accomplished by rotating the RADIO LT knob full counterclockwise. Check that the flood lights/post lights are turned off for dayIight operation by rotating the PANEL. LT knob full counterclockwise.

A cabin dome light, in the aft part of the overhead console, is operated by a switch near the light. To turn the light on. move the switch to the right.

A control wheel map light is available and is mounted on the bottom of the pilot's control wheel. The light illuminates the lower portion of the
cabin just forward of thepilot and is helpful when checking maps and other flight data during night operations. To operate the light first turn on the NAV LTT switch; then adjust the map light's intensity with the knurled disk type rheostat control located at the bottom of the control wheel.

A doorpost map lightis located on the left forward doorpost. It contains both red and white bulbs and may be posttioned to illuminate any area desired by the pilot. The light is controlled by a switch, below the light, which is dabeled RED, OFF, and WHXTE. Placing the switch in the top position will provide a red light. In the bottom position, standard white lighting is provided. In the center position, the map light is turned off. Red light intensity is controlled by the outer knob on the light dimming rheostat labeled PANEL LT.

The most probable cause of a light failure is a burned out bulb: however, in the event any of the lighting systems fail to illuminate when turned on, check the appropriate circuit breaker. If the circuit breaker has opened (white button popped out), and there is no obvious indication of a short circuit (smoke or odor), turn off the light switch of the affected lights. reset the breaker, and turn the switch on again. If the breaker opens again. do not reset it.

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM

The temperature and volume of airflow into the cabin can be regulated by manipulation of the push-pull CABIN HT and CABIN AIR control knobs (see tigure 7-8).

For cabin ventilation, pull the CABIN AIR knob out. To raise the air temperature, puld the CABIN HT knob out approximately $1 / 4$ to $1 / 2$ inch for a small amount of cabin heat. Acditional heat is available by pulling the knob out farther:maximum heat is avatlable with the CABIN FT knob pulled out and the CABIN AIR knob pushed full in. When no heat is desired in the cabin, the CABIN HT knob is pushed full in.

Front cabin heat and ventilating air is supplied by outlet holes spaced across a cabin manifold just forwerd of the pilot's and copilot's feet. Rear cabin heat and ait is supplied by two ducts from the manifold, one extending down each side of the cabin to an outiet at the front coorpost at floor level. Windshield defrost air is also supplied by two ducts leading from the cabin manifold to defroster outiets near the lower edge of the windshield. Two knobs control sliding valves in either defroster outlet to permit regulation of defroster airflow.

Separate adjustable ventilators supply additional air; one near each

Figure 7-8. Cabin Heating, Ventilating, and Defrosting System
upper corner of the windshield supplies atr for the pilot and copilot, and two ventilators are available for the rear cabin area to supply air to the rear seat passengers. The airplane may also be equipped with an air conditioning system. For operating instructions and details concerntng this system, refer to Section 9, Supplements.

PITOT-STATIC SYSTEM AND INSTRUMENTS

The pitot-static system suppties ram air pressure to the airspeed indicator and siatic pressure to the sirspeed indicator, vertical speed indicator and altimeter. "lhe system is composed of either an unheated or heated pitot tube mounted on the lower surface of the left wing, an external static port on the Lower left side of the forward fuselage, and the associated plumbing necessary to connect the instruments to the sources.

The heated pitot system (if installed) consists of a heating element in the pitot tube, a rocker switoh labeled PITOT HTr, a 5 -amp circuit breaker, and associated wiring. The switch and cirouit breaker are located on the left side of the switch and control panel. When the pitot heat switch is turned on, the element in the pitot tube is heated electrically to maintain proper operation in possible icing conditions. Pitot heat should be used only as required.

A static pressure aiternate source valvemay beinstalledon the switch and control panel below the throttle, and can be used if the external static source is malfunctioning. This valve supplies static pressure from inside the cabin instead of the external static port.

If exroneous instrument readings are suspected due to water or ice in the pressure line going to the standard external static pressure source, the alternate static source valve should be pulled on.

Pressures within the cabin will vary with open heater/verts and windows. Refer to Section 5 for the effect of varying cabin pressures on airspeed readings.

AIRSPEED INDICATOR

The airspeed indicator is calibrated in knots and miles per hour. Limitation and range markings (in KLAS) inclade the white arc (33 to 85 knots). green arc (44 to 127 knots). yellow aro (127 to 1.58 knots). and a red line (158 knots).

If a true airspeed indicator is installed, it is equipped with a rotatable ring which works in conjunction with the atrspeed indicator dial in a manner similar to the operation of a flight computer. To operate the
incicator, first rotate the ring until pressure altitude is aligned with outside air temperature in degrees Fabrenheit. Presbure alttude should not be confused with indicated altitude. To obtain pressure altitude, momentarily set the barometric soale on the altimeter to 29.92 and read pressure altitude on the altimeter. Be sure to return the altimeter barometrio scale to the original barometric setting after pressure altitude has been obtained. Having set the ring to correct for altitutde and temperature, read the true airspeed shown on the rotatable ring by the indicator pointer. For best accuracy, the indicated airspeed should be corrected to calibrated airspeed by referring to the Airspeed Calibration chart in Section 5. Knowing the calibrated airspeed, read true airspeed on the ring opposite the calibrated airspeed.

VERTICAL SPEED INDICATOR

The vertical speed indicator depicts airplane rate of climb or descent in feet per minute. The pointer is actuated by atmospheric pressure changes resulting from changes of altitude as supplied by the static source.

ALTIMETER

Airplane altitude is depicted by a barometric type altimeter. A knob near the lower left portion of the indicator provides adjustment of the instrument's barometric scale to the current altimeter setting.

VACUUM SYSTEM AND INSTRUMENTS

An engine-driven vacuum system (see figure 7-9) provides the suction necessary to operate the attitude indicator and directional indicator. The system consists of a vacuum pump mounted on the engine, a vacuum relief valve and vacuum system air filter on the aft side of the firewall below the instrument panel, and instruments (including a suction gage) on the left side of the instrument panel.

ATTITUDE INDICATOR

The attitude indicator gives a visual indication of flight attitude. Bank attitude is presented by a pointer at the top of the indicator relative to the bank scale which has index marks at $10^{\circ}, 20^{\circ}, 30^{\circ}, 60^{\circ}$, and 90° either side of the center mark. Pitch and roll attitudes are presented by a miniature airplane superimposed over a symbolic horizon area divided into two sections by a white horizon bar. The upper "blue sky" area and the lower "ground" area have arbitrary pitch reference lines useful for pitch attitude control. A knob at the bottom of the instrument is provided for in-flight adjustment of the miniature airplane to the horizon bar for a more accurate flight attitude indication.

CESSNA
MODEL 172N

Figure 7.9. Vacuum System

DIRECTIONAL INDICATOR

A directional indicator displays airplane heading on a compass card in relation to a fixed simulated airplane image and index. The indicator will precess slightly over a period of time. Therefore, the compass card should be set in accordance with the magnetic compass just prior to takeoff, and occasionally re-adjusted on extended flights. A knob on the lower left edge of the instrument is used to adjust the compass card to correct for precession.

SUCTION GAGE

The suction gage, located on the left side of the instrument panel, is calibrated in inches of meroury and indicates suction available for operation of the attitude and directional indicators. The desired suction range is 4.5 to 5.4 inches of mercury. A stiction reading below this range may indicate a system malfunction or improper adjustment, and in this case, the indicators should not be considered reliable.

STALL WARNING SYSTEM

The airplane is equipped with a pneuratic-type stall warning systern consisting of an inlet in the leading edge of the left wing, an air-operated horn near he upper left corner of the windshield, and associated plumbing. As the airplane approaches a stall, the low pressure on the upper surface of the winge moves forward around the leading edge of the wings. This low pressure creates a differential pressure in the stall warning system which draws air through the warning horn, resulting in an audible warning ait to 10 knots above stall in ail flight conditions.

The stall warning system should be checked during the preflight inspection by placing a clean handkerchief over the vent opening and applying suction. A sound from the warning horn will confirm that the system is operative.

AVIONICS SUPPORT EQUIPMENT

If the airplane is equipped with avionics, various avionics support equipment may also be installed. Equipment available incitudes two types of audio control panels, microphone-headset installations and control surface static dischargers. The following paragraphs disouss these tems. Description and operation of radio equipment is covered in Section 9 of this handbook.

AUDIO CONTROL PANEL

Two types of audio control panels (see figure 7 +10) are available for this airplane, depending upon how many transmitters are included. The operational features of both audio control panels are similar and are discussed in the following paragraphs.

TRANSMITTER SELECTOR SWITCH

When the avionics package includes a maximum of two transmitters, a two-position toggle-type switch, Iabeled XMrn, is provided so switch the microphone to the transmitter the pilot desires to uso. If tho airplane avionics package inciudes a third transmitter, the transmitter selector switch is a three-position rotary-type switch, labeled XMTR SEL. The numbers $\lambda, 2$, or 1,2 and 3 adjacent to the selector switches correspond to the first, second and third (from top to bottom) transmitters in the avionics stack. To select a transmitter, place the transmitter selector switch in the position number corresponding to the desired transmitter.

Abstract

The action of selecting a particular transmiter using the transmitter selector switch simultaneously selects the audio amplifier associated with that transmitter to provide speaker audio. For example, if the number one transmitter is selected, the audio amplifier in the number ote NAV/COM is also solected and is used for ALL speaker audio. In the event the audio amplifier in usc fails, as evidenced by loss of all speaker audio. seleoting an alternate transmitter will reestablish speaker audio using the alternate transmitter audio amplifier. Headset audio is not affected by audio amplifier operation.

AUDIO SELECTOR SWITCHES

Both audio control panels (see figure 7-10) incorporate three-position toggle-type audio selector switches for incividual control of the audio from systems installed in the airplane. These swtches allow receiver audio to be directed to the aixplane speaker or to a headset, and heard singly or in combination with other receivers. To hear a particular receiver on the airplane speaker, place that receiver's audio selector switch in the up (SPFAKER) position. To listen to a receiver over a headset, place that recetver's atidio selector switch in the down (PHONE) position. The center (OFF) position turns off all audio from the associated receiver.

NOTE

Volume level is adjusted using the individual receiver volume controls on each redio.

A special feature of the audio control panol used whon one or two

USED WITH ONE OR TWO TRANSMITTERS

USED WITH THREE TRANSMITTERS

Figure 7-10. Audio Control Panel
transmitters are installed is separate control of NAV and COM audio from the NAV/COM radios. With this installation, the audio selector switches labeled NAV, 1 and 2 select audio from the navigation receivers of the NAV/COM radios only. Communication receiver audic is selected by the switchos labeled COM, AJ'O and BOTH. Description and operation of these switches is described in Later paragraphs.

When the audio control panel for three transmitters is installed, audio from both NAV and COM frequencies is combined, and is selected by the audio selector switches labeled NAV/COM, 1, 2 and 3.

COM AUTO AUDIO SELECTOR SWITCH

The audio control panel used with either one or two transmitters incorporates a three-position toggle switch, labeled COM AUTO, which is provided to automatically match the audio of the appropriate NAV/COM communications recetver to the transmiter selected by the transmitter selector switch. When the COM AUTO selector switch is plaeed in the up (SPEAKER) position, audio from the communtcations receiver selected by the transmitter selector switch will be heard on the airpiare speaker. Switching the transmitter selector swith to the other transmitter automatically switches the other communications receiver audio to the speaker. This automaticaudio switching feature may also be utilized when Iistening on a headset by placing the COM AUTO switch in the down (PHONE) position. If automatie audio selection is not desired, the COM AUTO selector switch should be placed in the center (OFF) position.

COM BOTH AUDIO SELECTOR SWITCH

The audio control panel used with either one or two transmitters incorporates a three-position toggle switch, labeled COM BOTH, which is provided to allow both COM receivers to be monitored at the same time. For example, if the COM AUTO switch is in the SPEAKER posttion, with the transmitter selector switch in the number one transmitter position. number one communications receiver audio will be heard on the airplane speaker. If it is also desired to monitor the number two communications receiver audio without changing the position of the transmitter selector swrich, place the COM BOTH selector switch in the up (SPEAKER) position so that the number two communicattons receiver audio will be heard in addition to the number one communications receiver atudio. This feature can also be used when tistening on a headset by placing the COM BOTH audio selector switch in the down (PHONE) position.

NOTE

The combination of placing the COM AUTO switch in the SPEAKER position and the COM BOTH switch in the

Abstract

PHONE position (or viee versa) is not normally rocommended as it will cause audio from both communications receivers (and any other nawigation receiver with its audio seleotor switch in the PHONE position) to be heard on both the airplane speaker and the headset simultaneously.

AUTO AUDIO SELECTOR SWITCH

The audio control panel used with three transmitters incorporates a three-position toggle switch, labeled AUTO, which is provided to automatically match the audio of the appropriate NAV/COM receiver to the selected transmitter. To utilize this automatic feature, leave all NAV/COM audio selector switches in the center (OFF) position, and place the AUTO sclector switch in either the SPEAKER or PHONE position, as desired. Once the AUTO selector switch is positioned, the pilot may then select any transmitter and its associated NAV/COM receiver audio simaltaneously with the trensmitter selector switch. If automatic fudio selection is not destrec, the AUTO selector switch should be placed in the center (OFF) position.

NOTE

If the NAV/COM audio selector switch corresponding to the selected transmitter is in the PHONE position with the AUTO selector switch in the SPEAKER position, all audio selector switches placed in the PHONE position will automatically be connected to both the airplane speaker and any headsets in tise.

ANNUNCIATOR LIGHTS BRIGHTNESS AND TEST SWITCH

The audio control panel used with either one or two transmitters incorporates a three-position toggle-type switch to control the brightness level of the marker beacon fndicator lights (and certain other annunciator lights associated with avionios equipment). When the switch is placed in the center (DAY) position, the indicator lights will show full bright. When this switch is placed in the up (NITE) position, the lights are set to a reduced level for typical night operations and can be further adjusted using the RADIO LT dimming meostat knob. The down (TEST) position illuminates all lamps (except the ARC light in the NAV indicators) which are controlled by the switch to the full bright level to verify lamp operation.

SIDETONE OPERATION

Cessna radios are equipped with sidetone capability (monitoring of the operator's own woice transmission). While adjusting sidetone, be
aware that if the sidetone volume level is set too high. audio feedback (squeal) may result when transmitting.

When the airplane has one or wo transmitters, sidetone is provided in both the speaker and headset anytime the COM AUTO seleotor switch is utilized. Placing the COM AUTO selector switch in the OFF position will eliminate sidetone. Sidetone internaladjus tments are available to the pilot through the front of the audio control panel (see figure 7-10). Adjustment can be made by removing the appropriate plug-button from the audio control panel (left button for headset adjustment and right button for speaker adjustment). inserting a small screwdriver into the adjustment potentiometer and rotating it clockwise to increase the sidetone volume level.

When the airplane has three transmitters, sidetone will be heard on either the speatrer or a headset as selected with the AUTO selector switch. Sidetone may be eliminated by placing the AUTO selector switch in the OFF position, and utilizing the individual audio selector switches. Adjustment of speairer and headset sidetone volume can only beaccomplished by adjusting the sidetone potentiometers located inside the audio control panel.

NOTE

Sidetone is not available on HF Transceivers (Types PT10A and ASB-125), when installed.

MICROPHONE-HEADSET INSTALLATIONS

Three types of microphone-headset installations are offered. The standard system provided with avionics equipment includes a hand-held microphone and separate headset. The keying swttch for this microphone is on the microphone. 'l'wo optional microphone-hetdset installations are also available; these feature a single unit microphone-headset combination which permits the pilot to conduct radio communtications without interrupting other control operations to handle a hand-held microphone. One microphone headset combination is offered without a padded headset and the other verston has a padded headset. The microphone-headset combinations utilize a remote keying switch located on the left grip of the pilot's control wheel. The miorophone and headset jacks are located near the lower left comer of the instrument panel. Audio to all three headsets is controlled by the individual audio selector switches and adjusted for volume level by using the selected receiver volume controls.

NOTE

When transmitting, the pliot should key the microphone, plece the microphone as close as possible to the lips atrd speak directly into it.

STATIC DISCHARGERS

If frequent IFR flights are planned, installation of wick-type static dischargers is recommended to improve radio communications during flight through dust or various forms of precipitation (rain, snow or ice crystals). Under these conditions, the build-up and discharge of static electricity from the trailing edges of the wings, rudder, elevator, propeller tips and radio antennas can result in loss of usable radio signals on all communications and navigation radio equipment. Usually the ADF is first to be affected and VHF communication equipment is the last to be affected.

Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter sevore precipitation static conditions which might cause the loss of radio signels, even with stakic dischargers installed. Whenever possible, avoid known severe precipita. tion areas to prevent loss of dependable radio signals. If avoidance is impractical, minimize airspeed and anticipate temporary loss of radio signals while in these areas.

AIRPLANE HANDLING, SERVICE \& MAINTENANCE

TABLE OF CONTENTS

Page
Introduction 8-3
Identification Plate 8 -3
Owner Follow-Up System 8-3
Publications 8-3
Airplane File 8-4
Airplane Inspection Periods $8-5$
FAA Required Inspections $8-5$
Cessna Progressive Care 8-6
Cessna Customer Care Program 8.6
Pilot Conducted Preventive Maintenance 8.7
Alterations Or Repairs 8-7
Ground Handling 8-7
Towing 8-7
Parking 8-8
Tie-Down 8-8
Jacking 8-8
Leveling 8-9
Flyable Storage 89
Servicing $8 \cdot 10$
Engine Oil $8-10$
Fuel 8.12
Landing Gear 8-14
Cleaning And Care 8-15
Windshield-Windows 8-15
Painted Surfaces 8-15
Propeller Care $8-16$
Engine Care $8-16$
Interio: Care 8-16

INTRODUCTION

This section contains factory-recommended procedures for proper grownd handling and routine care and servicing of your Cessma. It also identifies cextain inspection and maixtenance requirements which must be followed if your airplane is to retain that new-plane performance and dependability. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatio and fiying conditions encountered in your locality.

Keep in touch with your Cessna Dealer and take advantage of his knowledge and expertence. He knows your airplane and how to maintain tt. He will remind you when Iubrications and oit changes are necessary, and about other seasonal and periodic services.

IDENTIFICATION PLATE

All correspondence regarding your airplane should include the SERIAL NUMBER. The Serial Number, Model Number, Production Certificate Namber (PC) and Type Certificate Number (TC) can be found on the Identification Plase, located on the lower part of the left forward doorpost. Located adjacent to the Identification Plate is a Finish and Trim Plate which contains a code describing the interior color soheme and exterior paint combination of the airplane. The code may be used in onjunotion with an applicable Parts Catalog if finish and trim information is needed.

OWNER FOLLOW-UP SYSTEM

Your Cessna Dealer has an Owner Follow-Up System to motify you when he receives information that applies to your Cessna. In addition, if you wish, you may choose to receive similar notification, in the form of Service Letters, cirectly from the Cessna Customer Services Department. A subscription form is supplied in your Customer Care Program book for your use, should you choose to request this service. Your Cessna Dealer will bo glad to supply you with details concerning these follow-up programs, and stands ready, through his Service Department, to supply you with fast, efficient, low-cost service.

PUBLICATIONS

Various publications and flight operation aids are furnished in the
airplane when delivered from the factory. These items are iisted below.

- CUSTOMER CARE PROGRAM BOOK
- PLLOT'S OPERATUNG HANDBOOK AND FAA APPROVED

AIRPLANE FLIGHT MANUAL

- AVIONICS OPERATION GUIDE
- PILOT'S CHECKLISTS
- POWER COMPUTER
- CUSTOMER CARE DEALER DIRECTORY

The following additional publications, plus many other supplies that are applicable to your airplane, are available from your Cessna Dealer.

- INFORMATION MANUAL (Contains Pilot's Operating Handbook Information)
- SERVICE MANUALS AND PARTS CATALOGS FOR YOUR:

AIRPLANE
ENGINE AND ACCESSORIES
AVIONICS AND AUTOPILOT

Your Cessna Dealer has a Customer Care Supplies Catalog covering all available items, many of which he keeps on hand. He will be happy to place an order for any item which is not in stock.

NOTE

A Pilot's Operating Handbook and FAA Approved Airplane Flight Manual which is lost or destroyed may be replaced by contacting your Cessna Dealer or writing directly to the Customer Services Department, Cessna Aircraft Company, Wichita, Kansas. An affidavit containing the owner's name, airplane serial number and registration number must be included in replacement requests since the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual is identified for specific airplanes only.

AIRPLANE FILE

There are miscellaneous data, information and licenses that are a part of the airplane file. The following is a checklist for that file. In addition, a periodic cheok should be made of the latest Federal Aviation Regulations to ensure that ail cata requirements are met.
A. To be displayed in the airplane at all times:

1. Aircraft Airworthiness Certificate (FAA Form 8100-2).
2. Airoraft Registration Certifioate (FAA Form 8050-3).
3. Aircraft Radio Station License, if transmitter installed (FCC Form 556).
4. To be carried in the airplane at all times:
5. Pilot's Operating Handbook and FAA Approved Airplane Fitght Mantal.
6. Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA Form 337, if applicable).
7. Equipment List.
C. To be mede available upon request:
8. Airplane Log Book.
9. Engine Log Book.

Most of the ditems disted are required by the United States Federal Aviation Regulations. Since the Regulations of other nations may require other documents and data, owners of airplanes not registered inthe United States should check with their own aviation officials to determine their individual requirements.

Cessna recommends that these items, plus the Pilot's Checklists, Power Computer, Customer Care Program book and Customer Care Card, be carried in the airplane at all times.

AIRPLANE INSPECTION PERIODS

FAA REQUIRED INSPECTIONS

As required by Federal Aviation Regutations, all civil aircraft of U.S. registry must undergo a complete inspection (amntual) each welve ealend ar months. In addition to the required ANNUAL inspection, aircraft operated commercially (for hire) must have a complete inspection every 100 hours of operation.

The FAA may require other inspections by the issuance of airworthiness directives applicable to the atrplane, engine, propeller and components. It is the responsibility of the owner/operator to ensure compliance with all applicable airworthiness directives and, when the inspections are repetitive, to take appropriate steps to prevent inadvertent noncompliance.

In lieu of the 100 HOUR and ANNUAL inspection requirements, an airplane may be inspected in accordance with a progressive inspection schedule, which allows the work load to be divided into smaller operations that can be accomplished in shorter time periods.

The CESSNA PROGRESSIVE CARE PROGRAM has been developed to provide a modern progressive inspection schedule that satisfies the complete airplane inspection requirements of both the 100 HOUR and ANNUAL inspections as applicable to Cessna airplanes. The program essists the owner in his responsibility to comply with ald FAA inspection requirements, while ensuring timely replacement of life-limited parts and adherence to factory-recommended inspection intervals and maintenance procedures.

CESSNA PROGRESSIVE CARE

The Cessaa Progressive Care Program has been designed to help you realize maximum nitilization of your airplane at a minimum cost and downtime. Under this program, the inspeetion andmaintenance wrork load is divided into smalleroperations that can be accomplished in shorter time periods. The operations are recorded in a specially provided Aircraft Inspection Log as each operation is conducted.

While Progressive Care may be used on any Cessna, its benefits depend primarily on the utilization (hours flown per year) and type of operation. The procedures for both the Progressive Care Program and the 100 hour/annual inspection program have been carefully worked out by the factory and are followed by the Cessna Dealer Organization. Your Cessna Dealer can assist you in selecting the inspection program most suitable for your type of aircraft and operation. The complete familiarity of Cessna Dealers with Cessna equipment and factory-approved procedures provides the highest level of service possible at lower cost to Cessna owners.

Regardless of the inspection method selected by the owner, he should keep in mind that FAR Part 43 and FAR Part 91 establishes the requirement that properly certified agencies or personnel accomplish all required FAA inspections and most of the manufacturer recommended inspections.

CESSNA CUSTOMER CARE PROGRAM

Specific benefits and provisions of the CESSNA WARRANTY plus other important benefits for you are contained in your CUSTOMER CARE PROGRAM book supplied with your airplane. You will want to thoroughly review your Customer Care Program book and keep it in your airplane at all times.

Coupons attached to the Program book entitle you to an initial inspection and either a Progressive Care Operation No. 1 or the first 100hour inspection within the first 6 months of ownership at no charge to you. If you take delivery from your Dealer, the initial inspection will have been performed before delivery of the airplane to you. If you pick up your airplane at the factory, plan to take it to your Dealer reasonably soon after
you take delivery, so the inftial inspection may be performed allowing the Dealer to make any minor adjustments which may be neeessary.

You will also want to return to your Dealer either for your first Progressive Care Operation, or at 100 hours for your first 100 -hour inspection depending on which program you choose to establish for your alrplane. While these importent inspections whll be performed for you by any Cessna Dealer, in most onses you will prefer to have the Dealer from whom you purchased the atrplane accomplish this work.

PILOT CONDUCTED PREVENTIVE MAINTENANCE

A certified pilot who owns or operates an airplane not used as an air earrier is authorized by FAP Part 43 to perform limited maintenance on his eirplane. Fefer to FAR Part 43 for a ligt of the specific maintenance operations which are allowed.

NOTE

Pilots operating airplanes of other than U.S. registry should refer to the regulations of the country of certification for information on preventive maintenance that may be performed by pilots.

A Service Manual should be obtained prior to performing any preventive maintenance to ensure that proper procedures are followed. Your Cessna Dealer should be contacted for further information or for required maintenance which must be accomplished by appropriately licensed personnel.

ALTERATIONS OR REPAIRS

It is essential that the FAA be contacted prior to any alterations on the airplane to ensure that airworthiness of the airplane is not violated. Alterations or repairs to the airplane must be accomplished by licensed personnel.

GROUND HANDLING

TOWING

The atrplane is most easily and sately maneuvered by hand with the tow-bar attached to the nose wheel. When towing with a vehicle, do not exceed the nose gear tuming angle of 30° either side of center. or damage to the gear will result. If the airplane is towed or pushed over a rough surface during hangaring, watoh that the normal cushioning action of the nose strut does not cause excessive vertical movement of the tail and the
resulting contact with low hangar doors or structure. A fiat nose tire or deflated strut will also increase tail height.

PARKING

When parking the airplane, head into the wind and set the parking brakes. Do not set the parking brakes during cold weather when acoumulated moisture may freeze the brakes, or when the brakes are overheated. Install the control wheel lock and chock the wheels. In severe weather and high wind conditions, tie the airplane down as outhined in the following paragraph.

TIE-DOWN

Proper tie-down procedure is the best precaution against damage to the parked airplane by gusty or strong winds. To the-down the airplane securely, proceed as follows:

1. Set the parking brake and install the control wheel lock.
2. Install a surface control lock over the fin and rudder.
3. Tie sufficiently strong ropes or chains (700 pounds tensile strength) to the wing, tail, and nose tie-down fittings and secure each rope or chain to a ramp tie-down.
4. Install a pitot tube cover.

JACKING

When \& requirement exists to jack the entire airplane off the ground, or when wing jack points are used in the jacking operation, refer to the Service Manual for specific procedures and equipment required.

Individual main gear may be jacked by using the jack pad which is incorporated in the main landing gear strut step bracket. When using the individual gear strut jack pad, flexibility of the gear strut will cause the main wheel to slide inboard as the wheel is raised, tilting the jack. The jack must then be lowered for a second jacking operation. Do not jack both main wheels simultaneously using the individual main gear fack pads.

If nose gear maintenance is required, the nose wheel may be raised off the ground by pressing down on a tailcone bulkhead, just forward of the horizontal stabilizer, and allowing the tail to rest on the tail tie-down ring.

NOTE
Do not apply pressure on the elevator or outboard stabiliz er surfaces. When pushing on the tailcone, always apply pressure at a bulkhead to avoid buckiing the stin.

To assist in raising and holding the nose wheel off the ground, weight
down the tail by placing sand-bags, or suitable weights, on each side of the horizontal stabilizer, next to the fuselage. If ground anchors are available, the tail should be securely tied down.

NOTE:

Ensure that the nose will be held off the ground uncer all conditions by means of sutitable stands or supports under weight supporting butcheads near the nose of the airplane.

LEVELING

Longitudinai leveling of the airplane is accomplished by placing a level on levaling screws located on the left stde of the tailcone. Deflate the nose tire and/or lower or raise the nose strut to properly center the bubble in the level. Corresponding points on both upper door sills may be used to level the airplane lateraliy.

FLYABLE STORAGE

Airplanes placed in non-operational storage for a maximum of 30 days or those which receive only intermittent operational use for the first 25 hours are considered in flyable storage status. Every seventh day during these periods, the propeller should be rotated by hand through five revolutions. This etotion "limbers' the oil and prevents any accumblation of corrosion on engine cylinder walis.

WARNING

For maximum safety, oheck that the ignition switch is OFF, the throttle is closed, the mixture control is in the ide cut-off position, and the airplane is secured before rotatiag the propeller by hand. Do not stand within the arc of the propeller blades while turning the propeller.

After 30 days, the airplane should be flown for 30 minutes or a ground runup should be mede just long enough to produce an oil temperature within the lower green arc range. Excessive ground runup should be avoided.

Engine runup aiso helps to eliminate excessive aceumulations of water in the fuel system and other air spaces in the engine. Keep fuel tanks full to minimize condensation in the tanks. Keep the battery fully charged to prevent the electrolytefrom freezing in cold weather. If the airplaneis to be stored temporarily, or indefinitely, refer to the Service Manual for proper storage procedures.

SERVICING

In addtion to the PREFLIGHT INSPECTION covered in Section 4 , COMPLETE servicing, inspection, and test requirements for your airplane are detailed in the Service Manual. The Service Manual outlines all items which require attention at speciftc intervals plus those items which require servicing, inspection, and/or testing at special intervals.

Since Cessna Dealers conduct all service, inspection, and test procedures in accordance with applicable Service Manuals, it is recommended that you contact your Cessna Dealer concerning these requirements and begin scheduling your airplane for service at the recommended intervals.

Cessna Progressive Care ensures that these requirements are accomplished at the required intervals to comply with the 100 -hour or ANNUAL inspection as previously covered.

Depending on various flight operations, your local Government Aviation Agency may require additional service, inspections, or tests. For these regulatory requirements, owners should check with local aviation officials where the airplane is being operated.

For quick and ready reference, quantities, materials, and specifieations for frequently used service items are as follows.

ENGINE OIL

GRADE AND VISCOSITY FOR TEMPERATURE RANGE --
MIL-L-22851 Ashless Dispersant Oil: The airplane was delivered from the factory with SAE 20W-50 ashless dispersant aircraft engine oil. Ashless dispersant aircraft engine oil must be used for all operating conditions.

NOTE

Use a minimum of 75% power for cruise during the first 50 hours of operation or until oil consumption stabilizes. Service the engine oil system with aviation ashless dispersant oll only.

SAE 20W-50 or SAE $15 W$-50 for all temperatures.
NOTE

If multi-viscosity ashless dispersant aircraft engine oil is not available, the following ashless dispersant eircraft engine oil may be used.

SAE 50 above $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$.

SAE 40 between $30^{\circ} \mathrm{F}^{\prime}\left(-1^{\circ} \mathrm{C}\right)$ and $90^{\circ} \mathrm{F}^{\prime}\left(32^{\circ} \mathrm{C}\right)$.
SAE 30 between $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ and $70^{\circ} \mathrm{F}^{\mathrm{F}}\left(21^{\circ} \mathrm{C}\right)$.
SAE 20W 30 below $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ to $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$.
CAPACITY OF ENGINE SUMP -- 8 Quarts.
Do not operate on less than 4 quarts. For extended flight, till to 6 quarts. These quantities refer to oil dipstick level readings. During oil and oil filter changes, one additional quart is required when the filter is changed.

OIL AND OIL FILTER CHANGE .-
After the first 25 hours of operation, drain the engine oil sump and clean the oil pressure screen (if an oil filter is not installed). If an oil filter is installed, change the filter at this time. Refill sumap with ashless dispersant oil.

On airplanes not equipped with an oil fittor, drain the engine oil sump and clean the ofl pressure soreen each 50 hours thereafter.

On airplanes whilol have an oil filter, drain the engine oil sump and change the oil filter ggain at the first 50 hours; thereefter, the oil and filter change interval may be extended to 100 -hour intervals.

Change engine oil af least every 6 months even though less than the recommended hours have becumulated. Reduce intervals for proIonged operation in dusty areas, cold climates, or when short flights and long idle periods result in sludging conditions.

NOTE

During the first 25 -hour oil and filter change, a general inspection of the owerall engine compartment is required. Items which are not normally cheoked during a preflight inspection should be given special attention. Hoses, metal lines and fittings should be inspected for signs of oil and fuel leaks, and checked for abrasions, chafing, securtty, proper routing and support, and evidence of deterioration. Inspect the intake and exhaust systems for cracks, evidence of leakage, and security of attachment. Engine controls and linkages should be checked for freedora of movement through thetr full range, security of attachment and evidence of wear. Inspect wiring for security, chafing, burning, defective insulation, loose or broken terminals, heat deterioration, and corroded terminals. Check the aIternator belt in accordance with Service Manual instruc* tions, and retighten if necessary. A periodic check of these items during subsequent servicing operations is recommended.

1 July 1979
Revision 1-15 November 1979

FUEL

APPROVED FUEL GRADES (AND COLORS) -. 100LL Grade Aviation Fuel (Blue). 100 (Formerly 100/130) Grade Aviation Fuel (Green).

NOTE
Isopropyl aicohol or ethylene glycol monomethyI ether may be added to the fuel supply in quantities not to exceed 1% or $.15 \%$ by volume, respectively, of the total. Refer to Fuel Additives in later paragraphsfor additional information.

CAPACITY EACH STANDARD TANK -- 21.5 Gallons.
CAPACITY EACH LONG RANGE TANK -- 27 Gallons.

NOTE

To ensure maximum fuel capacity when refueling and minimize cross-feeding when parked on a sloping surface. place the fuel selector valve in either LEFT or RHGHT position.

NOTE

Service the fuel system after each flight, and keep fuel tanks full to minimize condensation in the tanks.

FUEL ADDETTVES **

Strict adherence to recommended preflight drainfig instructions as called for in Section 4 will eliminate any free wator accumulations from the tank sumps. While small amounts of water maystill remain in solution in the gasoline, it will normality be consumed and go unno* ticed in the operation of the engine.

One exception to this can be encountered when operating under the combined effect of: (1) use of certain fuels, with (2) high humidity conditions on the ground (3) followed by flight at high altitude and low temperature. Under these unusual conditions, small amounts of water in solution can precipitate from the fuel stream and freeze in sufficient quantites to induce partial tcing of the engine fuel system.

While these conditfons are quite rare and will not normally pose a problem to owners and operators, they do exist in certain areas of the world and consequently must be dealt with, when encountered.

Therefore, to alleviate the posstbility of fuel icing occuring under these unutual conditions, it is permissible to add isopropyl alconol or ethylene glyool monomethyt ether (EGME) compound to the fuel supply.

The introduction of aloohol or EGME compound into the fuel provides two distincteffects: (1) it absorbs the cissolved water from the gasoline and (2) alcohol has a freezing termperature depressant effect.

Alcohol, if used, is to be blended with the fuel in a concentration of 1% by volume. Concentrations greater than 1% are not recommended since they can be detrimental to fuel tank materials.

The manner in which the alcohol is added to the fuel is significant because alcohol is mosteffective when itis completely dissolved in the fuel. To ensuxe proper mixing, the following is recommended:

1. For best results, the alcohol should be added during the fueling operation by pouring the alcohol directiy on the fuel stream issuing from the fueling nozzle.
2. An aiternate method that may be used is to premix the complete alcohol cosage with some fuel in a separate clean container (approximately 2.3 gallon capacity) and then transferring this mixture to the tank prior to the fueloperation.

Any high quality isopropyl alcohol may be used, such as Anti-icing FIud (MIL-F-5566) or Isopropyl Alcohol (Federal Specification TT-I735a). Figure 8-1 provides alcohol-ftel mixing ratio information.

Ethylene glycol monomethyl ether (EGME) compound, in compliance with MIL-J-27686 or Phillips PFA-55MB, if used, must be carefully mixed with the fuel in concentrations not to exceed. 15% by volume. Ftgure 8.1 provides EGME-fuel mixing ratio information.

CAUTION

Mixing of the BGME compound with the fuel is extremely important because a concentration in excess of that recommended ($.15 \%$ by volume maximum) will result in detri. mental effects to the fuel tanks, suth as deterioration of protective primer and sealants and damage to O-rings and seals in the fuel system and engine components. Use only blending equipment that is recommended by the manufacsurer to obtain proper proportioning.

Figure 8*土. Additive Mixing Ratio

CAUTION

Do not allow the concentrated EGME compound to come in contact with the airplane finish or fuel cell as damage can result.

Prolonged storage of the airplane will result in a water buildup in the fuel which "leeches out" the additive. An indieation of this is when an excessive amount of water accumulates in the fuel tank sumps. The concentration can be checked using a differemtial refractometer. It is imperative that the techntcal manual for the differential refractometer be followed explicitly when checking the additive concentration.

LANDING GEAR

NOSE WHEEL TIRE PRESSURE -- 31 PSI on 5.00-5, 4-Ply Rated Tire.
MAIN WHEEL TIRE PRESSURE -29 PSI on $6.00-6,4-$ Ply Rated Tires.
NOSE GEAR SHOCK STRUT --
Keep filled with MIL-H-5606 hydraulic fluid and inflated with air to 45 PSI. Do not over-inflate.

CLEANING AND CARE

WINDSHIELD-WINDOWS

The plastic windshield and windows should be cleaned with an aircraft windshield cleaner. Apply the cleaner sparingly with soft cloths, and rub with moderate pressure until all dirt, oil scum and bugstalns are removed. Allow the cleaner to dry, then wipe it of with soft thannel cloths.

If a windshteld cleaner is not available, the plastic can be cleaned with soft cloths moistened with Stoddard solvent to remove oif and grease.

NOTE

Never use gasoline, benzine, alcohol, acetone, fire extinguisher or anti-ice flutd, lacquer thinner or glass cleaner to clean the plastic. These materials will attack the plastic and may cause it to craze.

Follow by careftlly washing with a mild detergent and plenty of water. Rinse thoroughly, then dry with a clean moigt chamois. Do not rub the plastic with a dry cloth since this builds up an electrostatic charge which attracts dust. Waxing with a good commercial wax will fintsh the cleaning job. A thin, even cont of wax, polisined out by hand with clean soft fiannel cloths, will fill in minor scratches and help prevent further scratching.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated stnce the cover may scratch the plastic surface.

PAINTED SURFACES

The painted exterior surfaces of your new Cossna have d durable, long lasting finlsh and, under normal conditions, require no polishing or buffing. Approximately 10 days are required for the paint to cure completely; in most cases, the curing period will have been completed prior to delivery of the airplane. In the event that polishing or buffing is required within the curing period, it is recommeoded that the work be done by someone experienced in handling uncured paint. Any Cessna Dealer can acoomplish thts work.

Generally, the painted surfaces can be kept bright by washing with water and mild soap, followed by a rinse with water and drying with cloths or a chamofs. Harsh or abrasive soaps or detergents which cause corrosion or scratches should never be used. Remove stubborn ofl and grease with a cloth moistened with Stoddard solvent.

Waxing is unnecessary to keep the painted surfaces bright. However, if
desired, the airplane may be waxed with a good automotive wax. A heavier coating of wax on the leading edges of the wings and tail and on theengine nose cap and propeller spinner will help reduce the abrasion encountered in these areas.

When the airplane is parked outside in cold climates anditis necessary to remove ice before flight, care shouid be taken to protect the painted surfaces during ice removal with chemical liquids. Isopropyl alcohol will satisfactorily remove ice accumulations without damaging the paint. While applytng the de-icing solution, keep it away from the windshield and cabin windows since the alcohol will attack the plastio and may cause it to craze.

PROPELLER CARE

Preflight inspection of propeller blades for nicks, and wiping them oceasionally with an oily cloth to clean off grass and bug stains will assure long, trouble-free service. Small nicks on the propeller, particularly near the tips and on the leading edges, should be dressed out as soon as possible since these nicks produce stress concentrations, and if ignored, may result in cracks. Never use an alkaline cleaner on the blades; remove grease and dist with Stoddard solvent.

ENGINE CARE

The engtne may be cleaned with Stoddard solvent, or equivalent, then dried thoroughly.

CAUTION

Particular care should be given to olectrical equipment before cleaning. Cleaning fiuts should not be allowed to enter magnetos, starter, alternator and the like. Protect these components before saturating the engine with solvents. All other openings should also be covered before cleaning the engine assembly. Caustic cleaning solutions should be used cautiousiy and should always be properly neutralized after their use.

INTERIOR CARE

To remove dust and loose dirt from the upholstery and carpet, clean the interior regharly with a vacuum cleaner.

Blot up any spilled diquid promptly with cleansing tissue or rags. Don't pat the spot; press the blotting material firmly and hold it for severai

CESSNA
MODEL :772N

SECTION 8
HANDLING, SERVICE \& MAINTENANCE
seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materiais with a dull knife, then spot-clean the area.

Olly apots may be cleaned with household spot removers, used sparingly. Before using any golvent, read the instructions on the conteiner and test it on an obscure place on the fabrte to be cleaned. Never saturate the fabrio with a volatile solvent; it may damage the padding and backing materials.

Solled upholstery and carpet may be cleaned with foam-type detergent, used aceording to the menufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.

If your airplane is equipped with leather seating, cleaning of the seats is accomplished using a soft cloth or sponge dipped in mild soap suds. The soap suds, used sparingly. will remove traces of dirt and grease. The soap should be removed with a clean danp cloth.

The plastic trim, headiner, instrument panel and control knobs need only be wiped off with a damp cloth. Oil and greeseon the control wheel and control knobs can be removed with a cloth moistened with Stoddard solvent. Volatile solvents, such as mentioned in paragraphs on care of the windshield. must never be used since they soften and craze the plastic.

SECTION 9 SUPPLEMENTS
 (Optional Systems Description \& Operating Procedures)

TABLE OF CONTENTS

INTRODUCTION

This section consists of a series of supplements, each covering a single optional system which may be installed in the airplane. Each supplement contains a brief description, and when applicable, operating limitations, emergency and normal procedures, and performance. As listed in the Table of Contents, the supplements are classified under the headings of major configuration variations, general and avionics, and have been provided with reference numbers. Also, the supplements are arranged alphabetically and numerically to make it easier to locate a particular supplement. Other routinely installed items of optional equipment, whose function and operational procedures do not require detailed instructions, are discussed in Section 7 .

Limtations contained in the following supplements are FAA approved. Observance of these operating limitations is required by Federal Aviation Regulations.

SUPPLEMENT

FLOATPLANE

SECTION 1

GENERAL

INTRODUCTION

This supplement, written especially for operators of the Cessma Skyhawk floatplane, provides information not found in the basic handbook. It contains procedures and data required for safe and efficient operation of the airplane equipped with Edo Model $89-2000$ floats.

Information contained in the basic handbook for the Skyhawk, which is the same as that for the floatplane, is generally not repeated in this supplement.

PERFORMANCE - SPECIFICATIONS

SPEED:

Maximum at Sea Level 96 KNOTS
Cruise, 75% Power at 4000 Ft .
95 KNOTS
CRUISE: Recommended lean mixture with fuel allowance for engine start, taxi, takeoff, climb and 45 minutes reserve.

RATE OF CLIMB AT SEA LEVEL...........$~$
SERVICE CEILING
. $15,000 \mathrm{FT}$
TAKEOFF PERFORMANCE:
Water Run . 1400 FT
Total Distance Over 50 -Ft Obstacle 2160 FT
LANDING PERFORMANCE:
Water Run . 590 FT
Total Distance Over 50-Ft Obstacle 1345 FT
STALL SPEED (CAS):
Flaps Up. Power Off 48 KNOTS
Flaps Down, Power Off 44 KNOTS
MAXIMUM WEICHT:
Ramp (dock) . 2227 LBS
Takeoff or Landing 2220 LBS
STANDARD EMPTY WEIGHT:
Skyhawk
1582 LBS
Skyhawk If
1609 LBS
MAXIMUM USEFUL LOAD:
Skyhawk
645 LBS
Skyhawk II
618 LBS
BAGGAGE ALLOWANCE 120 LBS
WING LOADING: Pounds/Sq Ft 12.7
POWER LOADING: Pounds/HP 13.9
FUEL CAPACITY: Total
Standard Tanks 43 GAL.
Long Range Tanks 54 GAL.
OIL CAPACITX
5 QTS.
ENGINE: Avco Lycoming O.320-H2AD
160 BHP at 2700 RPM
PROPELLER: Fixed Pttch, Diameter 80 IN.

PILOT'S OPERATING HANDBOOK SUPYLEMENT

FLOATPLANE

DESCRIPTIVE DATA

PROPELLER

Propeller Manufacturer: McCauley Accessory Division.
Propeller Model Number: 1A175/ETM8042.
Number of Blades: 2.
Propeller Diameter, Maximum: 80 inches.
Minimurn: 78.5 inches.
Propeller Type: Fixed Pitch.

MAXIMUM CERTIFICATED WEIGHTS

Ramp (dock): 2227 lbs.
Takeoff: 2220 lbs.
Landing: 2220 Ibs.
Weight in Baggage Compartment:
Baggage Area 1 (or passenger on child's seat) - Station 82 to 108: 120 lbs. See note below.
Baggage Area 2 - Station 108 to 142: 50 lbs . See note below.

NOTE

The maximum combined weight capacity for baggage areas 1 and 2 is 120 dbs .

STANDARD AIRPLANE WEIGHTS
Standard Empty Wetgit, Skyhawk: 1582 lbs.
Skyhawk II: 1609 lbs.
Maximum Useftul Load, Skyhawk; 645 lbs.
Skyhawk II: 618 lbs.
SPECIFIC LOADINGS
Wing Loading: 12.7 ibs./sq. ft.
Power Loading: $13.9 \mathrm{lbs} . / \mathrm{hp}$.

PILOTS OPERATING HANDBOOK
SUPPLEMENT

Figure 1. Three View

SECTION 2
 LIMITATIONS

INTRODUCTION

Except as shown in this section, the floatplane operating limitations are the same as those for the Skyhawk landplane. The limitations in this section apply only to operations of the Model I72N equipped with Edo Model 89.2000 floats. The limitations included in this section have been approved by the Federal Aviation Administration. Observance of these operating limitations is required by Federal Aviation Reguiations.

AIRSPEED LIMITATIONS

Atrspeed limitations and their operational sigmifioance are shown in figure 2.

	SPEED	KCAS	KIAS	REMARKS
$\mathrm{V}_{\text {NE }}$	Never Exceed Speed	157	158	Do not exceed this speed in any oparation.
v_{NO}	Maximum Structural Cruising Speed	126	127	Do not exceed this speed except in smoath air, and then only with caution.
$v_{\text {d }}$	Maneuvering Speed: 2220 Pounds 2020 Pounds 1820 Pounds	$\begin{aligned} & 96 \\ & 91 \\ & 86 \end{aligned}$	$\begin{aligned} & 97 \\ & 97 \\ & 86 \end{aligned}$	Do not make full or abrupt control movements above this speed.
v_{FE}	Maximam flap Extended Speed $10^{\circ} \mathrm{Flaps}$ $10^{\circ}-30^{\circ}$ Fleps	$\begin{array}{r} 111 \\ 87 \end{array}$	$\begin{array}{r} 110 \\ 85 \end{array}$	Do not exceed this speed with tlaps down.

Figure 2. Airspeed Limitations

AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings are the same as those shown in the basic handbook. Due to minor differences in airspeed system calibration and stall speeds with floats installed, the indicated stall speeds as shown in Section 5 of this supplement are different than those reflected by the airspeed tndicator markings.

POWER PLANT LIMITATIONS

Engine Operating Limits for Takeoff and Continuots Operations: Maximum Engine Speed: 2700 RPM.

NOTE

The static RPM range at full throttle (carburetor heat off) ts 2470 to 2570 RPM.

Propeller Manufacturer: McCauley Accessory Division.
Propeller Model Number: 1A175/ETM8042.
Propeller Diameter, Meximum: 80 inches.
Minimum: 78.5 inches.

WEIGHT LIMITS

Meximum Ramp (dock) Welght: 2227 Ibs.
Meximum Takeoff Weight: 2220 lbs.
Maximum Landing Weight: 2820 lbs .
Maximum Weight in Baggage Compartment:
Baggage Area 1 (or passenger on child's seat) - Station 82 to 108: 120 lbs. See note below.
Baggage Area 2 - Station 108 to 142: 50 los. See note below.
NOTE
The maximum combined weight capacity for baggage areas 1 and 2 is 120 lbs .

NOTE

When floats are installed, it is possible to exceed the maximum takeoff weight with all seats occupied and minimum fuel.

CENTER OF GRAVITY LIMLTS

Center of Gravity Range:

Forward: 36.4 inches aft of datum at 1825 lbs. or less, with stratght line variation to 39.8 inches aft of datum at 2220 dbs .
Aft 45.5 inches aft of datum at all weights.

Reference Datum: Lower portion of front face of firewall.

MANEUVER LIMLTS

The floatplane is certificated in the normal category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except Whip stalls), lazy eights, chandelles, and steep turns in which the angle of bank is not more than 60°. Aerobatic maneuvers, including spins, are not approved.

FLIGHT LOAD FACTOR LIMITS

Flight Load Factors (Maximum Takeoff Weight - 2220 lbs.):
Flaps Up $+3.8 \mathrm{~g},-1.52 \mathrm{~g}$
*Flaps Down +3.0g
*The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads.

OTHER LIMITATIONS

FLAP LIMITATIONS

Approved Takeoff Range: 0° to 10°. Approved Landing Range: 0° to 30°.

WATER RUDDER LIMITATIONS

Water rudders must be retracted for all flight operations.

PLACARDS

The following information must be displayed in the form of composite or individual placerds in addition to those specified in the basichandbook.

1. In full view of the ptlot: (The "DAY-NIGHT-VFR-IFR" entry, shown on the example below, will vary as the airplane is equipped.)

The markings and placards installed in this atrplane contain operatIng limitations which must be complied with when operating this airplane in the Normal Category. Other operating limitations which must be complied with when operating this airplane in this category are contained in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual.

No acrobatic maneuvers, inciuding spins, approved.
Flight into known ielig conditions prohibited.
This airplane is certifled for the following figght operations as of date of original airworthiness certificate:

> DAY-NIGHT-VFR-IFR
2. On wing flap position indicator:

FLOATPLANE MAX. FLAPS - 30°
3. Near water rudder stowage hook:

WATER RUDDER ALWAYS UP
 EXCEPT WATER TAXIING

PILOT'S OPERATING HANDHOOK FLOATPLANE SUPPLEMENT MODEL 172N
4. In fuil view of the pilot:

WATER HUDDER MUST BE RETHACTED FOR TAKEOFF, FLIGHT, AND LANDING.

SECTION 3 EMERGENCY PROCEDURES

INTRODUCTION

CheckList and amplified procedures contained in the basic handbook generally should be followed. The additional or changed procedures specifically required for operation of the Model 172 N equipped with Edo Model 89-2000 floats are presented in this section.

AIRSPEEDS FOR EMERGENCY OPERATION

The speeds listed below should be substituted, as appropriate, for the speeds contatined in Section 3 of the basic handbook.
Engine Failure After Takeoff:
Wing Flaps Up 65 KIAS
Wing Flaps Down 10° 60 KIAS
Maneuvering Speed:2220 Lbs97 KIAS
2020 Lbs 91 KIAS
1820 Lbs 86 KIAS
Maximum Glide 65 KIAS
Precautionary Landing With Engine Power, FLaps Down 60 KlAS
Landing Without Engine Power:
Wing Fiaps Up 70 KIAS
Wing Flaps Down 60 KIAS

OPERATIONAL CHECKLISTS

ENGINE FAILURE
ENGINE FAILURE DURING TAKEOFF RUN

1. Throttle -. IDLE.
2. Control Wheed -- FULL AFT.
3. Mixture - IDLE CUT.OFF.
4. Ignition Switch - OFF.
5. Master Switch . OFF.

FORCED LANDINGS

EMEAGENCY LANDING ON WATER WITHOUT ENGINE POWER

1. Airspeed -- 70 KIAS (flaps UP).

60 KIAS (flaps DOWN).
2. Mixture -- IDLE CUT-OFF.
3. Fuel Selector Valve . OFF.
4. Ignition Switch - OFF.
5. Water Rudders -- UP.
6. Wing FLaps - AS REQUIRED.
7. Master Switch -- OFF.
8. DOORS .. UNLATCH PRIOR TO APPROACH.
9. Touchdown -- SLIGHTLY TAIL LOW.
10. Control Wheel - HOLD FULL AFT as loatplane decelerates.

EMERGENCY LANDING ON LAND WITHOUT ENGINE POWER

1. Airspeed -- 70 KIAS (fiaps UP).

60 KIAS ((Iaps DOWN).
2. Mixture - IDLE CUT-OFF.
3. Fuel Selector Valve - OFF.
4. Ignition Switch + OFF.
5. Water Rudders -- UP.
6. Wing FLaps - AS REQUIRED (30° recommended).
7. Master Switoh - OFF.
8. Doots -- UNLATCH PRIOR TO APPROACH.
9. Touchdown -- LEVEL ATTITUDE.
10. Control Wheel -- FULL AFT (after contact).

AMPLIFIED PROCEDURES

MAXIMUM GLIDE

After an ongine failure in flight, the best glide speed as shown in figure 3 should be established as quickiy as possible. In the likely event the propeller should stop, maintain the speed shown.

Figure 3. Maximum Glide

SECTION 4 NORMAL PROCEDURES

INTRODUCTION

Checklist and ampltfied procedures contained in the basic handbook generally should be followed. The additional or changed procedures specifically required for operation of the Model 172N equipped with Edo Model 89-2000 floats are presented in this section.

SPEEDS FOR NORMAL OPEFLATION

Unless otherwise noted, the following speeds are based on a maximum weight of 2220 pounds and may be used for any lesser weight.

Takeoff:
Normal Climb Out 65 KIAS
Maximum Performance, Flaps 10°, Speed at 50 Feet . . . 53 KIAS Enroute Climb, Flaps Up:

Normal . 6070 KLAS
Best Rate of Climb, Sea Leval 64 KIAS
Best Rate of Climb, 10,000 Feet 57 KrAS
Best Angle of Climb, Sea Level thru 10,000 Feet 53 KrAs Landing Approach:

Noxmal Approach, Flaps Up 65-75 KIAS
Normal Approach, Flaps 30°. 55-65 KIAS
Maximum Performance Approach, Flaps 30°. 53 KLAS
Balked Latading:
Maximum Power, Flaps 20°. 55 KIAS
Maximum Recommended Turbulent Air Penetration Speed:
2220 Lbs
97 KIAS
2020 Lbs . 91 KIAS
1820 Lbs . 86 KIAS
Maximum Demonstrated Crosswind Velocity:
Takeoff or Landing
10 KNOTS

CHECKLIST PROCEDURES

PREFLIGHT INSPECTION

1. Pilot's Operating Handbooit and Ftoatplane Supplement -AVAILABLE IN THE AIRPLANE.
2. Floats, Struts, and Float Fairings -- INSPECT for dents, oracks, scratches, etc.
3. Float Compartments -- INSPECT for water accumalation.

NOTE
Remove rubber balls which serve as stoppers on the standpipe in each float compartment and pump out any accumulation of water. Reinstall rubber balls with enough pressure for a smug fit.
3. Water Rudders -- CHECK freedom of movement and security.

BEFORE STARTING ENGINE

1. Water Rudder Operation ** CHECK VISUALLY.
2. Water Rudders ‥ DOWN for taxiing (retraction handle removed from stowage hook).

TAKEOFF

1. Water Rudders -. UP (retraction handle secured on stowage hook).
2. Wing Flaps $\rightarrow 0^{\circ}+10^{\circ}$ (10° preferred).
3. Carburetor Heat -COLD .
4. Controi Wheel \cdots HOLD FULL AFT.
5. Throttle -- FULL (advance slowly).
6. Mixiure -- RICH (or LEAN to obtain maximum RPM above 3000 feet).
7. Control Wheel -- MOVE FORWARD when the nose stops rising to attain planing attitude (on the step).
8. Airspeed $\ldots 45$-50 KIAS.
9. Control Wheel -- APPLY LIGHT BACK PRESSURE to lift off.

NOTE

To reduce takeoff water run, the technique of raising one float out of the water may be used. This procedure is described in the amplifted procedures in this section.
10. Climb Speed -- $55-65 \mathrm{KIAS}$ (flaps 10°). 60-70 KLAS (flaps UP).
With obstacles ahead, climb at 53 KIAS (flaps 10°).
11. Wing Flaps … UP after all obstacles are cleared.

ENROUTE CLIMB

NORMAL CLIMB

1. Airspeed -- 60-70 KLAS.

MAXIMUM PERFORMANCE CLIMB

1. Airspeed - 64 KLAS (sea level) to 57 KIAS (10,000 feet).

BEFORE LANDING

1. Water Rudders … UP.
2. Wing Flaps -- AS DESIRED.
3. Airspeed $-65-75$ KIAS (flaps UP).

55-65 KIAS (flapa DOWN).

LANDING

1. Touchdown -- SLIGHTLY TAlL LOW.
2. Control Wheel -- HOLD FULL AFT as floatplane decelerates to taxi speed.

NOTE

With forward loading, a slight nose down pitch may oceur if the elevator is not held fuld up as floatplane comes down off step.

AFTER LANDING

1. Water Rudders -- DOWN.

SECURING AIRPLANE

1. Fuel Selector Valve -- LEFT TANK or RIGHT TANK to minimize cross-feeding and ensure maximum fuel capadity when refueling.

AMPLIFIED PROCEDURES

TAXIING

Taxi with water rudders down. It is best to limif the engine speed to 800 RPM for normal taxi because water piles up in front of the floet bow at higher engine speeds. Taxiing with higiner enginc RPM may result in engine overheating and will not appreciably increase the taxi speed. In addition, tt may lead to water spray striking the propeller tips, causing propelier tip erosion.

During all low speed taxioperations, the elevator should be positioned to keep the float bows out of the water as far as possible. Normally this requires holding the control wheel full aft.

For minimum taxi speed in close quarters, use idle RPM with full carburetor heat and a single magneto. This procedure is recommended for short periods of time only.

Although taxiing is very simple with the water rudders, it is sometimes necessary to "sail" the floatplane under high wind conditions. In addition to the normal flight controls, the wing flaps and cabin doors will aid in "sailing". Water rudders should be retracted durixg "sailing".

To taxi great distances, it may be advis able to taxi on the step with the water rudders retracted. Turns on the step from an upwind heading may be made with safety providing they are not too sharp and if ailerons are used to counteract any overturning tendency.

TAKEOFF

Start the takeoff by applying fall throttle smoothly while hoiding the control wheel full aft. When the nose stops rising, move the control wheel forward slowly to place the floatplane on the step. Slow control movement and light control pressures produce the best results. Attempts to force the floatplane into the planing attitude will generally result in loss of speed and delay in getting on the step. The floatplane will assume a planing attitude which permits acceleration to takeoff speed, at which time the floatplane will fly off smoothly.

The use of 10° wing flaps throughout the takeoff run is recommended. Upon reaching a safe altitude and airspeed, retract the wing flaps slowly, especially when flying over glassy water because a loss of altitude is not very apparent over such a surface.

If porpoising is encountered while on the step, apply addtional control wheel back pressure to correct the excessively nose-low attifude. If this does not correct the porpoising, immediately reduce power to idle and allow the floatplane to slow to taxi speed, at which time the takeoff can again be indtiated.

MAXIMUM PERFORMANCE TAKEOFF

To clear an obstacle after takeoff with 10° wing flaps, use an obstacle clearance speed of 53 KIAS for maximum performance. Takeoff distances are shown in Section 5 for this technique, and on water conditions that are smooth but non-glassy. Under some adverse combinations of takeoff weight, pressure altitude, and air temperature, operation on glassy water may require significantly longer takeoff distances to accelerate to the liftoff speed, and allowance should be made for this.

If liftoff is difficult due to high Late elevation or glassy water, the following procedure is recommended: With the floatplane in the planing attitude, apply full aileron to raise one float out of the water. When one float leaves the water, apply slight elevator back pressure to complete the takeoff. Care must be taken to stop the rising wing as soon as the float is clear of the water, and in crosswinds, raise only the downwind wing. With one float out of the water, the floatplane accelerates to takeoff speed almost instantaneously.

CROSSWIND TAKEOFF

For a crosswind takeoff, start the takeoff run with wing flaps up. ailerons deflected partially into the wind and water rudders extended for better directional controL. Flaps should be extended to 10° and the water rudders retracted whea the floatplane is on the step; the remainder of the takeoff is normal. If the floats are lifted from the water one at a time, the downwind float should be Lifted first.

ENROUTE CLIMB

Recommended procedures for enroute climb are the same as for the landplane. For maximumt rate of climb performance refer to figure 8 of this supplement.

CRU1SE

Cruise power settings and corresponding fuelconsumption are shown on the Cruise Performance chart, figure 9 in this supplement. Range and endurance information is shown in figures 10 and $\$ 1$ in this supplement.

It should be noted that the tachometer stepped green aro markings representing 75% power at sea level, 5000 feet and 10,000 feet are based on the landplane. Fefer to the cruise tables in Section 5 for percent power information applicable to the floatplane.

LANDING

Normal landings can be made power on or power off using approach speeds of $65-75$ KIAS with flaps up and $55-65$ KIAS with fiaps down.

GLASSY WATER LANDING

With glassy water conditions, flaps should be extended to 20° and enough power used to maintain a low rate of descent (approximately 200 feet per minute). The floatplane should be flown onto the water at this sink rate with no flare attempted since height above glassy water is nearly impossible to judge. Power should be reduced to idle and control wheel back pressure increased upon contacting the surface. As the floatplane decelerates off the step, apply full back pressure on the control wheel. If this glassy water technique is used in conjunction with an obstacle. clearance approach, allowance should be made for appreciably longer total distances than are shown in Section 5 to clear a 50 -foot obstacle.

CROSSWIND LANDING

The wing-low slip method should be used with the upwind float contacting the surface first.

NOISE ABATEMENT

The certificated noise level for the Model 172N Floatplane at 2220 pounds maximum weight is $72.2 \mathrm{~dB}(\mathrm{~A})$. No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any landing area.

SECTION 5 PERFORMANCE

INTRODUCTION

The information presented in the Introduction, Use of Periormance Charts, and Sample Problem paragraphs in Section 5 of the basic handbook is applicable to the floatplane. Using this information, and the performance charts in this supplement, complete fight planaing may be accomplished.

DEMONSTRATED OPERATING TEMPERATURE
Satisfactory engine cooling has beon demonstrated for this floatplane with an outside air temperature $23^{\circ} \mathrm{C}$ above standard. This is not to be considered as an operating limitation. Reference should be made to Section 2 for encine operating Limitations.

AIRSPEED CALIBRATION

NORMAL STATIC SOURCE

CONDITION:
Power required for level flight or maximum rated RPM dive.

FLAPS UP KIAS KCAS	$\begin{aligned} & 40 \\ & 47 \end{aligned}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 60 \\ & 62 \end{aligned}$	$\begin{aligned} & 70 \\ & 7! \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 100 \\ 99 \end{array}$	$\begin{aligned} & 110 \\ & 109 \end{aligned}$	$\begin{aligned} & 120 \\ & 119 \end{aligned}$	$\begin{aligned} & 130 \\ & 129 \end{aligned}$	$\begin{aligned} & 140 \\ & 130 \end{aligned}$		$\begin{aligned} & 160 \\ & 159 \end{aligned}$
FLAPS 100°													
KIAS	40	50	60	70	80	90	100	110	---				-.-
KCAS	46	53	62	72	82	91	101	111					
FLAPS 30°													
KIAS	40	50	60	70	80	85	-.	-..	--.	--	-	--	--
KCAS	45	52	62	72	82	87		-.		.-.		-.	-. .

Figure 4. Airspeed Catibration

PILOT'S OPERATING HANDBOOK SUPPLEMENT

STALL SPEEDS

CONDITIONS:
Power Off
NOTES:

1. Altitude toss during a stall recovery may be as much as 200 feet.
2. KIAS values are approximate.

MOST REARWARD CENTER OF GRAVITY

$\begin{aligned} & \text { WEIGHT } \\ & \text { LBS } \end{aligned}$	FLAP DEFLECTION	ANGLE OF BANK							
		0°		30°		45°		60°	
		KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS
2220	UP	38	48	41	52	46	57	55	68
	10°	35	46	38	49	42	55	50	65
	30°	36	44	39	47	44	52	53	62

MOST FORWARD CENTER OF GRAVITY

$\begin{aligned} & \text { WEIGHT } \\ & \text { LBS } \end{aligned}$	FLAP DEFLECTION	ANGLE OF BANK							
		0°		30°		45°		60°	
		KIAS	xCAS	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS
2220	UP	41	50	44	54	49	59	58	71
	10°	37	47	40	51	45	56	54	66
	30°	36	44	39	47	44	52	53	52

Figure 5. Stall Speeds
TAKEOFF DISTANCE
MAXIMUM PERFORMANCE

> CONDTTIONS:
> Flaps 10°
> Fult Throttle
> Zero Wiad
> NOTE:
> Decrease distances 10% for each 9 knots headwind.

WE!GHTLBS	TAKEOFF SPEED KIAS		PRESS ALT FT	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$	
			WATERRUN	total TO CLEAR 50 FT OBS	WATER RUN	TOTAL TO Cleas 50 FT OBS	WATER RUN	total TO CLEAR 50 FT OBS	WATER RUN	TOTAL to CLEAR 50 FT OBS	WATER RUN	total. TO CLEAR50 FT OBS	
	$\begin{array}{\|l\|} \hline \mathrm{LIFT} \\ \mathrm{OFF} \end{array}$	$\begin{gathered} \mathrm{AT} \\ 50 \mathrm{FT} \end{gathered}$											
22.20	47	53	S.L.	1185	1870	1325	2060	1480	2270	1660	2505	1870	2780
			1000	1380	2140	1550	2365	1750	2625	1975	2920	2245	3265
			2000	1625	2470	1840	2750	2095	3075	2395	3455	2750	3905
			3000	1945	2890	2225	3245	2555	3665	2960	4165	3460	4770
			4000	2365	3430	2735	3900	3195	4460	3775	5150	4520	6015

FLOATPLANE

MAXIMUM RATE OF CLIMB

CONDITIONS:
Flaps Up
Full Throttie
NOTE:
Mixture leaned above 3000 feet for maximum RPM.

$\begin{aligned} & \text { WEIGHT } \\ & \text { LAS } \end{aligned}$	PRESS ALT FT	$\begin{aligned} & \text { CLIMB } \\ & \text { SPEED } \\ & \text { KIAS } \end{aligned}$	RATE OF CLIMB - FPM		
			$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
2220	$\begin{array}{r} \text { S.L. } \\ 2000 \\ 4000 \\ 6000 \\ 8000 \\ 10,000 \end{array}$	$\begin{aligned} & 64 \\ & 62 \\ & 61 \\ & 60 \\ & 59 \\ & 57 \end{aligned}$	$\begin{aligned} & 790 \\ & 690 \\ & 690 \\ & 495 \\ & 395 \\ & 300 \end{aligned}$	$\begin{aligned} & 725 \\ & 625 \\ & 530 \\ & 435 \\ & 340 \\ & 245 \end{aligned}$	$\begin{aligned} & 655 \\ & 560 \\ & 465 \\ & 375 \end{aligned}$

Figure 7. Maximum Rate of Climb

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

CONDITIONS:
Flaps Up
Full Throttle
Standard Temperature
NOTES:

1. Add 1.1 galions of fuel for engine start, taxi and takeoff allowance.
2. Mixture feaned above 3000 feet for maximum RFM.
3. Increase time, fuet and distance by 10% for each $10^{\circ} \mathrm{C}$ above standard temperature.
4. Distances shown are based on zero wind.

WEIGHT LBS	$\begin{aligned} & \text { PRESSURE } \\ & \text { ALTITJDDE } \\ & \text { FT } \end{aligned}$	$\begin{gathered} \text { TEMP } \\ { }^{\circ} \mathrm{C} \end{gathered}$	CLIMB SPEED KIAS	RATE OF CLIMB FPM	FROM SEA LEVEL		
					TIANE MIN	FUEL USED GALLONS	DISTANCE NM
2220	5.1.	15	64	740	0	0	0
	1000	13	63	695	1	0.3	2
	2000	11	62	655	3	0.7	3
	3000	9	62	610	4	1.0	5
	4000	7	6	570	6	1.4	7
	5000	5	61	525	8	1.7	9
	6000	3	60	485	10	2.1	11
	7000	1	59	440	12	2.5	14
	8000	- 7	59	400	15	3.0	16
	9000	-3	58	355	17	3.4	20
	10,000	-5	57	315	20	3.9	23

Figure 8. Time, Fuel, and Distance to Climb

CRUISE PERFORMANCE

CONDITIONS:
2220 Pounds
Recommended Lean Mixture

PAESSURE ALTITUDE FT	R9M	$\begin{aligned} & 20^{\circ} \mathrm{C} \text { 8ELOW } \\ & \text { STANDARD TEMP } \end{aligned}$			STANDARD TEMPERATURE			$20^{\circ} \mathrm{C}$ ABOVE STANDARD TEAF		
		$\begin{gathered} \% \\ \text { \% } \\ \text { BP } \end{gathered}$	KTAS	GPH	$\begin{gathered} \% \\ \mathrm{BH} \\ \mathrm{BH} \end{gathered}$	KTAS	GPH	$\begin{gathered} \% \\ \mathrm{BH} \end{gathered}$	KTAS	GP4
2000	2650	--	-..	---	75	94	8.5	71	93	7.9
	2600	77	92	8.6	71	92	8.0	67	91	7.5
	2500	68	88	7.6	64	87	7.2	61	86	6.8
	2400	61	84	6.8	57	82	6.5	54	80	6.2
	2300	55	79	6.2	51	77	5.9	49	74	5.7
	2200	49	73	5.7	46	71	5.5	43	67	5.3
4000	2700	-..	---	\cdots	75	95	8.4	71	95	7.9
	2600	72	92	8.1	68	91	7.6	64	90	7.2
	2500	65	88	7.3	61	86	6.8	58	85	6.5
	2400	58	83	6.5	55	81	6.2	52	78	5.9
	2300	52	77	6.0	49	75	5.7	46	72	5.5
	2200	46	71	5.5	43	68	5.3	$4 \pm$	84	5.1
6000	2700	76	95	8.6	71	95	8.0	67	94	7.5
	2600	69	91	7.7	64	90	7.2	69	88	6.8
	2500	62	87	6.9	58	85	6.5	55	82	6.2
	2400	56	81	6.3	52	79	6.0	49	76	5.7
	2300	50	75	5.8	47	72	5.5	44	69	5.3
8000							7.6	64	92	7.2
	2600	65	90	7.3	61	89	8.9	58	86	6.5
	2500	59	85	6.6	55	83	6.2	52	80	6.0
	2400	53	79	6.0	50	77	5.8	47	73	5.5
	2300	47	73	5.6	44	69	5.4	41	65	5.2
10,000	2700								90	6.8
	2600	62	89	6.9	58	87	6.5	55	84	6.2
	2500	56	83	6.3	53	81	6.0	49	77	5.8
	2400	50	77	5.8	47	74	5.6	44	69	5.4

Figure 9. Cruise Performance

RANGE PROFILE

45 MINUTES RESERVE 40 GALLONS USABLE FUEL

CONDITIONS:
2220 Pounds
Recommended Lean Mixture for Crtise
Standard Temperature
Zero Wind
NOTE:
This chart atlows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb.

Figure 10. Range Profile (Sheet 1 of 2)

RANGE PROFILE

45 MINUTES RESERVE
 50 GALLONS USABLE FUEL

CONDITIONS:
2220 Pounds
Recommented Lean Mxture for Crtise
Standard Temperature
Zero Wind
NOTE:
This chaft allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb.

Figure 10. Range Profile (Sheet 2 of 2)

ENDURANCE PROFILE
 45 MINUTES RESERVE
 40 GALLONS USABLE FUEL

```
CONDITIONS:
2220 Pounds
Recommended Lean Mixture for Cruise
Standard Temperature
NOTE:
This chart allows for the fued used for engine start, taxi, takeoff and climb, and the time during climb.
```


Figure 11. Endurance Profile (Sheet 1 of 2)

ENDURANCE PROFILE
 45 MINUTES RESERVE
 50 GALLONS USABLE FUEL.

CONDITIONS:
2220 Pounds
Recommended Lean Mixture for Cruise
Standàrd Temperature
NOTE:
This chart allows for the fuet used for angine start, taxi, takeoff and climb, and the time during climi.

Figure 11. Endurance Profile (Sheet 2 of 2)

LANDING DISTANCE
MAXIMUM PERFORMANCE CONDITIONS: Flaps 30°
Power Off Zero Wind

NOTES:

1. Refer to Section 4 for recommended technique if water surface is glassy. 2. Decrease distances 10% for each 9 knots headwind.

$\begin{gathered} \text { WEIGHT } \\ \text { LBS } \end{gathered}$	SPEED AT 50 FT KIAS	PRESS ALT FT	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$	
			WATER RUN	TOTAL TO CLEAR 50 FT OBS	WATER RUN	TOTA1 TO CLEAR 50 FTOBS	WATER RUN	total. TO CLEAR 50 FT OBS	WATER fUN	TOTAL TO CLEAA 50 FT OBS	WATER RUN	TOTAL TO CLEAR 50 FT ORS
2220	53	$\begin{aligned} & \text { S.L. } \\ & 1000 \\ & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 560 \\ & 580 \\ & 600 \\ & 625 \\ & 650 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1330 \\ & 1360 \\ & 1395 \\ & 1435 \end{aligned}$	$\begin{aligned} & 580 \\ & 600 \\ & 625 \\ & 645 \\ & 670 \end{aligned}$	$\begin{aligned} & 1330 \\ & 1360 \\ & 1395 \\ & 1430 \\ & 1465 \end{aligned}$	$\begin{aligned} & 600 \\ & 620 \\ & 645 \\ & 670 \\ & 695 \end{aligned}$	$\begin{aligned} & 1360 \\ & 1390 \\ & 1430 \\ & 1465 \\ & 1500 \end{aligned}$	$\begin{aligned} & 620 \\ & 645 \\ & 670 \\ & 695 \\ & 720 \end{aligned}$	$\begin{aligned} & 1390 \\ & 1425 \\ & 1465 \\ & 1500 \\ & 1540 \end{aligned}$	$\begin{aligned} & 640 \\ & 665 \\ & 690 \\ & 715 \\ & 740 \end{aligned}$	$\begin{aligned} & 1420 \\ & 1455 \\ & 1495 \\ & 1530 \\ & 1570 \end{aligned}$

SECTION 6
 WEIGHT \& BALANCE

INTRODUCTION

Weight and balance information contained in the basic handbook generally should be used, and will enable you to operate the floetplane within the prescribed weight and center of gravity limitations. The changed information spectfically required for operation of the Model 172N equipped with Edo Model $89-2000$ floats is presented in this section.

NOTE
When floats are installed, it is possible to exceed the maximum takeoff weight with all seats occupied and minimum fuel.

It is the responsibility of the pilot to ensure that the floatplane is loaded properly.

$$
=
$$

SECTION 7
 AIRPLANE \& SYSTEMS DESCRIPTIONS

INTRODUCTION

This seetion contains a description of the modifications and equipment associated specifically with the installation of Edo Model 89-2000 floats on the Model 172N.

THE FLOATPLANE

The floatplane is identical to the landplane with the following exceptions:

1. Floats, incorporating a water ruddor steering system, replace the landing gear. A water rudder retraction handle, connected to the dual water rudders by cebles and springs, is located on the cabin floor.
2. Additional fuselage structure is added to support the float instellation.
3. An additionai structural "V" brace is installed between the top of the front door posts and the cowi deck.
4. The airplane has additional corrosion-proofingandstainless steel cables.
5. Wing flap limit switches are adjusted to restrict the maximum flap travel to 30°.
6. Interconnect springs are acded between the rudder and kileron control systems.
7. The fuel strainer tastallation is modified for floatplane use.
8. The standard propeller is replaced with a propelier of larger diameter (80 inches) and flatter pitch.
9. A lower cowl with a larger cooling air exit for better engine cooting replaces the standard lower cowh.
10. The heated pitot (if installed) is replaced with a special heated pltot.
11. Hoisting provistons are added to the top of the fuselage.
12. F'ueling steps and assist handies are mounted on the forward fuselage, and steps are mounted on the wing struts to aid in refueling the airplane.
13. Floatplane placards are added.

Figure 15. Water Rudder Retraction System

PIIOT"S OPERATING HANDBOOK SUPPLEMENT

WATER RUDDER SYSTEM

Fetractable water rudders (figure 15), mounted at the aft end of each float, are connected by a system of cables and springs to the rudder pedals. Normal rudder pedal operation moves the watex rudders to provide steering control (figure 16) for taxiing.

The water rudders are equipped with centering cams (attached to each retraction hinge) which, when the water rudders are retracted, make contact with a plate on the sterm of each float, locking the rudders in the centered position. Springs within the water rudder steering system permit normal airplane rufder action with the water rudders retracted and improve directional stability in flight.

A water rudder retraction handle, located on the cabin floor between the front seats, is used to manually raise and lower the water rudders. During takeoff. Landing, and in llight. the handle should be secured on the stowage hook located on the cabin floor fustaft of the control pedestal. With the handle in this position, the water rudders are up. When the handie is removed from the hook and allowed to move full aft, the water rudders extend to the full down position for taxiing.

Figure 16. Water Rudder Steering System

SECTION 8
 AIRPLANE HANDLING, SERVICE \& MAINTENANCE

INTRODUCTION

Section 8 of the basic handbook applies, in general, to the floatplane. The following recommended procedures apply specifically to floatplane operation. (Cleaning and maintenaxice of the floats should be accompInshed as suggested in the Edo Corporation Service and Maintenance Manual for Floats.)

MOORING

Proper secuxing of the floatplane oan vary considerably, depending on the type of operation involved and the facilities available. Each operator should use the method most appropriate for his operation. Some of the most common mooring alternatives are as follows:

1. The foatplane can be moored to a buoy, using a yoke tied to the forward float cleats, so that it will freely weathervane into the wind.
2. The floatplane can be secured to e dook using the fore and afteleats of one float, although this method is generally not recommended unless the water is calm and the floatplane is attended.
3. The floatplane may be removed from the water (by use of a special lift under the spreader bars) and secured by using the wing tiedown rings and float cleats. If conditions permit the floatplane to be beached, ensure that the shoreline is free of rocks or abrasive material that may damage the floats.

SUPPLEMENT

AIR CONDITIONING SYSTEM

SECTION 1

GENERAL

The air conditioning system provides a comforiable cabin temperature during ground and flight operations. System controls are located on the control pedestal and constst of two rotary type control knobs. Blower speed is controlled by the upper knob, Iabeled FAN. The control rotates clockwise from OFF through three positions labeled LOW, MED, and HI, and provides three blower speedis. Temperatire is controlled by the lower knob, labeled AIR TEMP. Hotating the control clockwise from OFF to ON will start the compressor. Chochwise rotation from ON to MAX will control cabin temperature by cycling the compressor operation. System electrical protection is provided by a 10 -amp circult breaker on the left side of the switch and controi panel. Cooling air is vented to the cabin through two ducts and four fully adjustable outlets above the cabia side windows.

Systern components (see figure t) include a belt-driven compressor, two Schrader valves, high pressure switch, condenser, atr scoop, reoeiver/driex, expansion valve, evaporator/blower unit and the necessary controls, plumbing and wiring. The bolt-driven compressor is located at the front of the engine on the left side. Two freon lines are connected to the rear of the compressor and contain Schrader valves which are used to service the system. A pressure switch is atteched to the Schrader valve in the high pressure line to the condenser and is electrically connected to the compressor and the thermostat-type AIR TEMP switch on the control pedestal. The fwo freon lines are routed from the engine compartment through a tunnel on the bottom of the fuselage to an airscoop which houses the condenser. One line is connected to the condenger and the other line is routed to the evaporator unit above the aft baggage area. A double-shaft electric motor and two squirrel-cage type blowers on the back of the evaporator unit prowide aifllow through the evaporator to the cabin outlets. A receiver/drier, which serves as a reservoir for liquid freon, is mounted under the aft baggage area floor. Two freon lines connect the receiver/drier to the condenser and the thermostatic expansion valve. A sight glass on the top of the receiver/drier is covered by a plug button in the aft baggage area floor.

PILOT'S OPERATING HANDBOOK SUPPLEMENT

Figure 1. Air Conditioning System

PLLOT'S OPERATING HANDBOOK SUPPLEMENT

AIR CONDITIONING SYSTEM
MODEL I72N

System function is basically the same as an automotive type system, and utilizes Refrigexant 12 (R 12), commonly fnown as freon, as the heat conducting medium. Freon under high pressure is stored in a liquid state in the receiver/dryer until required by the system. When the system is in operation, a magnetic clutch on the compressor is energized and liquid freon in the receiver/drier is forced through a line to the thermostatic expanston valve at the tnlet side of the evaporator. The walve is a restricting device which allows only a small amount of the liquid to enter the evaporator. After passing through the valve, the pressure of the liquid freon drops rapidly and it begins to evaporate (changes to a gas) within the evepoxator coils, thus reductng the temperature of the coils. Warm air from the cabin is forced through the cold evaporator coils by the evaporator blower. As the warm air passes over the cold evaporator coils, heat is transferred from the alr to the coils and freon. The cooled air is then delivered to the cabin outlets by the blower. After the freon has passed through the evaporator coils, absorbing heat and veporizing, it is pumped through a line to the compressor where it is compressed to a high pressure. Compression of the gas also ratses its temperature well above outside air temperature. The compressor then forces the hot high pressure gas into the condenser. As the vaporized freon pesses through the coils of the condenser, outside air flowing over the coils removes heat from the freon causing it to condense into a liquid. The liquified freon then passes from the condenser to the receiver/drier where any moisture collected by the freon is removed by a drying agent, and the freon is retained until again required by the system.

In addition to air conditioner components, the airplane utilizes a special nose cap and lower cowl to provide room for the compressor and improved engine cooling, respectively. Also, an aileron/ rudder interconnect spring system is added to counter the effects of the external condensex scoop and to improve the airplane's stability in fight.

SECTION 2

LIMITATIONS
The atr conditioning system must not be operated curing tateoff and landing. If a landing must be aborted, the wing flaps must be retracted to 20° immediately after applying full power. When the system is installed, the airplane must be equipped with a placard near the engine instrument

2

AIR CONDITIONING SYSTEM
PILOT"S OPERATING HANDBOOK
SUPPLEMENT
cluster which reads as follows:

AIR CONDITIONING SYSTEM

- TURN OFF FOR TAKEOFF \& LANDING
 AFTER APPLYING POWER FOR BALKED LANDING GO-AROUND

SECTION 3
 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the air conditioning system is installed.

SECTION 4 NORMAL PROCEDURES

PREFLIGHT INSPECTION

During the preflight (walk around) inspection, open both cabin doors to aid in cool-down of the cabin before flight. Air conditioning system components should be inspected as follows:

1. Check compressor drive bel for tightness, and compressor for condition.
2. Check tunnel from firewall to condenser air scoop for damage, Looseness and evidence of line leakage.
3. Check condenser air scoop forblockage, condition, and evidence of system leakage.
4. Check that return air openings in top of aft baggage area are clean and not blocked by baggage. Also, check area for evidence of system leakage.
5. Check that condensate drain is not damaged or blocked.

If the inspection should reveal oil streaks or drops of oil in the aft baggage area or on the ground, do not operate the atr conditioning system until it has been checked by service personnel.

AIR CONDITIONING SYSTEM MODEL $172 N$

OPERATION ON GROUND

After prefight inspection and engine start, use the following procedures for best utilization of the system prior to flight.

1. Cabin Doors and Windows -- CLOSED.
2. Cabin Air Cortrol Knob -. PUSHED IN.
3. Wing Root Ventilators - CLOSED.
4. AIR TEMP Control Knob -. MAX.
5. FAN Control Knob-- Hi.
6. After Initial Cooldown -- REPOSITION AIR TEMP and FAN control knobs as required to maintain destred temperature.

NOTE
A high pressure switch in the air conditioning system disengages the compressor chutch and stops system operation in the event the system becomes overheated during periods of idling at low RPM. The system will cycle on and off under these circumstances and is not malfunctioning. If this occurs, head the airplane into the wind and increase engine RPM, if practical.

BEFORE TAKEOFF

1. AIR TEMP Control Knob -- OFF.
2. FAN Control Knob -- AS DESIRED.

OPERATION IN FLIGHT

The inflight operation of the air conditioning system is basically the same as for ground operation. If fast cool down is desired, check that all vents are closed, place the AIR TEMP control in the MAX position, and place the FAN control in the HI postion. When cabin temperature has been reduced to the desired level, rotate the AIR TEMP control knob counterclockwise as required to maintain that temperature and reposition the FAN control knob as desited.

During extended fight in extremely high temperature and humidity. the evaporator coils may frost over. The evaporator unit is equipped with an automatic defrost system which will normally prevent this. However, when the AIR TEMP control is placed in the MAX position, the automatic defrost system will not operate. This problem can be recognized by a continual rise in the temperature of the airflow from the outlets. Tocorrect the problem, move the AIR TEMP control knob approximately one-third of the way toward the OFF position and check that the FAN control knob is in the HI position. This action should allow the automatio defrost system to

2

AIR CONDITIONING SYSTEM MODEL 172N

PILOT'S OPERATING HANDBOOK SUPPLEMENT
remove the frost.
NOTE
If the temperature of the air coming from the outlets does not start to cool within a reasonable length of time (depending on the amount of frost), the system may be maifunctioning and should be turned off.

The blower portion of the system may be used any time air circulation (heated or fresh) is desired. This is accomplished by leaving the AIR TEMP control knob in the OFF position, and placing the FAN control knob in the LOW, MED, or HI position as desired.

BEFORE LANDING

1. AlR TEMP Control Knob ** OFF.
2. FAN Control Knob -- AS DESIRED.

AFTER LANDING

The AIR TEMP control knob may be rotated from OFF to a position that will maintain the cabin temperature at a comfortable level while operating on the ground.

SECTION 5 PERFORMANCE

The reduction in airplane performance with the air conditioning system installed is as follows:

CONDITION	CRUISE SPEED	RATE OF CLIMB
COMPRESSOR ON	-5 KNOTS	-130 FPM
COMPRESSOR OFF	-3 KNOTS	-80 FPM

In addition to the above, an allowance should be made for cruise fuel sonsumption, which is up to 0.4 of a gallon per hour higher than shown in Section 5 of the basic handbook for any particular RPM.

A condenser air scoop fairing, provided with the system, will decrease the performance increments to -1 knot for cruise speed and -25 feet per minute for rate of climb. The fairing is intended for use during off-season pperations. Do not operate the air conditioning system with the fairing installed.

PILOT'S OPERATING HANDBOOK SUPPLEMENT

AIR CONDITTONING SYSTEM
MODEL 172N

DEMONSTRATED OPERATING TEMPERATURE

Satisfactory engine cooling has been demonstrated for the airplane with this equipment installed with an outside air temperature $23^{\circ} \mathrm{C}$ above standard. This is not to be considered as an operating limitation. Reference should be made to Section 2 of the basic handbook for engine operating limitations.
\square

SUPPLEMENT

CARBURETOR AIR TEMPERATURE GAGE

SECTION 1
 GENERAL

The carburetor air temperature gage provides a means of detecting carburetor icing conditions. The gage is located on the right side of the instrument panel. It is marked in 5° increments from $-30^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$, and has a yellow are between $-15^{\circ} \mathrm{C}$ and $+5^{\circ} \mathrm{C}$ which indicates the temperature range most conducive to carburetor tcing.

SECTION 2

LIMITATIONS

There is no change to the airplane limitations when the carburetor air temperature gage is instailed.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the carburetor air temperature gage is installed.

SECTION 4 NORMAL PROCEDURES

There is no change to the airplane normal procedures winen the carburetor air temperatare gage is installed. It is good practice to monitor the gage periodically and keep the needle out of the yellow arc during possible carburetor icing conditions. Refer to Section 4 of the basic handbook for procedures used when operating with carburetor heat applied.

SECTION 5

PERFORMANCE

There is no change to the airplane performance when the carburetor air temperature gage is installed. However, if it is necessary to operate with carburetor heat applied, a small performance loss may be expected at any given power setting due to the warmer induction air temperature.

SUPPLEMENT

CIRCULATION FAN SYSTEM

SECTION 1

GENERAL

The dirculation fan system provides cabin ventilation during ground operations, and a better distribution of cabin eir to the passengers during fightoperations. The system control is located on the control pedestel, and consists of a rotary control knob, labeled CIRCULATION FAN. The control knob rotates clockwise from OFF through three positions labeled LoW, MED , and HI , providing three blower speeds. System electrical protection is provided by a 5 -amp circuit breaker, labeled CIRFAN, on the left sideof the switch and control panel.

Additional system components (seefigure 1) include a circulation fan and motor located above the extended baggage compartment, system ducting, and four fully adjustable outhets above the cabin side windows. The circulation fan and motor includes an electric motor, equipped with an output shaft on each end, attached to squirrel-cage type blowers within blower housings which provide airflow through the ducts to the cabin outlets.

The volume of airflow through the cabin outlets is controlied by the rotary knob on the control pedestal; adjustable louvers on each outlet control the direction of airflow.

SECTION 2

LIMITATIONS

There is no change to the airplane limitations when the circulation fan system is installed.

MODEL 172N

Figure 1. Circulation Fan System

SECTION 3
 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the circutation fan system is installed.

SECTION 4 NORMAL PROCEDURES

PREFLIGHT INSPECTION

In hot weather during the prefight (walk-around) inspection, open both cabin doors to aid in cool-down of the cabin before flight.

OPERATION ON GROUND

Aftex preflight inspection and engine statt, use the following procedures for best utilization of the system prion to flight.

1. Cabin Window(s) * OPEN.
2. Cabin Air Control Knob -- PULL OUT.
3. Wing Root Ventiators -- OPEN,
4. CIRCULATION FAN Control Knob -- HI.

BEFORE TAKEOFF

1. Cabin Window(s) - CLOSED AND LOCKED.

OPERATION IN FLIGHT

The inflight operation of the circulation fan system is basically the same as for ground operation. The cabin air control knob, wing root ventilators, and the circulation fan control knob may be adjusted, as required to provide the desired cabin ventilation.

After landing, the cabin window(s) may be opened while taxing to the tie-down area or ramp to help ventilate the cabin.

SECTION 5
 PERFORMANCE

There is no change to the airplane performance when the ciroulation fan system is installed.

SUPPLEMENT

DIGITAL CLOCK

SECTION 1
GENERAL

The Astro Tech LC-2 Quaxtz Chronometer (see figure 1) is a preoision, solid state tame keeping device which will display to the pilot the time-ofday, the calendar date, and the elapsed time interval between a series of selected events, such as in-flight check points or legs of a cross-country flight, etc. These three modes of operation function independently and can be alternately selected for viewing on the four digit liquid crystal display (LCD) on the front face of the instrument. Three push button type switches directiy below the display control all time keeping functions. These control functions are summarized in figures 2 and 3.

The digatal display features an internal light (back light) to ensure good visibility under low cabin lighting conditions or at night. The intensity of the back light is controlled by the RADIO LT rheostat. In addition, the display incorporates a test function (see figure 1) which allows checking that all elements of the display are operating. To activate the test function, press the LH and RH buttons at the same time.

SECTION 2 LIMITATIONS

There is no chaige to the airplane limitations when the digital clock is installed.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emexgency proceduxes when the dtgital clock is instalied.

Figure 1. Digital Clock

SECTION 4

NORMAL PROCEDURES

CLOCK AND DATE OPERATION

When operating in the clock mode (see figure 2), the display shows the time of day in hours and minutes while the activity indicator (colon) will blink off for one second each ten seconds to indicate proper functioning. If the RH push button is pressed momentarily, while in the clock mode, the calendar date appears numerically on the display with month of year to the left of the colon and day of the month shown to the right of the colon. The display automatically returns to the clock mode after approximately 1.5 seconds. However, if the RH button is pressed continuously longer than approximately two seconds. the display will return from the date to the clock mode with the activity indicator (colon) blinking altered to show continuously or be blanked completely from the display. Should this occur, simply press the RH button again for two seconds or longer, and correct colon blinking will be restored.

NOTE
The clock mode is set at the factory to operate in the 24hour format. However, 12 -hour format operation ray be

LH Button: Sets date and time of day (when used with RH button).

Centef Bution: Alternately dispiays clock or timer status

RH Button: Shows calendar date momentarily; display returns to clock mode aiter 1.5 seconds.

Figure 2. Clock Mode

LH Button: Resets timer to "zero".

Center Button: Alternately displays clock or timer status

RHy Button: Alternately starts and stops timer; timer starts from any previously accumtslated total.

Figure 3. Timer Mode
selected by changing the position of an internal side switch accessible through a small hole on the bottom of the instrument case. Notice that in the 24 hour format, the clock mode indicator does not appear.

SETMING CORREC'C DATE AND TIME

The correct date and time are set while in the clock mode using the LH and RH push buttons as follows: press the LH button once to cause the date to appear with the month flashing. Press the RH button to cause the month to advance at one per second (holding button), or one per push until the correct month appears. Push the LH button again to cause the day of month to appear flashing, then advance as before using RH button until correct day of month appears.

Once set correoty, the date adyances atatomatically at midnight each day until February 29 of each leap year, at which time one day must be added manually.

Pressing the LHE button two additional times will cause the time to appear with the hours digits flashing. Using the RH button as before, advance the hour digits to the correct hour as referenced to a known time standard. Another push of the LH button will now cause the minutes digits to flash. Advance the minutes digits to thenext whole minute to be reached by the time standard and "hold" the display by pressing the LH button once more. At the exactinstant the time standard reaches the value "held' by the display, press the RH button to restart normal clock timing. which will now be synchronized to the time standard.

In some instances, however, it may not be necessary to advance the minutes digits of the clock; for example when changing time zones. In such a case, do not advance the mintutes digits while they are flashing. Instead, press the LH button again, and the clock returns to the normal time keeping mode without altering the minutes timing.

TIMER OPEAATION

The completely indepencent 24 hour elapsed timer (see figure 3) is operated as follows: press the center (MODE) push button until the timer mode indicator appears. Reset the display to "zero" by pressing the LH button. Begin timing an event by pressing the RF button. The timer will begin counting in minutes and seconds and the colon (activity indicator) will blink off for $1 / 10$ second each second. When 59 minutes 59 seconds have accumulated, the timer changes to count in hours and minutes up to a maximum of 23 hours, 59 minutes. During the count in hours and minutes. the colon blinks off for one second each ten seconds. To stop timing the event, press the RH button once again and the time shown by the display is "frozen". Successive pushes of the RH button will alternately restart the count from the "held" total or stop the count at a new total. The hold stattis of the timer can be recognizad by lack of colon activity, either continuously on or continuously off. The timer can be reset to "zero" at anytime using the LH button.

SECTION 5

 PERFORMANCEThere is no change to the airplane performance when the digital clock is installed.

SUPPLEMENT

GROUND SERVICE PLUG RECEPTACLE

SECTION 1
 GENERAL

The ground service plug receptacle permits the use of an external power source for cold weather starting and lengthy maintenance work on the electrical and electronic equipment. The receptacle is located behind a door on the left side of the fuselage near the aft edge of the cowling.

NOTE

Abstract

If no avionics equipment is to be used or worked on, the avionics power switch should be turned off. If maintenance is required on the avionies equipment, it is advisable to utilize a batzery cart external power source to prevent damage to the avionics equipment by transient voltage. Do not erank or start the engine with the avionics power switch turned on.

The battery and external power circuits have been designed to completely eliminate the need to "jumper" across the battery contactor to close it for oharging a completely "dead" battery. A special fused circuit in the external power system supplies the needed "jumper" across the contacts so that with a "dead" batwery and an external power source applied, turning the master switch ON will ciose the battery contactor.

SECTION 2

LIMITATIONS

The following information must be presented in the form of a placard located on the inside of the ground service plug access door:

CAUTION
24 VOLTS D.C.
This aircraft is equipped with alternater and a negative ground system. OBSERVE PROPER POLARITY Reverse polerity whi demage electrical components.

SECTION 3
 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the ground service plug receptacle is installed.

SECTION 4

NORMAL PROCEDURES

Just before connecting an external power source (generator type or battery cart), the avionics power switch should be turned off, and the master switch on.

WARNING

When turning on the master switch, using an external power source, or pulling the propeller through by hand, treat the propeller as if the ignition switch were ON. Do not stand, nor allow anyone else to stand, within the arc of the propeller, since a loose or broken wire, or a component matfunction, could cause the propellex to rotate.

PILOT'S OPERATING HANDBOOK SUPPLEMENT

The ground service piug receptacle circuit incorporates a polarity reversal protection. Power from the external power source will flow only if the ground service plug is correctiy connected to the airplane. If the plug is accidentally connected baokwards, no power will flow to the electrical system, thereby preventing any damage to electrical equipment.

SECTION 5 PERFORMANCE

There is no ohange to the airplane performance when the ground service plug receptacle is installed.

SUPPLEMENT

STROBE LIGHT SYSTEM

SECTION 1
 GENERAL

The high intensity strobe light system erhances anti-colliston protection for the airplane. The system consists of two wing tip-mounted strobe Lights (with integral power supplies), a two position rocker switch labeled SIROBE LT on the left swich and control panel, and a 5 -amppush-to-reset circuit breaker, also located on the left switch and control panel.

SECTION 2

LIMITATIONS

Strobe lights must be turned off when taxiing in the vicinity of other airplanes, or during night flight through clouds, fog or haze.

SECTION 3

EMERGENCY PROCEDURES
There is no ohange to the airplane emergency procedures when strobe lights are installed.

SECTION 4 NORMAL PROCEDURES

To operate the strobe light system, proceed as follows:

1. Master Switch -0 ON.
2. Strobe Light Switch -- ON.

SECTION 5 PERFORMANCE

The installation of strobe lights whl result in a minor recuction in cruise performance.

SUPPLEMENT

WINTERIZATION KIT

SECTION 1

GENERAL

The winterization kit consists of two cover plates (with placards) which attech to the air intakes in the cowting nose cap, a restrictive cover plate for the oil cooler air inlet in the right rear vertical engine baffie, misulation for the engine crankcase breather line, and a placard to be installed on the instrument panel. This equipment should be installed for operations in temperatures consistently below $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$. Once installed. the crankcase breather insulation is approved for permanent use, regardless of temperature.

SECTION 2

LIMITATIONS

The followtng information must be presented in the form of placards when the airplane is equipped with a winterization kit.

1. On each nose cap cover plate:

REMOVE WHEN
OAT EXCEEDS $20^{\circ} \mathrm{F}$
2. On right side of instrument panel:

WINTERIZATION KKT (RIGHT AND LEFT NOSE CAP COVER AND OLL COOLER COVER PLATE) MUST BE REMOVED WHEN OUTSIDE AIR TEMPERATURE IS ABOVE $20^{\circ} \mathrm{F}$.
3. On right hand nose cap cover plate:

REMOVE OLL COOLER COVER PLATE FROM AFT BAFFLE WHEN OAT EXCEEDS $20^{\circ} \mathrm{F}$

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when the winterization kit is installed.

SECTION 4
 NORMAL PROCEDURES

There is no change to the alrplane normal procedures when the winterization kit is installed.

SECTION 5 PERFORMANCE

There is nochange to the eirplane performance when the winterization kit is installed.

SUPPLEIMENT

DME
 (TYPE 190)

SECTION 1

GENERAL

The DME 190 (Distance Measuring Equipmert) system consists of a panel mounted 200 channel UHF transmitter-receiver and an extornally mounted antenna. The transceiver has a single selector knob that changes the DME's mode of operation to provide the pilot with: distance-to-station. time-to-station, or ground speed readouts. The DME is designed to operate at altitudes up to a maximum of 50,000 feet at ground speeds up to 250 knots and has a maximum slant range of 199.9 nautical miles.

The DME can be channeled independently or by a remote NAV set. When coupled with a remote NAV set, the MHz digits will be covered over by a remote (REM) flag and the DME will utilize the frecuency set by the NAV set's channeling knobs. When the DME is not coupled with a remote NAV set, the DME will refleot the channel selected on the DME unit. The transmitter operates in the frequency range of 1041 to 1150 MHz and is paired with 108 to 117.95 MHz to provide automatic DME elanneling. The receiver operates in the frequency range of 978 to 1213 MHz and is paired with 108 to 117.95 MHz to provide automatic DME channeling.

All operating controls (except for a SPEAKER/PHONE selector switch mounted on the audio control pancl supplied with one or two transmitters, as described in Section 7) for the DME are mounted on the front panel of the DME and are described in "igure 1.

SECTION 2

LIMITATIONS
There is no change to the airplane limitations when this avtonto equipment is installed.

PILOT'S OPERATING HANDBOOK
SUPPLEMENTM

1. RHADOUT WINDOW - Displays function readout in natical miles (diatance-Lostation), minutes (time-to-station) or krots (ground speed).
2. R-NAV INDICATOR LAMP . The green R-NAV indicetor lamp is provided to indicate the DME is coupled to an R-NAV system. Since this DME is not fectory installed with an $\mathrm{Fl}-\mathrm{N} A V$ system on Cessna arplanes, the R - NAV indicator lamp should rever betilumineted. However, if an R-NAV systerm is ooupted to the DMT. and when in R-NAV mode, the R-NAV lamp will light which indicates that the distarce readout is the "way point' instead of the DME station. "he DME oan only give distance (MLLES) in R-Nav mode.
3. REMOTE CHANNELJNG SELECTOR - Two position selector. In the first position, the DME will utilize the frequency set by the DME channeling knobs. In the second position, the MH -2 digits will utilize the frequency set by the NAV 1 unit's channeing knotes.
4. WHOLE MEGAHERTZ SELECTOR KNOB - Selects operating frequency in 1 MHz steps between 108 and 117 MHz .
5. FRDQUPNCY INDICATOR - Shows operating frequency selected on the DMEI OI displays remote (REM) flag to indicate DME is operating on a frequency selected by the remote NAV i receiver.
6. FRACTIONATMEGAHERTZ SELECTOR KNOB - Selectsoperating frequency in 50 kHz steps. This knob has two positions, one for the 0 and one for the 5 .
7. FRACMONAL MEGAIFRTZ SELECTORKNOB - Selects operatimg froquency in tenths of a Megaherts (0.9).

Figure 1. DME 190 Operating Controls (Sheet 1 of 2)
B. IDENT KNOB - Rotation of this controt increases or decreases the volume of the received station's Ident slgnal. An erratic display, accompanted by the presence of two Ident signels, can result if the airplane is flying in an area where two stations using the same frequency aro transmitting.
9. DIM - TST KNOB -

DIM: Controls the brilitance of the roadout lamp's segments. Rotate the control as desired for proper lamp ilkumination in the function window (The frequenoy window is dimmed by the aircraft's radio hight dimming control).

TST (1USH TEST): This control is used to test the inlumination of the readout lamps, with or without being tuned to a station. Press the control, a readout of 188 B should be seen with the prode selector switch in the MIN or KNOTS position. The decimal poiat along with 188.8 will light in the MILFS mode. When the control is released. and thad the DME been channeled to fanarby station, the distance to that station wild appear. If the station chameled was not in range, a "bar" readout will be semf ($-\cdots$ - or - - .
10. MODE SELECTOR SWITCH -

OFF: Turns the DME OFF.
MILES: Allows a digital readout to appear in the window which represents slent range (ing maticel miles) to or from the channeled station.
MIN: Allows adigital readout (in minutes) to appearin the window thatit will take the airplane to travel the distance to the channeled station. This time is only accurate when flying directly TO the station and after the ground speed has stabilized.
KNOTS: Allows a digital readout (in knots) to appaar in the window that is ground speed and is valtdonly after the stabilization time (approximately 2 minutes) has elapsed when fying directly 'TO or FROM the channeled station.

Figure 1. DME 190 Operating Controls (Sheet 2 of 2)

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when this avionic equipment is installed.

SECTION 4

NORMAL PROCEDURES

TO OPERATE:

1. Mode Selector Switch -- SELECT desired DME function.
2. Frequency Selector Knobs--SELECT desired frequency and Ellow equipment to warm-xp at least 2 minutes.

NOTE
If remote channeling selector is set in REM position, select the desired frequency on the \#1 Nav radio.
3. PUSH TEST Control . \times PUSH and observe reeding of 188.8 in function window.
4. DIM Control -- ADIUST.
5. DME SPEAKER/PHONE Selector Switch (on audio control panel) - SELECT as desired.
6. IDENT CONTROL -- ADJUST audio output in speaker or headset.
7. Mode Selector Furctions:

MILES Position - Distance-to Station is slant range nn natical miles.
MIN Position -- Time-to-Station when fiying directly to station.
KNOTS Position --Ground Speed in knots when flying diroctly to or from station.

> CAUTION

After the DME 190 has been turned OFF, do not turn tt on again for 5 seconds to allow the protective circuits to reset.

SECTION 5

PERFORMANCE

There is no change to the airplane performance when this avionic equipment is thstalled. However, the installation of an externally mounted antenna or several related external antemas, will result in a minor reduction in cruise performance.

SUPPLEMENT

EMERGENCY LOCATOR TRANSMITTER (ELT)

SECTION 1
 GENERAL

The BL'T consists of a self-contained dual-frequency radio transmitter and battery power supply, and is activated by an mpact of 5 g or more as may be experienced in a crash landing. The ELT emits an omni-directional signal on the international distress frequencies of 121.5 and 243.0 MHz . (Some ELT units in export aircraft transmit only on 121.5 MHz .) General aviation and commercial aircraft, the FAA, and CAP monitor 121.5 MHz , and 243.0 MHz is monitored by the military. Following a crash landing, the ELT will provide line-of-sight transmission up to 100 miles at 10,000 feet. The ELT supplied in domestic aircraft transmits on both distress frequencies simultaneously at 75 mw rated power output for 50 continuous hours in the temperature range of $-4^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$. The ELir unit in export aircraft transmits on 121.5 MHz at 25 mw rated power output for 50 continuous hours in the temperature range of $-4^{\circ} \mathrm{F}$ to $+131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$).

The ELT is readily identified es a bright orange unit mounted on the right hand side of the baggage compartment wall in the tailcone. To gain access to the unit, remove the cover. The ELT is operated by a control panel at the forward facing end of the unit (see figure 1).

SECTION 2

LIMITATIONS
The following information must be presented in the form of a placard located on the baggage compartment wall.

> EMERGENCY LOCATOR THANSMITTER INSTALLED BEHND THIS COVER. MUST BE SERVICED IN ACCORDANCE WITH FAR 91.52

1. FUNCTION SBLRCTON SWITCH (3-position toggle switch):

ON . Activetes transmiter instantly. Used ton test purposes and if " $\mathrm{g}^{\prime \prime}$ switch is tnoperalive.

OFr' - Deactivates transmitter. Used during shipping, storage and tollowing rescue.

A UTO - Activates transmitter only when "g'switeh receives Sg ormoreimpact.
2. COVAR - Hemovable for aceess to bethery pack
3. ANTWNNA HWCTPTACLF. Connects to artennamountod on lop of tailcone.

Figure 1. ELT Control Hanel

SECTION 3

EMERGENCY PROCEDURES

Immediately after a forced landing where emergency assistanco is required, the ELT should be utilized as follows.

1. ENSURE ELT ACTIVATION --Turn a radio transceiver ON and select 121.5 MHz . If the ELT can be heard transmitting, it was activated by the " g " switch and is functioning properly. If no emergency tone is audible, gain access to the ELT and place the function selector switch in the ON position.
2. PHLOK TO SIGHTING RESCUE AIHCRAFT - Conserve airplane battery. Do not activate radio transceiver.
3. AFTER SIGHTYNG RESCUE ALRCRAFT -. Place ELT function selector switch in the OFF position, preventing radio interference. Attempt contact with rescue aircraft with the radio transceiverset to a frequency of 121.5 MKHz . If no contact is established, return the function selector switch to ON immediately.
4. FOLLOWING RESCUE-- Place ELT function selector switch in the OFF position, terminating emergency transmissions.

SECTION 4 NORMAL PROCEDURES

As long as the function selector switch remains in the AUTO position, the ELT automatically activetes following an impact of Sg or more over a short period of time.

Following a lightning strike, or an exceptionally hard landing, the ELT may activate although no emex gency exists. To cheok your ELT for inadvertent activation, select $12 \times .5 \mathrm{MHz}$ on your radio transceiver and lister for an emergency tone transmission. lf the ELT can be heard transmitting. place the function selector switch in tho OFF position and the tone should cease. Immediately place the function selector switch in the AUTO position to re-set the ELT for nomal operation.

SECTION 5 PERFORMANCE

There is no ohange to the airplane performance data when this equipment is installed.

$$
i \quad y
$$

SUPPLEMENT

FOSTER AREA NAVIGATION SYSTEM
(Type 511)

SECTION 1

GENERAL

The Foster Area Navigation System (RNAV - Type 5it) consists of a 511 Area Nav Computer, a compatible VHF navigation receiver, a DME Acapter Mociule and DME.

The RNAV 511 is a besic Area Navigation Computer with two thumbwheel programmable waypoints. It performs continuous computation of triangulation problems.

The VOR and DME equipment in the aircraft provides information to the computer on atreraft position relative to the VORTAC station. A waypoint is dialed into one set of waypoint thumbwheels by inserting the RADIAL and DISTANCE of the waypoint (the position the pilot would like to fly over, or to) relative to the VORTAC station. The RNAV 511 computer calculates the Magnetic Bearing (BEARING) and Distance (RANGE NM) from the aircraft to the waypoint repeatedly to provide continualinforme. tion on WHICH WAY and HOW FAR to the waypoint.

The pilot can monitor BEARING and RANGE on RNAV 5it to fiy straight line paths to waypoints up to 200 NM distence from the aircraft position. Weypoints can be precisely dialod into the thumbwheels to 0.1° and 0.1 NM resolution.

The RNAV 511 also provides immediate position orientation relative to the VORTAC (VOR/DME) station being used for computation. Merely press the VOR/DME pushbutton todispley the RADIAL and DME distance from the VORTAC.

Another feature of the RNAV $5: 1$ is its ability to provide evidence of proper computation in the system. The system can be tested at anytime before fight or while airborne to confirm proper computer operation. An acceptable 'test" is evidenced by the active waypoint's RADIAL/DISTANCE seing displayed in the BEARING and RANGE windows of the RNAV 5 ± 1 while TEST pushbutton is pressed. In addition to the "test" feature, diagnostic functions are provided to alert the pilot of why the system is not functional.

SECTION 2

LIMITATIONS

This RNAV installation is not approved for IFR operations and the following information is displayed on individual placards:

1. Adjacent to panel urit when used with the DME 190:

RNAV FOR VFR FLIGHT ONLY TUNE DME \& NAV 1 TO SAME VORTAC FOR RNAV OPERATION
2. Adjacent to panel unit when used with the 400 DME:

RNAV FOR VFR FLIGHT ONLY DME MODE SELECTOR ON NAV 1 OR NAV 2 ONLY

SECTION 3

EMERGENCY PROCEDURES
There is no change to the airplane emergenoy procedures when this avionic equipment is installed.

PILOT'S OPERA'TING HANDBOOK SUPPLEMENT

FOSTER AREA NAVIGATION
(TYPE 511)

1. WAYPORNT PUSHBUTTON (WPT) ~ Activates the waypoint data dialedinto the deft side thumbwheels (10). When pressed, the wFrt pushbutton lights to indicate which waypoint is "active". The WPT pughbutton lightintensity is controlted by a photocell (4).
2. MAGNETIC BEARING DISPLAY READQUT- Digitally displeys the magnetic benring from the airplane to the waypoint. While VOR/DME pushbuton (5) is pressed, the digital display reads RADIAL from the VOR station on which the etiplane is presently positioned.
A. RNAV ON/OFF PUSHBUTCON (RNAV ON) - When pressed RNAV ON light will illuminate and set is turned ON. When prested again, set will be turned OFF and the TNAV ON light will go out. The pushbutton lighting is automaticaliy dimmed by the photocell (4).
3. FHOFOCELL - Senses ambient cockpit light and controlsbrightness ofpushbut. tous ($1,3,5 \& 7$) and digital displays (386).
4. WOR DMA PUSHBUTTON - Provides PRESENT POSITION information as to VOR RADIAL and DME DISTANCE digitally in positions (2) and (6) respectively when the pusbbutton is pressed.
5. DISTANGE DISPLAY GEADOUT - Digitally displays airplane DISTANCE TO or FROM the waypoint. Meads by 0.1 NM increments up to 99.9 NM and by 1.0 NM increments over 100 NM . Maximum range readout is 199 NM. While VOR/DME pushbutton (5) is pressed, the digital display reads DME distance to the VORTAC station from the airplane.

Higure 1. Foster Axea Nav (Type 511) Computer Operating Controls and Indicators (Sheet 1 of 2)
7. WAYPOINT PUSHBTTMON (WPT) - Activaces the waypoint data dieled into the RIGFT side thumbwheols (B). When pressed, the WPT pushbutton lights to indicate which waypoint is "efotive". The WPT pushbutton light intensity is controlled by photocell (4).
8. RADIAL AND DISTANCE THUMEWHEELS - Waypotrat location (AADIAL anc DISTANCE) is dialed into thumbwheels to 0.1° and 0.2 NM resolution. Maximum waypotnt offset from the VORTAC is 1999 NM .
9. TEST PUSHBUTTON - Press to check proper calibration of RNAV 511. If the computer ts properly calibrated, the displays (2 6) гeed the "active" WPT RADIAL and DISTANCE as dialed into the thumbwhebls. Test may be performed anytime, (during or before hight).
10. LOCKING SCREW - Secures RNAV 511 dn dustoover. Turn locking screw counterclockwise several turns to releade unit from panel.
11. RADIAL AND DISTANCE THUMBWHEELS • Waypoint location (AADIAL AND DISTANCE) is dtaled into thumbwheels to 0.1° and 0.1 NM resolution. Mextmum waypoint offset from the VORTAC is 199.9 NM .

Figure 1. Foster Area Nav (Type 5t1) Computer Operating Controls and Indicators (Sheet 2 of 2)

SECTION 4 NORMAL OPERATION

VOR/LOC OPERATION

VOR NAVIGATKON CIRCUITS VERIFICATION TESTS:

1. See appropriate Nav/Com supplement.

AREA NAVIGATION OPERATING NOTES

1. Proper RNAV operation requires valid VOR and DME inputs to the RNAV system. In certain areas, the ground station anterna patterns and transmitter power may be inadequate to provide valid signals to the RNAV. For this reason, intermitent RNAV signal loss may be experienced enroute.
2. When a waypoint from one VORTAC is displaced over a second VORTAC. interference from the second VORTAC sometimes causes erratic and unusable BEARING and FANGE displays on the RNAV at low altitude.
3. The RNAV BEARING readout (to the waypoint) becomes extremely sensitive and may become unusable within 1 . $11 / 2$ miles of the waypoint. Thus, the RANGE readout is the primary means of approximating waypoint passage.
4. Tracking from a waypoint is not recommended since the pilot would have to fly a rectprocal bearing and make error corrections in the opposite direction from fiying to a waypoint.

DIAGNOSTIC FUNCTIONS

AIL RNAV systems are rendered inoperative under certain conditions. The RNAV 511 provides a Flag mode and permits a diagnostic interprete tion of why the system is inoperative.

FLAO MODE INDICATIONS:

1. Six "Bars" Appear in the Digital Displays (2 8 6):
a. PRESS VOR/DME button (5) to determine if the VOR radial signal is absent. If VOR radial signal is absent, bars will change to show as '000' in the BEARING window (2). (One possible cause of this condition could be that the NA V receiver is channeled to a localizer signal.)
b. Excess RADLAL waypoint address entry (11 or 8) such as 360.1° or 389° - The computer will not accept this entry.

PILOT'S OPERATING HANDBOOK SUPPLEMENT
c. Excess RANGE to Waypoint (6) -. This would be any value over 199 NM. (A check of aircraft position relative to the VORTAC and Waypoint will detect and verify this condition.)
2. Missing DME Signal Display .. This will show es " 00.0 " in the RANGE NM digital display (6) when the VOR/DME button (2) is held in. The missing DME signal is then the reason for the FLAG condition. (If valid VOR and DME data is displayed, then another cause must be sought.)
3. Temporary Display of Unchanging Random Digits in the BEARING and RANGE Windows (2 \&) at Time of Initial Turn*ON -Such a condition is caused by a random interpretation of the micro processor cycle. The RNAV 511 will Flag this malfunction by a complete blanking of all dispiay functions. The pilot can reset the micro processor cycle by turning the RNAV OFF and then ON.

WAYPOINT PROGRAMMING

1. Using a VFR Sectional or other appropriate maps .- DETERMINE distance and bearing for desired waypoint(s) from appropriate VOR/DME stations.
2. VHF Navigation Receiver -- ON (When installed with DME 190 , RNAV 51I is conrected to the Nav 1 Rcvr. When instailed with the 400 DME , RNAV 511 may be connected to either the Nav 1 or Nav 2 Rcvr.) and channeled to the desired VORTAC.
3. DME ON/OFF Switeh -- ON.
4. DME Remote Channeling Selector on DME 190 Selector -- SET to REM position on DME 190.
5. DME Mode Selector on 400 DME --SET TO desired NAV 1 or NAV 2 position on 400 DME.

NOTE

RNAV and HOLD positions on the 400 DME Mode Selector are not used with this installation. RNAVis automatically chanzeled to the selected Nav receiver.
6. GS/TTS Selector Switch (on 400 DME) --SET as desired. (Will only display ground speed component or time-to-station at that speed to the selected VOR --not the waypoint.)
7. RADIAL and DISTANCE Thumbwheels -- SET to first waypoint RADIAL and DISTANCE. (Typioally, the first waypoint is set into the left side set of thambwheels.)
8. RADIAL end DISTANCE Thumbwheols - SET to second waypoint RADIAL and DISTANCE. (Typieally, the second waypoint is set into the right set of thumbwheels.)
9. Left WPT Pushbutton Switch -- PUSH in.
a. First waypoint RADIAL and DISTANCE are placed in unitas a waypoint.
10. RNAV BEARING Readout * OBSERVE readout for magnetic BEARING to waypoint.
11. RNAV RANGE Readout -* OBSERVE readout of first waypoint distance.
12. TEST Pushbutton -- PRESS and observe that the desired BEARING and RANGE readouts of the waypoint thumbwheel settings are displayed.
a. BEARING Display Readout *. DISPLAYS readout of first waypoint bearing.
b. RANGE Display Readout -- DISPLAYS readout of first way" point distance.
13. DG or HSI -- CONTROL AlRCRAFT as required to maintain desired track to or from waypoint.

NOTE

Due to wind drift, it will be necessary to fly a few degrees plus orminus the calculeted BEARING readout in order to maintain the desired BEARING readout on the computer.
14. VOR/DME Pushbutton $+\cdots$ PRESS at anytime to observe the redial and DME distance from the VORTAC assoctated with the way. point.
15. Upon Waypoint Passage .. CHECK or SELECT next desired waypoint's VORTAC frequency on the selected Nav receiver and then PRESS next WPT Pushbutton in and repeat steps 9 through 12 to proceed to next waypoint which was daled in the right set of thumbwheels.

NOTE

Waypoint passage will begin to be reflected on the RNAV BEARING display about 1.5 NM from the waypoint. Waypoint passage will be reflected by a rapid change of BEARING displays. Therefore, the pilot should fly the established inbound predetermined DG heading until waypoint passage has occurred or until the next waypoint is selected.
16. Leff Hand RADIAL and DISTANCE Thumbwheels - SET to next waypoint RADIAL and DISTANCE.

NOTE
As first waypoint is reached, it can be replaced with the next waypoint RADIAL and DISTANCE. Ther a new
waypoint, if necessary, oan be set froto the right-hand thumbwheels after the initial right-hand weypoint is passed. This procedure can be followed for as many waypoints as necessary, providing that the desired Nav receiver is selected and the VORTAO frequency has been re-channeled to each VORTAC station.

SECTION 5

 PERFORMANCEThere is no change to the aixplane performance when this avionic equipment is installed.

SUPPLEMENT

HF TRANSCEIVER (TYPE PT10-A)

SECTION 1

GENERAL

The PT10-A HF Transceiver, shown in Figure 1, is a 10 -channel AM transmitter-receiver which operates in the frequency range of 2.0 to 18.0 Megahertz. The transceiver is automatically tuned to the operating frequency by a Channel Selector. The operating controls for the unit are mounted on the front panel of the transceiver. The system consists of a transceiver, antenna load box, fixed wire antema and associated wiring.

The Channel Selector Knob determines the operating frequency of the transmitter and receiver. The frequencies of operation are shown on the frequency chart adjacent to the channel selector.

The VOLUME control incorporates the power switch for the transceiver. Clockwise rotation of the volume control turas the set on and increases the volume of audio.

The meter on the face of the transceiver indicates transmitter output.
The system utilizes the airplane microphone, headphone and speaker. Operation and description of the audio control panel used in conjunction with this radio is shown and deseribed in Section 7 of this handbook.

SECTION 2 LIMITATIONS

There is no change to the airplane limitations when this avionic equipront is instalied.

1. FREQUENCY CHARA - Shows the frequency of the channel in use (frequencies shown may vary and are shown for reference purposes only).
2. CHANNEL SELECTOR - Selects chamnelg 1 thru 10 as listed in the frequency chart.
3. CHANNEL READOUT WYNDOW - Dtaplays chammel selected in fraquency chart.
4. SENSITIVITY CONTROL - Controis the receiver gensitivity for audio gain.
5. ANTENNA TUNING METER - Incteates the energy flowng from the transmitter into the antenna. The optimum power transfer is indiodied by the maximum meter feading.
6. ON/OFF VOLUME CONTROL - Turns complete set on and eontrols volume of audio.

Figure 1. HF Transceiver (Type PTt0-A)

SECTION 3 EMERGENCY PROCEDURES

There is no change to the airplane entergency procedures when this avionic equipment is tnstalled.

SECTION 4 NORMAL PROCEDURES

COMMUNICATIONS TRANSCEIVER OPERATION:

1. XMTR SEL Switoh (on audio control panel) -- SELECT transmit. ter.
2. SPEAKER/PHONE Selector Switch (on audio control panel) -SELECT desired mode.
3. VOLUME Control -- ON (ailow equipment to warm up and adjust audio to comfortable Iistening level).
4. Frequency Chaxt -- SELECT desired operating frequency.
5. Channel Selector -- DIAL in frequency selected in step 4.
6. SENSITIVITY Control -- ROTATE clockwise to maximum position.

NOTE

If raceiver becomes overloaded by vexy stront stgnals, back off SENSITIVITY control until baciground noise is barely audible.

NOTE
The antenna tuning meter indicates the energy flowing from the airplane's transmitter into the antenna. The optimum power transfer is indicated by the maximum meter reading.
7. Mike Button:
a. To Transmit -- DEPRESS and SPEAK into microphone.

NOTE

Sidetone is not available on this radio.
b. To Receive -- RELEASE mike button.

SECTION 5

PERFORMANCE

There ts no change to the airplane performance when this avionic equipment is installed. However, the installation of an externally mounted antenna or several related external antennas, will result in a minor reduction in cruise performance.

SUPPLEMENT

SSB HF TRANSCEIVER
 (TYPE ASB-125)

SECTION 1

GENERAL
The ASB-125 HF transceiver is an airborne, 10 -channel, single side* band (SSB) radio with a compatible amplitude modulated (AM) transmitting-receiving system for long range voice communications in the 2 to 18 MHz frequency range. The system consists of a parel mounted receiver/exciter, a remote mounted power amplifier/power supply, an antenna coupler and an externally mounted, fixed wire, medium/high frequency antenna.

A channel selector knob determines the operating frequoncy of the transceiver which has predetermined crystals installed to provide the desired operating frequencies. A mode selector control is provided to supply the type of emission required for the chamnel, either sideband, AM or telephone for public correspondence. An audio knob, clarifier knob and squelch knob are provided to assist in audio operation during receive. In addition to the aforementioned controls, which are all located on the receiver/exciter, a meter is incorporated to provide antenta loading readouts.

The system utilizes the airplane microphone, headphone and speaker. Operation and description of the audio control panel used in conjunction with this radio is shown and described in Section 7 of this handbook.

1. CHANNEL WINDOW - Displays selacted channel.
 amplifier/antenna system.
2. MODE SELECTOR CONTROL . Selects one of the desired operating modes:

USE - Selects upper sideband operation for long range voice commanicathons.
AM - Selects compatible AN operation and full AM reception.
TEL - Selects upper sideband with reduced carrier, used for public corcespondence telephone and ship-to-ghore.
LSS - (Optional) Selects lower sidebend operation (not legal in U.S., Cenada and most other countries).
4. SQUELCH CONTROL . Used to adjust signal threshold necessary to activato recelver audio. Clockwise rotation increases backeround moise (decreases squelch action): counterolookwise rotation decreases backeround noise.
5. CLARIFIEF CONTROL. Used to "charify" single sideband ppeech durtng receive while in USS mode only.
6. CHANNEL SELECTOR CONTROL - Seleots desired ohannel. Also solects AM mode if channel frequency is $2003 \mathrm{kHz}, 2182 \mathrm{kJzz}$ or 262 s kHz .
7. ON . AUDIO CONTROL - Turns set ON and controls receiver adio gain.

Figure 1. SSB HF Transceiver Operating Controls

SECTION 2

LIMITATIONS

There is no change to the airplane limitations when this avionie equipment is installed.

SECTION 3 EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when this avionic equipment is installed.

SECTION 4
 NORMAL PROCEDURES

COMMUNICATIONS TRANSCEIVER OPERATION:

NOTE

The pilot should be aware of the two following radio operational restrictions:
a. For sideband operation in the United States, Canada and various other countries, only the upper sideband may be used. Use of lower sideband is prohibited.
b. Only AM transmissions are permitted on frequen. cies $2003 \mathrm{kHz}, 2182 \mathrm{kHz}$ and 2638 kHz . The selection of those channels will automatically select the AM mode of transmission.

1. XMTK SEL Switch (on audio control panel) - SELECC transceiver.
2. SPEAKER/PHONE Selector Switches (on audio control panel) -SELEOT destred mode.
3. ON-AUDIO Control *- ON (allow equipment to warm up for 5 minutes for sideband or one minute for AM operation and adjust audio to comfortable listening level).
4. Channel Selector Control - - SELECT desired frequency.
5. Mode Selector Control -- SELECT operating mode.
6. SQUELCH Control - ADJUST clockwise for normail background noise output, then slowiy adjust counterclockwise until the receiver is silent.

13

SSB HF TRANSCEIVER
PILOT'S OPERATING HANDBOOK (TYPE ASB-125)
7. CLARIFIER Control .. ADJUST when upper single sideband RF signel is being received for maximum clarity.
8. Mike Button:
a. To Transmit ... DEPRESS and SPEAK into microphone.

NOTE
Sicetone is not available on this radio.
b. To Receive - RELEASE mike button.

NOTE
Voice communications are not available in the LSB mode.
NOTE
Lower sideband (LSB) mode is not legal in the U.S., Canada, and most other countries.

SECTION 5

PERFORMANCE
There is no change to the airplane performance when this avionic equipment is installed. However, the installation of an externaliy mounted antenna or several related external antennas, will result in a minor reduction in cruise performance.

SUPPLEMENT

CESSNA NAVOMATIC 200A AUTOPILOT (Type AF-295B)

SECTION 1

GENERAL

The Cessna 200A Navomatic is an alt electric, single-axis (aileron control) atutopilot system that provides added lateral and directional stability. Components are a computer-amplifier, a turn coordinator, an aileron actuator, and a course deviation indieator(s) incorporating a localizer reversed (BC) indicator hight

Roll and yaw motions of the airplane are sensed by the turn coordinator gyro. The computer-amplifier electronically computes the necessary correction and signals the actuator to move the ailerons to maintain the airplane in the commanded laveral attitude.

The 200A. Navomatic will also capture and track a VOR or localizet course using signals from a VHF navigation receiver.

The operating controls for the Cessna 200A Navomatie are located on the front panel of the computer-amplifier, showh in Figure 1. The primary function pushbuttons (DIR HOLD, NAV CAPT, and NAV TRK), are interlocked so that only one function can be selected at a time. The HISENS and BACK CRS pushbuttons are not interlocked so that either or both of these functions car be selected at any time.

CESSNA 200A AUTOPILOT (TYPE AF-295B)

PILOT'S OPERATING FANDBOOK SUPPLEMENT

NAV 1

Figure 1. Cessma 200A Autopilot, Operating Controls and Indicators (Sheet 1 of 2)

1. COURSE DEVIATION INDICATOR - HROVides VOH/LOC nevigation inpuls to autopilot for interoopt and tracking modes.
2. LOCAHFWR REVERSED INDICATOR LIGHT - Amberlightrabeled BC, illuminates when BACK CHS butlon is pushed in (endaged) and LOC frequeney selected. BC light indicates course indicator noedle is reversed on selected receiver (when turnod to a localizer frequency). This light is loealed within the CDI indicetor.
3. TUIN COORDINATOR - Senses rold and yaw for wings leveling and command turn furctions.
4. DIH HOLD FUSHBUTTON - Selects direction hold mode. Airplane holds diredtion it for flying at time bution is pushed.
5. NAV CAPT FUSHBUTTON - Selects NAV eapture mode. When parallel to desired course, the airplane will turn to a predeseribed intercupt angle and capture selected VOR or LOC course.
6. NAV TRK PUSHBUTTON - Selects NAV track modo. Airplane tracks selected VOR or LOC course.
7. HI SENS PUSHBUTTON - Durint NAVCAPT Or NAV TRKoperation, thishigh sensitivity sethig incrutsus uutopilut response to NAV sigrmel to provide more precise opuration during iocalizer approach. In low sensitivity position (pushbution outh, Iesponse to NAV signalisdampened for smoolher trackingofersonte VOR radiels; it also smooths out effect of course scalloping during NAV opera. tion.
8. BAOK ORS PUSHBUTTON . Usod with LOC operation only. With A/P switeh OFF or ON, and when pavigation receiver selected by NAW switch is set to a localizer frequency, it reverses nommal localizer needle indication (CDI) atad cuses localizer reversed ($B C$) lighu to illuminate. With A / P switch ON, reverses localizer signal to autopiot.
9. ACIUATOR - Ihe torque motor in tho acturtor causes the ailexons tomove in the commanded direction.
10. NAV SWITCH - Seleots NAV 1 or NAV 2 nevigation receiver.
11. PULL TURN KNOB - When pulled out and centered in detemt airplane will fly wings-level; when turned to the right (R), the airplane will execute a right, standard rate turn when turned to the left (t), the airplane win exente a left standard rate turn. When centered in detont and pushed in, the operating mode selected by a puspbutton is engaged.
12. TRIM - Used to trim autopilot compensate fox minor wariations in airoraft trim or weitht distribution. (For proper operation, the aircratt's rudder trim, if so equipped, most be manually tramed before the aulopilot is chgaged.)
13. A/P SWITCH - Turns autopilot ON or OFF.

Figure 1. Cessna 200A Autopilot, Operating Controls and Incipators (Sheet 2 of 2)

SECTION 2 LIMITATIONS

I'he following autopilot limitation must be adhered to:
BEFORE TAEE-OFF AND LANDING:

1. A/P ON-OFF Switch -- OFF.

SECTION 3 EMERGENCY PROCEDURES

TO OVERRIDE THE AUTOPILOT:

1. Atrplane Control Wheel--ROTATE as required to override autopilot.

NOTE
The servo may be overpowered at anytime without damage.

TO TURN OFF AUTOPILOA:

1. A/P ON-OFF Switch -- OFF.

SECTION 4 NORMAL PROCEDURES

BEFORE TAKE-OFF AND LANDING:

1. A/P ON.OFF Switch \cdots OFF.
2. BACK CRS Buton - ORF (see Caution note under Nav Capture).

NOTE
Pertodically verify operation of amber warning light(s), labeled BC on CDI(s), by engaging BACK CRS button with a LOC frequency selected.

INFLIGHT WINGS LEVELING:

1. Airplane Rudder Trim -- ADJUST for zero slip ("Bail" centered on 'Turn Coordinator).
2. PULL-TURN Knob - GENTER and PULL out.
3. A/P ON-OFF Switch .- ON.
4. Autopilot TRIM Control -- ADJUST for zero lurn rate (wings level indication on Tura Coordinator).

NOTE

For optimum performance in airplanes equipped as floatplanes. use autoptlot only in cruise flight or in approach configuration with flaps down no more than 10° and airspeed no lower than 75 KIAS on 172 and R172 Series Models or 90 KIAS on 180,185 , U206 and TU206 Series Models.

COMMAND TURNS:

1. PULL-TURN Knob - CENTER, PULL out and ROTATE.

DIRECTION HOLD:

2. PULL-TURN Knob -. CENTER and PULL out
3. Autopilot TRIM Control -. ADJUST for zero turn rate.
4. Airplane Rudder Trim .- ADJUST for zero slip ("Ball" centered).
5. DIR HOLD Button -- PUSH.
6. PULL-TURN Knob -- PUSH in detent position when airplane is on desired heading.
7. Autoptlot TRIM Control - READJUST for zero turn rate.

NAV CAPTURE (VOR/LOC):

1. PULL-TURN Knob -. CENTER and PULL out.
2. NAV 1-2 Selector Switch - - SELECT desired VOR receiver.
3. Nav Receiver OBS or ARC Knob -- SET desired VOR course (if tracking omni).

NOTE

Optional ARC knob should be facenter position and ARC amber warning light should be off.
4. NAV CAPT Button -- PUSH.
5. HI SENS Button + PUSH for localizer and "close-in" omni intercepts.
6. BACK CRS Button - PUSH only if intexcepting localizer front course outbound or back course inbound.

CAUTION

With BACK CRS button pushed in and localizer frequency selected, the CDI on selected nav radio will be reversed even when the autopilot switch is OFF.
7. PULL-TURN Knob -- Turn airplane parallel to desired course.

NOTE
Airplane must be turned until heading is within $\pm 5^{\circ}$ of desired course.
8. PULL TURN Knob-- CENTEA and PUSH in. The airplane should then turn toward desired course at $45^{\circ} \pm 10^{\circ}$ intercept angle (if the CDI needle is in full deflection).

NOTE
If more than 15 miles from the station or more than 3 minutes from intercept, use a manual intercept procedure.

NAV TRAOKING (VOR/LOC):

1. NAV TRK Button . PUSH when CDI centers and airpiane is within $\pm 5^{\circ}$ of course heading.
2. HI SENS BUTTON -- DISENGAGE for enroute omni tracking (leave ENGAGBD for localizer)
3. Autopilot TRIM Control -. READJUST as requixed to maintain track.

NOTE
Optional ARC function, if installed, should not be used for autopilot operation. If airplane should deviate off course, pull out PULL TURN knob and readjust airplane rudder trim for straight flight on the Turn Coordinator. Push in PULL TURN mob to reintercept course. If deviation persists, progressively make slight adjustments of autopilot 'SRIM control towards the course as required to maintain track.

SECTION 5

PERFORMANCE
There is no change to the airplade perfomance whon this avionic equipment is installed.

SUPPLEMENT

CESSNA 300 ADF
 (Type R-546E)

SECTION 1

GENERAL

The Cessna 300 ADF is a panel-mounted, digitally tuned automatic direction finder. It is designed to provide continuous 1 kHz digital tuning in the frequency range of 200 kHz to $1,699 \mathrm{kHz}$ and eliminates the need for mochanioal band swtohing. The system is comprised of a receiver. a bearing indicator, a loop antenna, and a sense antenna. Operatingeontrols and displays for the Cessne 300 ADF are shown and described in Figure 1. The audio system used in conjunction with this radio for speaker-phone selection is shown and described in Section 7 of this handbook.

I'he Cessna 300 ADF can be used for position plotting and homing procedures, and for aural reception of amplitude-modulated (AM) signais.

With the function selector knob at ADF, the Cessaa 300 ADF provides a wisual indication, on the bearing indicator, of the bearing to the transmitting station relative to the nose of the airplane This is done by combining signals from the sense antenna with signals from the loop antenna.

With the function selector knob at REC, the Cessna 300 ADF uses only the sense antenne and operates as a conventional low frequency recelver.

The Cessna 300 ADF is destgnod to recetwe transmission from the following radio facilities: commercial AM broadcast stations, lowfrequency range stations, non-directional radio beacons, ILS compass locators.

SECTION 2 LIMITATIONS

There is no change to the airplane limitations when this avionto equipment is installed.

1. OFF/VOL CONTAOL Controls primary power and audio output level. Clockwise rotation from OFF position applies primary power to receiver, further olookwise rotation inoreases audio tevel.
2. FREQUENCY SELBCTORS - Knob (A) selects 100 -kHz increments of receiver frequency. knob (B) selects 10 -kinz inorements, and knob (O) selects i kHz increments.

Figure 1. Cessma 300 ADF Operating Controls and Indicators (Sheet 1 of 2)

3. FUNOTION SWITCH:

BFO: Selects operation as communication receiver using only sense antenna and activates $1000-\mathrm{Hz}$ tone beat frequency oscillator to permit coded identifier of stations transmitting keyed CW signais (Morse Code) to be heard

RBC: Selects operation as standard commanication receiver using only sense antenna.

AUF: Set operates as automatio direction finder using loop and sense antennas.

TFST'; Momentary-on position used during ADF optration to test bearing reliability. When held in TEST position. slews indtentor pointer clockwise, when released, if bearing is roliable, pointer returns to ordginal beering position

4 INDEX (ROTATABLE CAFD) - Indicates relative, magnetic, or true heading of aircraft, as selected by HDC control.
5. POMNTER . Indicates station bearing in degrees of azimuth relative to the nose of the aircraft. When heading control is adjusted indicaies relative, maghetic, or trte bearing of radio sigana!
6. HEADING CARD CONTROL (HDG) - Rotates card to set in relative. magmetic. or true bearing information.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the airplane emergency procedures when this avionic equipment is installed.

SECTION 4

 NORMAL PROCEDURESTO OPERATE AS A GOMMUNICATIONS RECEIVER ONLY:

1. OFF/VOL Control - ON.
2. Function Selector Knob -- REC.
3. Frequency Selector Knobs -- SELECT operating frequency.
4. ADF SPEAKER/PHONE Selector Switch (on audio control panel) -- SELECT speaker or phone position as desired.
5. VOL Control -- ADJUST to desired listening levei.

TO OPERATE AS AN AUTOMATIC DIRECTION FINDER:

1. OFF/VOL Control - ON.
2. Frequency Selector Knobs -- SELECT operating frequency.
3. ADF SPEAKER/PHONE Selector Switch (on audio control panel) * SELECT AS DESIRED.
4. Function Selector Knob ~. ADF position and note relative bearing on indicator.

TO TEST RELIABILITY OF AUTOMATIC DIRECTION FINDER:

1. Function Selector Knob -- ADF position and note relative bearing on indicator.
2. Function Selector Knob - TEST position and observe that pointer moves away from relative bearing at least 10 to 20 degrees.
3. Function Selector Knob -- ADF position and observe that pointer returns to same relative bearing as in step (1).

TO OPERATE BPO:

1. OFF/VOL Control \ldots ON.
2. Function Selector Knob - - BFO.
3. Frequency Selector Knobs -- SELECT operating frequency.
4. ADF SPEAKER/PHONE Selector Switch (on audio control panel) -- SELECT speaker or phone position as desired.
5. VOL Control - ADJUST to desired disteming level.

NOTE
A. $1000-\mathrm{Hz}$ tone is heard in the audto output when a CW sigaal (Morse Code) is tuned in properly.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when this avionic equipment is installed. However, the installation of an externally mounted antenna or related extemal antennas, will result in a minor reduction in cruise performance.

"
x

SUPPLEMENT

CESSNA 300 NAV/COM (720-Channel - Type RT-385A)

SECTION 1
 GENERAL

The Cessna 300 Nav/Com (Type RT-385A), showr in figure 1, consists of a panel-mounted receivertransmitter and a single or dual-ponter remote course deviation indicator.

The set includes a 720 -channel VHF communications recciver transmitter anda 200 -channel VHFnavigation receiver, both of which may be operated simultaneously. The communications receiver-transmitter receives and transmits signais between ± 18.000 and 135.975 MHz in $25-\mathrm{kHz}$ steps. The navigation receiver receives omni and localizer signals between 108.00 and $\pm 17.95 \mathrm{MHz}$ in $50-\mathrm{kHz}$ steps. The circutts required to interpret the omni and localizer signals are located in the course deviation indicator. Both the communications and navigation operating frequencies are digitally displayed by incandescent readouts on the front panel of the Nav/Com.

A DME receiver-transmitter or a glide siope receiver, or both. may be interconneoted with the $\mathrm{Nav} / \mathrm{Com}$ set for automatic selection of the associated DME of glide slope frequency. When a VOR irequency is selected on the Nav/Com, associated VORTAC or VOR-DME station frequency will also be selected automatically; likewise, if a focalizer frequency is selected, the associated glide slope will be selected atometically.

The course deviation indicator includes either a single-pointer and related NAV flag for VOR/LOC indication only, or dual pointers and related NAV and GS flags for both VOR/LOC and glide slope indications. Both types of course deviation indicators incorporate a back-course lamp (BC) which lights when optional back course (reversed sense) operation is selected. Both types may be provided with Automatic Radial Centering which, depending on how it is selected. winl automatically indicate the bearing TO or FROM the VOR station.

1. COMMUNLCATION OPERATING FREQUENCY RDADOUT (Xhird-dectmalplace is shown by the position of the " 5 -0" switch).
2. 5-0 SW\#TCH - Part of Com Receiver-Transmiter Fructional MHz Frequancy Seleotor. In "5' position, mables Com trequency readout to display and Com Fractional MHz Selector to select frequency in $.05-\mathrm{MH}$, steps between . 025 and .975 MHz . In "O" position, enables COM frequenoy readont to display and com Fractionel MHz Selector to select requency in $05-\mathrm{MHz}$ steps betwern . 000 and .950 MH .

NOTE

l"he " 5 " or " ${ }^{\text {g }}$ " may be read as the third decinal digit, which is not displayed in the Com fractional frequency display.

Figure 1. Cessna 300 Naw/Com (Type RT-385A), Operating Controls and Indicators (Sheet 1 of 3)

3. NAVIGATION OPERATING FREQUENCY READQUT.

4. 1D-VOX-T SWITCH - With VOR or LOC station selected, in TD position, station identifier signal is audible; in VOX (Voice) position identifier signal is suppresseriz in T (Momentary On) position, the VOR navigational self-test function is selected.
5. NAVIGATYON RECEYER FRAGTIONALMBGAHERTZ SELEOTOR - Selects Nev fregtency int $05-\mathrm{MHz}$ steps between 00 and .95 MHz ; simultaneousiy seltots paired glide slope frequency and DME channel.
6. NAV VOL CONTROL - Adjusts volume of navigation receiver audio.
7. NAVIGATION RECEIVEI MEGAHERTZSELECTOR - SelectsNAV frequency in $1-\mathrm{MHz}$ steps between 108 and 117 MHz ; simultaneously sclects paircd glide slope frequency and DME channel.
8. COMMUNICAIMON RECEIVER.TRANSMITTER FRACTIONALMEGAHERTZ SELECTOR - Depending on position of $5-0$ switch, selects COM frequency in obMHz steps between .000 and .975 MHz . The $5-0$ switch identifies the last digit as either 5 or 0.
9. SQUELCH CON'MKOL - Used to adjust signal threshold necessary to aetivate COM recsiver audio. Clockwise rotation increases background noise (deercases squelch action; countordokwise rotation decreases background noise.
10. COMMUNICATION RDCEIVER-TRANSMITTER MEGAHERTZ SELECIOF Selects COM frequency in t -MHz steps between 118 and 135 MHz .
11. GOM OFF-VOJ CONTROL . Combination on/off switch and volume control; turns on NAV/COM sot and controls volume of communioations receiver eudio.
12. BC LAMP - Amber light illuminates when an autopilnt's back-course (reverse sense) function is engared; indicates course deviation pointer is reversed on selected receiver when tuned to a localizer frequeney dight dimming is only avaitable when installed with an audto control panel hacorporating the annuncia. tor lights DAY/NITE selector switch.
13. COURSE INDEK - Indicates selected VOR course.
14. COURSE DEVIATION POINTER. Indicates course deviation from selected ommi course or lowalizer centerline.
15. GLIDE SLOPE "GS"FLAG - When visible, redGS flag indicates unreliable glide slope signal or improperly operating equipmeni. Flag disappears when a reliable glide slope signal is being received,
16. GLIDE SLOPE DEVIATION POINTER - Indicates deviation from ILS gitde
slope. slope.

Figure 1. Cessna 300 Naw/Com (Type RT-385A), Operating Controls and Indicators (Sheet 3 of 3)

PILOT'S OPERATING HANDBOOK
 SUPPLEMENT

17. NAVITOFROM INDICATOR - Operates only with a VOR or lonalirer signal. Fed NAV position (Fiag) indicates unusable signtal. With usable VOR signal, indicates whether selected course is JO on FROM station With usable localizer signal, shows TO.
18. FECIPFOCAL COURSE INDEX - Indoates reciprocal o selected VOR course
19. OMNI BEARINO SELECTOR (OBS) - Rotates course eard to select desired course.
20. AUTOMATIC RADIAL CENTERING (ARC-PUSH-TOHPULL-FR)SNLECTOR In centor detent. Functions as conventional OPS. Pusted to inner (Momentary On) position, turns OBS course card to center course deviation pointer with ato flag. then returns to conventional OBS selection. Pulled to outer detent. contimuously drives OBS coutse card to indicate bearing from VOR station, keoping ontre doviation pointer cuntered, with a FROM flag. ARC function will not operate on localizer frequencies.

2f. AUTOMATIC RADIAL CENTERTNG (ARC) LAMP - Amber Jight ilimmates when Automatio Fiadial Centering is in ust. Light dimming is only avaleable when installed with an atdio control panel incorporating the annunciator joghts DAY/NITE selector switch.
22. COURSE CARD - Indietes selected VOR course under mourse index.

Figure 1. Cessne 300 Nav/Com (Type RT.385A), Operating Controls and Indicators (Sheet 2 of 3)

The Cessia $300 \mathrm{Nav} / \mathrm{Com}$ incorporates a variable threshold automatio squelch. With this squelch system, you set the threshold level for automatic operation - the further clockwise the lower the threshold - or the more senstive the set. Wher the signal is above this level, it is heard even if the noise is very close to the signal. Below this level, the squelch is fully automatic so when the background noise is very low, very weak signals (that are above the noise) are let through. For nommal operation of the squelch circuit, just turn the squelch clockwise until noise is heard - then beck off slightly until it is quiet, and you will have automatic squelch with the lowest practical threshold. This adjustment should be rechecked periodically during each flight to assure optimum reception.

All controls for the Nav/Com, except the standard omni bearing selector (OBS) knob or the optional automatic radial centering (ARC) knob located on the course deviation indicator, are mounted on the front panel of the receiver-transmitter. Operation and description of the audio control panels used in conjunction with this radio are shown and deseribed in Section 7 of this handbook.

SECTION 2 LIMITATIONS

There is no chazge to the airplane limitations when this avionic equipment is installed.

SECTION 3

EMERGENCY PROCEDURES

There is no change to the atrplane emergency procedures when this avionic equipment is installed. However, if the frequency readouts fat1, the radio will remain operational on the last frequency selected. The frequency control should not be moved due to the difficulty of obtaining a known frequency under this condition.

SECTION 4

NORMAL PROCEDURES

COMMUNICATION RECEIVER TRANSMITTER OPERATION:

1. COM OFF/VOL Control - TURN ON; adjust to desired audio level.
2. XMTR SEL Switch (on audio control panel) - SET to desired Nav/Com Radio.
3. SPEAKER/PHONE Selector Switches (on audio control panel) -SET to desired mode.
4. 5-0 Fractional MHz Selector Switch -- SELECT desired operating frequency (does not affect navigation frequencies)
5. COM Frequency Selector Switch .. SELECT desired operating frequency.
6. SQ Control -- ROTATE counterclockwise to just eliminate background noise. Adjustment should be checked pertodically to assure optimum reception.
7. Mike Button:
a. To Transmit -- DEPRESS and SPEAK into microphone.

NOTE

Sidetone may be selected by placing the AUTO selector switch (on audio control panel) in either the SPEAKER or PHONE position. Sidetone may be eliminated by placing the AUTO selector switch in the OFFposition. Adjustment of sidetone on audio control panels supplied with three transmitters cannot be accomplished externally. Howover, audio control penels supplied with two or less transmitters have sidetone adjustment pots that are accessible through the front of the audiocontrol panel with a small, screwdriver.
b. To Feceive .. RELEASE mike buthon.

NAVIGATION OPERATION:
NOTE
The pilot should be aware that on many Cessna airpianes equippod with the windshield mounted glide slope antenna, pilots should avoid use of 2700 ± 100 RPM on airplanes equipped with a two-bladed propeller or $1800 \pm$ 100 RPM on airplanes equipped with a three-bladed propeller during ILS approaches to avoid oscillations of the glide slope deviation pointer caused by propellerinterference.

1. COM OFF/VOL Control .. TURN ON.
2. SPEAKER/PHONE Selector Switehes (on audio control panel) SET to desired mode.
3. NAV Frequency Selector Knobs -- SELECT desired operatng frequency.
4. NAV VOL - - ADJUST to desired audio level.
5. ID-VOX-T Switch:
a. To Identify Station .. SET to ID to hear navigation station identifier signai.
b. To Filter Out Station Identifier Sigral - SET to VOX to include filter in audio circuit.
6. ARC PUSH-TO/PULL-FROM Knob (If Applicable):
a. To Use As Conventional OBS .. PLACE in center detent and select desired course.
b. To Obtain Bearing TO VOR Station - PUSH (ARC/PUSH-TO) knob to inner (momentary on) position.

NOTE
ARC lamp will illuminate amber while the course card is moving to center with the course deviation pointer. After alignment has been achieved to reflect bearing to VOR, automatio radial centering will automatically shut down. causing the ARC lamp to go out.
c. To Obtain Continuous Bearing FROM VOR Station -. PULL (ARC/PULL-FR) knob to outer deterat.

NOTE
ARC lamp will illumtnate amber, OBS course card will turn io center the course deviation pointer with a FROM flag to indicate bearithg from VOR station.
7. OBS Knob (If Applicable) - SELECT desircd course.

VOR SELF-TEST OPERATYON:

1. COM OFF/VOL Control -. TURN ON.
2. NAV Frequency Selector Switches -- SELECT usable VOR station signal.
3. OBS Knob - SET for 0° course at course incex; course deviation pointer centers on deflects left or right, depending on bearing of signal: NAV/TO-FROM indicator shows TO or FROM.
4. ID/VOX/T Switch .. PRESS to T and HOLD at T; course deviation pointer centers and NAV/TO-FROM indicator shows FROM.
5. OBS Knob - TURN to displace course approximately 10° to either side of 0° (while holding ID/VOX/T to T). Coursedeviation pointer deflects full scale in direction corresponding to course displacement. NAV/TO-FROM indicator shows FROM.
6. ID/VOX/T Switch - RELEASE for normal operation.

NOTR
This test does not fuifill the requirements of FAR 91.25.

SECTION 5

PERFORMANCE
There is no change to the abplane performance when this avionic equipment is instalied. However, the installation of an externally mounted antenna or several related external antemas, will result in a minor reduction in cruise performance.

SUPPLEMENT

CESSNA 300 TRANSPONDER (Type RT-359A)

AND

OPTIONAL ALTITUDE ENCODER (BLIND)

SECTION 1
 GENERAL

The Cessna 300 Transponder (Type RT-359A), shown in Figure 1, is the adrborne component of an Air Traffic Control Radar Beacon System (ATCRBS). The transponder enables the ATC ground controller to "see" and identify the aircraft, while in flight, on the control center's radarscope more readily.

The Cessna, 300 Transponder system consists of a panel-mounted unit and an exteradly mounted antenna. The transponder roceives interrogation pulse signals on 1030 MLIz and transmits pulse-train reply signals on 1090 MHz . The transponder is capable of replying to Mode A (aircraft identification) and also Mode C (altitude reporting) when coupled to an optional altitude encoder system. The transponder is capable of replying on both modes of interrogation on a selective reply basis on any of 4.096 information code selections. The optional altitude encoder system (not part of a standard 300 Transponder system) required for Mode C (altitude reporting) operation consists of a completely independent remotemounted digitizer that is connected to the static system and supplies encoded altitude information to the transponder. When the altitude encoder system is coupled to the 300 Transponder system, altitude reporting capabilities are avatlable in 100 -foot increments between -1000 and $+20,000$ feet.

All Cessna 300 Transponder operating controls are located on the front panel of the unit. Functions of the operating controls are described in Figure 1.

1. FUNCTION SWITCH - Controls application of power and selects transponder operating mode as follows:

OFF - Turns set off.
SBY' Turns set on for equipment warm-up or standby power
ON . Turns set on and enables transponder to transmit Mode A (airorat identafication) reply pulses.
Alu' - Turas set on and enebies transponder to trensmit oithor Mode A (airoraft identification) reply pulses or Mode C (aititude reporting) pulses selected attomatically by the interrogating signal.
2. REPIM LAMP - Larip flushes to indicate transmission of reply pulses; siows steadily to indicate transmission of IDENT pulse or natisfactory self-test operation, (Reply lamp will also glow stoadily during initisl warm-up period.)

Figure 1. Cessna 300 Transponder and Altitude Encoder (Blind)
(Sheet 1 of 2)
3. IDENT (ID) SWITCH - When depressed, selects special pulse identifier to be transmitted with bransponder reply to effect immediate identification of aircraft on ground controller's display. (Reply iamp will glow steadily during duration of IDENT pulse transmission.)
4. DIMMER (DIM) CONTROL - Allows pilot to control brilliance of reply lamp.
5. SELFTEST (TST) SWITCH - When depressed, oauses transponder to generate a self-intexrogating signal to provide a checi of transponder operation. (Reply lamp will glow steadily to verify selfost operation.)
6. REPLY-CODE SELECTOR KNOES (4) - Select assigned Mode A reply code.
7. REPLY-CODE INDICATORS (4) - Display selected Mode A reply code.

8 REMOTE-MOUNTED DIGITIZER - Provides an altitude reporting code range of - 1000 feel up to the aiplane's maximum servicu ceiling.

Figure 1. Cessna 300 Transponder and Altitude Encoder (Blind)
(Sheet 2 of 2)

SECTION 2
 LIMITATIONS

There is no change to the airplane limitations when this avionic equipnent is installed. However, the following information must be displayed in the form of a placard located near the altimeter.

SECTION 3 EMERGENCY PROCEDURES

TO TRANSMIT AN BMERGENCY SIGNAL:

1. Function Switch .. ON,
2. Reply Code Selector Knobs - SELECT 7700 operating code.

TO TRANSMIT A SIGNAL REPRESENTING LOSS OF ALL COMMUNICATIONS (WHEN IN A CONTROLLED ENVIRONMENT):

1. Function Switch -- ON.
2. Reply-Code Selector Knobs -- SELECT 7700 operating code for 1 minute; then SELECT 7600 operating code for 15 minutes and then REPEAT this procedure at same intervals for remainder of flight.

SECTION 4 NORMAL PROCEDURES

BEFORE TAKEOFT:

1. Function Swttch .- SBY.

TO TRANGMIT MODE A (AIRCRAF'C IDENTIFICATION) CODES IN FLIOHT:

1. Reply-Code Selector Knobs -- SELECT assigned code.
2. Function Switch -- ON.
3. DIM Control -- ADJUSr light brilliance of reply lamp.

NOTE

During normal operation with function switch in ON position, reply lamp flashes indicating transponder replies to interrogations.
4. ID Bution -- DEPRESS momentarily when instructed by ground controller to "squawh IDENT" (reply lamp will glow steadily, indicating IDENT operation).

TO TRANSMIT MODE C (ALTITUDE REPORTING) CODES INFLIGHXA:

1. Reply-Code Selector Knobs -- SELECT assigned code.
2. Function Switch -- ALT.

NOTE
When directed by ground controlier to "stop altitude squawk", turn Function Switch to ON for Mode A operation only.

NOTE
Pressure altitude is transmitted by the transponder for altitude squawk and conversion to indicated altitude is done int ATC computers. Altitude squawired will only agree with indicated altitude when the local altimeter setting in use by the ground controller is sel in the aireraft altimeler.
3. DMM Control -- ADJUST light brilliance of repiy lamp.

TO SELF'TEST 'IRANSPONDER OPERATION:

1. Function Switch .- SBY and wait 30 seconds for equipment to warm-up.
2. Function Switeh . . ON or ALT
3. TST Button - DEPRESS (reply lamp should light brightly regardless of DIM control setting).
4. TST Button .. Release for normal operation.

SECTION 5
 PERFORMANCE

There is no change to the airplane performance when this avionic equipment is installed. However, the installation of an externaliymounted antenna or several related external antennas, will result in a minor reduction in cruise performance.

SUPPLEMENT

CESSNA 300 TRANSPONDER (Type RT-359A)
 AND
 OPTIONAL ENCODING ALTIMETER
 (Type EA-401A)

SECTION 1

GENERAL

The Cessna 300 Transponder (Type RT-359A), shown in Figure 1, is the airboxme component of an Air Traffic Control Radar Beacon System (ATORBS). The transponder enables the ATC ground controller to "see" and identify the aircraft, while in flight, on the control center's radarscope more readily.

The Cessna 300 Transponder consists of a panel-mounted unit and an externally mounted antemat. The transponder receives interrogating pulse signals on 1030 MHz and transmits coded pulse-train reply signals on 1090 MHz . It is capable of replying to Mode A (aircraft identification) and Mode C (altitude reporting) interrogations on a selective reply basis on any of 4,096 information code selections. When an optional panelmounted EA-401A Encoding Altimeter (not part of a standard 300 Transponder system) is included in the avionic configuration, the transponder can provide altitude reporting in 100 -foot increments between -1000 and $+35,000$ feet.

All Cessna 300 Transponder operating controls, with the exception of the optional altitude encoder's altimeter setting knob, are located on the front panel of the unit. The altimeter setting knob is located on the encoding altimeter. Functions of the operating controls are described in Figure 1.

i. FUNCTEON SWITCH . Controls applieation of power and selects transponder opereting mode es follows:

OF'F - Turns set off.
SBY - Turns set on for equipment warm-up.
ON - Turns set on and enables transponder to tramsmit Mode A (atroraft identification) reply puises.
ALI - Turns seton and enables transponder to transmitarther Mode A (aircraft identification) reply pulses or Mode C (aititude reporting) pulses selected antomaticaliy by the interrogating signel.
2. REHIX LAMP . Lamp flashes to indicate transmission of reply pulses; zlows steadily to indicate transmission of IDENT pulse or satislactory self-testoperetion. (Reply Lamp will also giow steadily during inititl wameup period.)

Figure 1. Cessna 300 Transponder and Encoding Altimeter (Sheet 1 of 2)

PILOT'S OPERATING HANDBOOK SUPPLEMENT

3. IDENT (ID) SWITCH . When dupressed. selects special pulse identhier to be transmithed with transponder reply to effect immediate identilication of aircraft on ground controller's display. (Reply Lamp will glow steadilyduring duration of IDENT pulse tramamission.)
4. DIMMER (DIM) CONTROL - Allows pilot to control brillience of roply lamp.
5. SELF-TEST (ASTY SWITCH . When depressed, couses transponder to generate a self-interrogating signal to provide a cheok oil transponder operation. (Reply Lamp will glow steadily to verify self test operation.)
6. REPLY-CODE SELECTOR KNOBS (4) - Select assigned Modo A reply code.
7. REPLY-CODE INDICATORS (4) - Display selected Mode A reply code.
8. 1000-FOOT DRUM TYPD INDICATOR - Frovides cigital altitude readout in 1000foot fncrements betwetn -1000 feet and $+35,000$ feet. When altitude is below 10,000 feet, b diagonally striped flag appears in the 10,000 fool window.
9. OFM INDICATOIZ WARNING FLAG F Flag appears across altitude readout when power is removed from the altimeter to indicate that readout is not reliable.
10. 100-FOOT DRUM TYPE INDICATOR - Provides digtal altitude readout in 100 foot increments between 0 fect and 1000 fect.
11. 20-FOOT INDICATOR NEEDLE - Indicates altitude in 20 -foot increments between 0 feet and 1000 feel.
12. ALITMETER SETTING SCALE - DEUM TYPE - Indicates selected altmeter setting in the range of 27.9 to 31.0 inches of mercury on the standard altimeter or 950 to 1050 milhibars on the optional aitimeter.
13. ALTIMETER SETTING KNOE - Difle in desired altimeter setting in the range of 27.9 to 31.0 inches of mercury on the standard aitimeter or 950 to 1050 milidbars on the optional altimeter.

SECTION 2

LIMITATIONS
There is no change to the airplane performance when this avionic equipment is installed, However, the enooding altimeter usedin this installation does have a limitation that requires a standard barometric altimeter to be installed as a back-up altimeter.

Figure 1. Cessna 300 Transponder and Encoding Altimeter (Sheet 2 of 2)

SECTION 3 EMERGENCY PROCEDURES

TO TRANSMIT AN EMERGENCY SIGNAL:

1. Function 3 witeh -- ON.
2. Reply-Code Selector Knobs - SELECT 7700 operating code.

TOTRANSMIT A SIGNAL REPRESENTING LOSS OF ALL COMMUNICATIONS (WHEN IN A CONTROLLED ENVIRONMENT):

1. Function Switch -- ON.
2. Reply Code Selector Knobs - SELECT 7700 operating code for : minute; then SELECT 7600 operating code for 15 manutes and then REPEAT this procedure at same tntervals for remainder of flight.

SECTION 4

 NORMAL PROCEDURESBEFORE TAKEOFF:

1. Function Switch -- SBY.

TO TRANSMIT MODE A (AIRCRAFT IDENTYFICATYON) CODES IN FLIGHT:

1. Reply-Code Selector Knobs -- GELECT assigned code.
2. Function Switch -- ON.
3. DIM Control .. ADJUST Light briliance of reply lamp.

NOTE
During normal operation with function switch in ON position, reply lamp flashes indicating transponder replies to interrogations.
4. ID Button -- DEPRESS momentarily when instructed by ground controller to "squawis IDENT" (reply lamp will glow steadily, indicating IDENT operation).

TO TRANSMIT MODE C (ALTITUDE REPORTING) CODES IN FLIGHT:

1. Off Indicator Warning Flag -- VERMFY that flag is out of view on encoding altimeter.
2. Altitude Encoder Altimeter Setting Knob - SET IN assigned local altimeter setting.
3. Reply-Code Selector Knobs -- SELECT assigned code.
4. Function Switch -- ALT.
$N^{\prime}{ }^{\prime} \mathrm{E}$ E
When directed by ground controller to "stop aititude squawk", turn Function Switch to ON for Mode A operation only.

NOTE

Pressure altitude is transmitted by the transponder for altitude squawh and conversion to indicated altitude is accomplished in ATC computers. Altitude squawked will only agree with indicated altitude when the local altimeter setting in useby the ground controllor is setin the encoding allimeter.
5. DIM Control - ADJYSG Light briliance of reply lamp.

TO SELF-TEST TRANSPONDER OPERATION:

1. Function Switch - SBY and wait 30 seconds for equipment to warm-up.
2. Function Switch -- ON or ALT.
3. TST Button -- DEPRESS and HOLD (reply lamp should light, with full brilliance regardless of DIM control setting).
4. TST Button - Release for normal operation.

SECTION 5 PERFORMANCE

There is no change to the airplane performance when this avionic equipment is installed. However, the installation of an externally mounted artenna or several related external antennas, will result in a minor roduction in cruise performance.

SUPPLEMENT

CESSNA NAVOMATIC 300A AUTOPILOT
 (Type AF-395A)

SECTION 1

GENERAL
The Cessna 300A Navomatic is an all electric, single-axis (aileron control) autoptlot system that provides added lateral and directional stability. Components are a computer-amplifier, a turn coordinator, a directional gyro, an aileron actuator and a course deviation indicator(s) incorporating a localizer reversed (BC) indicator light.

Roll and yaw motions of the airplane are sensed by the turn ooordinator gyro. Deviations from the selected heading are sensed by the directional gyro. The computer-amplifier electronically computes the necessary correction and signals the actuator to move the ailerons to maintain the airplane in the commanded lateral attitude or heading.

The 300A Navomatic will also intercept and track a VOR or localizer course using signals from a VHF navigation receiver.

The operating controls for the Cessna 300A Navomatic are located on the front panel of the computer-amplifter and on the directional gyro, shown in Figure 1. The primary function pushbutions (HDG SEL, NAV IN'I, and NAV TRK), are interlocked so that only one function can be selected at a time. The HI SENS and BACF CRS pushbuttons are not interlocired so that either or both of these functions can be selected at any time.

CESSNA 300A AUTOPILOT (TYPE AF-395A)

PILOT'S OPERATING HANDBOOK SUPPLEMENT

NAV 1

TURN COORDINATOR

Figure 1. Cessna 300A Autopilot, Operating Controls and Indicators (Sheet 1 of 2)

1. COURSE DEVIATYON INDICATOH - Provides VOR/LOC navigation inputs to autopilot for intercept and tracking modes.
2. LOCALIZER REVERSED INDICATOR LIGHT - Amberlight, labeled BC, illuminates when BACK CHS button is pushed in (engaged) and LOC frequency selected. BC light indicates course indicator heedle is reversed on selected receiver (when tunced to a localizer frequency). Thistigh is located within the CD: indicator.
3. DIRECTIONAJ, GYRO INDICATOR - Provides heading information to the avtopilot for heading intercept and hold Heading bug on indicator is used to select desired hoading or VOH/LOC course to be flown.
4. TURN COORDINATOR - Senses roll and yaw for wings leveling and command turn functions.
5. HDG SEL PUSHBUTTON - Aircraft will turn to and hold heading selected by the heading "bug" on the directional gyro.
6. NAV INT" PUSHBUTTON . When heading "bug" on DG is stit to selected course. wireraft will turn to and intercept selected von or LOC course.
7. NAV'TlRK PUSIABUTTON . When heading "bug" on UG is sot to selected course. aircraft will track selected VOR or LOC course.
8. HI SENS PUSHBUTTON - DUFing NAV INT or NAV TRK operation, this high sensitivity setting increases autopilot response to NAV signal to provide more precise operation during Iocalizer approach. In low-sensitivity position (pushbutton out). response to NAV signal is dampened for smoother trucking of enroute VOR radials: it also smooths out effect of course scailoping during NAV operation.
9. BACK ORS PUSHBUTTON - Used with LOC uperation only With A/P swith OFF or $O N$, and when nevigation receiver selected by $N A V$ switch is set to a localizer frequenoy. it reverses normal localizer needle indication (CDI) and causes localizer reversed (BC) ingt to illuminate. With A/P switch ON, reverses localizer signal to autopitot.
10. ACTUATOR . Thi torquc motor in the actuator omuses the ailerons to move in the commanded direction.
11. NAV SWITCH - Selects NAV 1 or NAV 2 navigation receiver.
12. PULL TURN KNOB - When pulled out and centered in detent, airplane wili fly wings level; when turned to the right (R). the airplane will execute a right, standard rale turn; when turned to the beft (L). the airplane will cxecute at left, standard rate turn. When centored in detent and pushed in, the operating mode solected by a pushbution is engaged.
13. TRIM - Used to trim autopilot to compensate forminor variations in aircraft trim or lateral weight distribution. (For proper operation, the aircrat's rudder trim, if so equipped, must be manually trimmed before the autopilot is engaged.
14. A/P SWITCH - Turns autopilot ON or OFF.

Figure 1. Cessne 300A Autopilot, Operating Controls and Indicators (Sheet 2 of 2)

SECTION 2
 LIMITATIONS

The following attopilot limitation must be adhered to:
BEFORE TAKE-OFF AND LANDING:

1. A/P ON-OPF Switch . OFF .

SECTION 3

EMERGENCY PROCEDURES

TO OVERRIDE THE AUTOPILOT:

1. Airplane Control Wheel--ROTATE as required to overrideautopilot.

NOTE
The servo may be overpowered at any time without damage.

TO TURN OFF AUTOPILOT:

1. A/P ON-OFF Switch .. OFF.

SECTION 4

NORMAL PROCEDURES

BEFORE TAKE-OFF AND LANDING:

1. A/P ON-OFF Switch - OFF.
2. BACk CRS Button - OFF (see Cation note under Nav Intercept).

NOTE

Periodically verify operation of amber warning light(s), labeled BC on $\mathrm{CDH}(\mathrm{s})$, by engaging BACK CRS button with a LOC frequeney selected.

INFLYGHT WINGS IEVELING:

1. Airplane $\mathrm{Hudder}^{\text {Trim -- ADJUST for zero slip ("Ball" centered on }}$ Turn Coordinator).
2. PULL-TURN Knob-- CENTER and PULL out.
3. A/P ON-OFF Switch -- ON.
4. Autoptlot TRIM Control -- ADIUST for zero turn rate (wings level indication on Turn Coordinator).
NOIE

For optimum performance in airplanes equipped as foatplanes, use autopilot only in craise flight or in approach configuration with flaps down no more than 10° and airspeed no lower than 75 KIAS on 172 and Ri72 Series Models or 90 KIAS on 180, 185, U206 and TU206 Series Models.

COMMAND TURNG:

1. PULL-TURN Knob ... CENTER, PULL out and ROTATE.

HEADING SELECT:

1. Directional Gyro -. SET to airplane magnetio heading.
2. Heading Selector Knob -- ROTATE bug to desired heading.
3. Heading Select Button -- PUSH.
4. PULL-TURN Kncb -- CENTER and PUSH

NOTE

Airplane will turn automatically to selected heading. If airplane fails to hold the prectse heading, readjust antopilot TRIM control as required or disengage autopilot and reset manual rudder trim (if installed).

NAV INTERCEPT (VOR/LOC):

1. PULLETURN Knob - CENTER and PULL out.
2. NAV $1+2$ Selector Switch -- SELECT desired receiver.
3. Nav Receiver OBS or ARC Knob *" SET desired VOR course (if tracking omni).

NOTE
Optional ARC knob should be in center position and ARC warning light should be off.
4. Heading Selector Knob - ROTATE bug to selected course (VOR or localizer - inbound or outbound as appropriate).
5. Directional Gyro--SET for magnetic heading.
6. NAV INT Button -- PUSH.
7. HI SENS Button -- PUSH for Localizer and "close-in" omnt intercepts.
8. BACK CRS Button -- PUSH only if intercepting localizer front course outbound or back course inbound.

CAUTION

With BACK CRS button pushed in and localizer frequency selected. the CDI on selected nav radio will be reversed even when the autopilot switch is OFF.
9. PULL-TURN Knob -- PUSH.

NOTE

Airplane will automatically turn to a 45° intercept angle.

NAV TRACKING (VOR/LOC):

1. NAV TRK Button -- PUSH when CDI centers (within one dot) and airplane is within $\pm 10^{\circ}$ of course heading.
2. HI SENS Button -- Disengage for enroute omni tracking (leave engaged for localizer).

NOTE

Optional ARC feature, if installed, should not be used for autopilot operation. If airplane should deviate off course, pull out PULL TURN knob and readjust airplane rudder trim for straight flight on the turn coordinator. Push in PULL TURN knob and reintercept the course. If deviation persists, progressively make slight adjustments of the autopilot TRIM control towards the course as required to maintain track.

SECTION 5

PERFORMANCE

Where is no change to the airplane performance when this avionic equipment is instailed.

