VSD

Position	Pressure (mm Hg)	Oxygen Saturation (%)			
SVC	Mean = 6	75			
RA	Mean = 6	75			
IVC		78			
RV	80/0,12	80			
PA	80/40, mean = 55	80			
PCW	Mean = 5	95			
FA	80/54, mean = 62	95			
SVC, super	ior vena cava; RA, right atrium; atricle: PA, pulmonary artery; P	; IVC, inferior vena cava;			

RV, right ventricle; PA, pulmonary artery; PCW, pulmonary capillary wedge; FA, femoral artery.

How much Qp? How much Qs?

 $Q_p/Q_s = \frac{\text{Aorta} - \text{mixed venous}}{\text{Pulmonary vein} - \text{pulmonary artery}}$

$$Q_p/Q_s = 95\% - 75\%/95\% - 80\% = 20/15$$

Position	Pressure (mm Hg)	Oxygen Saturation (%)			
SVC	Mean = 6	75			
RA	Mean = 6	75			
IVC		78			
RV	80/0,12	80			
PA	80/40, mean = 55	80			
PCW	Mean = 5	_			
FA	80/54, mean = 62	95			

SVC, superior vena cava; RA, right atrium; IVC, inferior vena cava; RV, right ventricle; PA, pulmonary artery; PCW, pulmonary capillary wedge; FA, femoral artery.

B. 1.50

C. 1.75

D. 2.00

E. 2.25

The patient then receives 100% oxygen therapy

Position	Pressure (mm Hg)	Oxygen Saturation (%)
SVC	Mean = 6	85
RA	Mean = 6	85
RV	80/0,12	
PA	80/30, mean = 50	95
PCW	Mean = 5	
FA	80/54, mean = 62	100
Note: FA b	lood gas = 7.44, pCO ₂ = 37	$^{\prime}$ torr, pO ₂ = 525 torr.

How much is the Qp:Qs now?

A. 5.0

B. 4.2

C. 3.7

D. 3.1 E. 2.9 $Q_p/Q_s = \frac{\text{Aorta} - \text{mixed venous}}{\text{Pulmonary vein} - \text{pulmonary artery}}$

What is it wrong?

Position		Pressure (mm Hg)
RA		Mean = 5
RV	Severe pulmonary regurgitation !	60/8
MPA		60/8
PCWP		Mean = 20
LV		120/24

RA, right atrium; RV, right ventricle; MPA, main pulmonary artery; PCWP, pulmonary capillary wedge pressure; LV, left ventricle.

What I am looking at?

And when it does not make sense?

SVC: 72% / RA: 85% / RV: 83% MPA=83% / RPA=84% / LPA0=85% LA=92% / RPV=99% / LPV=83%

Severe cianotic disease

Major aortopulmonary collaterals

If the heart has no room

If the heart has no room

Find the difference

ASD

To close or not to close?

	Condition Initiale				Condition Intermédiaire				
	-	-				Test d'occlusion et remplissage			
	PNI			- PNI		PNI	PNI -		
	Fréqu	Fréquence cardiaque 92 Saturation 90%				Fréquence cardiaque 93			
	Satura				90% \$		Saturation		90
	FiO2			-		FiO2		21%	
	NO	NO		-		NO		-	
	Rema	rques		-	Remarques		- PMi Sati		
	PTS 0	PTD 0	PM 0	Sat 0 PO2 0					
IVI	-	-	-	66	38	-	-	-	-
VCS			-	-	-			-	-
OD	-	-	11	-	-	-	-	13	-
VD bas	28	5	8	-	-	-	-	-	-
VD haut	-	-	-	-	-	-	-	-	-
APT	18	11	14	64	38	-	-	-	-
APD	-	-	-	-	-	-	-	-	-
APG	-	-	-	-	-	-	-	-	-
CAPSD	-	-	-	-	-	-	-	-	-
CAPID	-	-	-	-	-	-	-	-	-
CAPSG	-	-	-	-	-	-	-	-	-
CAPIG	-	-	-	-	-	-	-	-	-
OG	-	-	11	-	-	-	-	-	-
VPSD	-	-	-	-	-	-	-	-	-
VPID	-	-	-	-	-	-	-	-	-
VPSG	-	-	-	-	-	-	-	-	-
VPIG	-	-	-	99	132	-	-	-	-
VG	65	0	12	-	-	-	-	-	-
Ao asc	-		-	-	-	-	-	-	-
Ao th	61	41	49	87	60	62	44	51	-

ASD closure

A very narrow aorta

ĮΡ

X1 Distance: 11.94 mm X2 Distance: 12.18 mm X3 Distance: 3.97 mm X4 Distance: 61.68 mm

X4

Х1.

[A]

l_{x3}

X1 Distance: 3.85 mm X2 Distance: 10.62 mm X3 Distance: 9.14 mm X4 Distance: 10.28 mm X5 Distance: 1.03 mm X6 Distance: 47.43 mm XX5

XG

X3

X4

A very unusual case

Female term new-born (2.7kg)

- Uncomplicated pregnancy
- Urgent caesarean section for foetal bradycardia
- Normal Apgar-scores and umbilical artery pH

Severe cardiogenic shock at 4-hours of life

ECHOCARDIOGRAPHY

- Structurally normal heart
- Severe biventricular systolic dysfunction
- **Despite** persistent ductus arteriosus (PDA)
- Thrombotic structure at LMCA ostium

 \rightarrow Placement of peripheral VA-ECMO in the cath lab

INTERVENTION

- Selective coronarography with a 4.2 JR catheter
- Complete thrombotic LMCA occlusion

INTERVENTION

- Intracoronary thrombolysis (Actilyse®, Altéplase
 0.1mg/kg¹ over a few minutes)
- 0.014" HI-TORQUE PILOT™ guidewire followed by a PROGREAT® Microcatheter were advanced in the LMCA
- \rightarrow Minimal left coronary flow was re-established

 El-Sabrout H, Ganta S, Guyon P, Ratnayaka K, Vaughn G, Perry J, Kimball A, Ryan J, Thornburg CD, Tucker S, Mo J, Hegde S, Nigro J, El-Said H. Neonatal Myocardial Infarction: A Proposed Algorithm for Coronary Arterial Thrombus Management. Circ Cardiovasc Interv. 2022 May;15(5):e011664. doi: 10.1161/CIRCINTERVENTIONS.121.011664. Epub 2022 Apr 29. PMID: 35485231.

INTERVENTION

- After subsequent intracoronary thrombolysis, LCA flow was restored
- Residual peripheral thrombus in the mid LAD

INTERVENTION II

- Insufficient systemic perfusion on VA-ECMO due to recirculation via PDA
- 12-h later transcatheter retrograde PDAclosure with an Amplatzer™ Duct Occluder II (5x4mm)

WHAT NEXT?

- Troponin-T levels gradually dropped from 220'000ng/L to 700ng/L
- Echo demonstrated steady improvement in LV function with patent LMCA/LAD under Adrenalin, Levosimendan, and VA-ECMO support
- BUT unsuccessful VA-ECMO weaning after 3-weeks
- Autoptic findings showed pervious coronary arteries

CONCLUSIONS

- Acute myocardial infarction in structurally normal heart is a very rare cause of neonatal cardiogenic shock
- It has a high mortality rate
- In this case, paradoxical embolization from the placenta was postulated due to perinatal manifestation in absence of other risk-factors
- After stabilisation on VA-ECMO, early intracoronary thrombolysis should be considered as rescue strategy