Transposition of the great arteries

Association pour la Recherche en Cardiologie du Foetus à l'Adulte

Damien Bonnet

Service de Cardiologie Congénitale et Pédiatrique Hôpital Universitaire Necker Enfants malades – APHP Université de Paris IcarP Cardiology, Institut Hospitalo-Universitaire IMAGINE

Centre de Référence Maladies Rares Malformations Cardiaques Congénitales Complexes-M3C **Centre de Référence Maladies Rares** Maladies Cardiaques Héréditaires- CARDIOGEN

Université de Paris

European Reference Network

for rare or low prevalence. complex diseases

Network Respiratory Diseases (ERN-LUNG)

European Reference Network for rare or low prevalence complex diseases

Network Heart Diseases (ERN GUARD-HEART)

« Malpositions » of the great arteries 4 categories

- Transposition of the great arteries
- Double outlet right ventricle
- Double outlet left ventricle
- Anatomically corrected malposition of the great arteries

Anatomy of transpositions of the great arteries

TGA or Ventricle-Arterial Discordance

- Great vessels have parallel course
- Sub-aortic conus
- Fibrous continuity mitral and pulmonary valve
- D-transposition with Aorta anterior and right
- Segment analysis
 - most frequently {S,D,D}
 - sometimes {I,L,L} (mirror image)
 - rarely exception to the looping rule {S,D,L} or {I,L,D}

Anatomical variation of TGA

- Variants of simple TGA

 Relative sizes of the conus
 Relative position of great vessels
 Variants in coronary anatomy

 Associated anomalies
- Associated anomal – VSD
 - LVOT obstructions
 RVOT obstructions
 - AV valves anomalies : straddling and clefts

Left juxtaposition of the atrial appendages

- 2 to 5% of cases
- Frequently associated with other anomalies : dextrocardia, hypoplasia of right ventricle, bilateral conus

Coronary arteries in TGA

Type B

Type D

Type E

Yacoub and Radley-Smith classification

What causes transposition of the great arteries ?

96-16 provides direct evidence for rotation of outflow tract myocardium

E9.5

E10.5

E11.5

E12.5

96-16 expression in Pitx2 δc heart with TGA

Transposition of the great arteries with a rotation defect
Normal septation and normal neural crest cell migration
Defect of left-right signalling

А

CFC1 mutations and TGA/DORV ZIC3 mutations in TGA

Wild-Type

Intron 4

The French system during pregnancy

3 systematic foetal echographies - Level 1

11 Weeks 18-22 Weeks

32-34 Weeks

In case of anomaly or difficulty in assessing normality

> Expert foetal echography

Level 2

If heart anomaly is confirmed Level 3

Fetal echocardiography by expert

Prenatal diagnosis of TGA

TGA

Preoperative mortality in TGA = 4-6%(vs./+) Surgical mortality = 1-2%

Comparison of Characteristics of Patients in the Prenatal and Postnatal Groups

	Postnatal Group	Prenatal Group
Isolated TGA	204	57
Associated delects	46	11
VSD	31	8
VSD+CoA	14	3
CoA	1	1
Age at admission, h	73±210	2.2±2.8
Mechanical ventilation	95 (38)	12 (17.6)
Metabolic acidosis ± MOF	56	8
PGE, Infusion	95	32
BAS	168	54
Preoperative mortality	15	0
Coronary artery pattern	233 AS0	68 ASO
Normal	168	47
Abnormal	65	21
Postoperative mortality	20	0
Hospital stay, d	30±17	24±11

VSD Indicates ventricular septal defect; CoA, coarctation; MOF, multiorgan failure; PGE, prostagiandin E, BAS, balloon atrioseptotomy; and ASO, artertal switch operation. Values are n (%).

TGA situs & 4 chamber view

Courtesy Bertrand Stos - HeBee

TGA LVOT view

Courtesy Bertrand Stos - HeBee

TGA Complex forms

TGA-membranous VSD

TGA Complex forms

Courtesy Bertrand Stos - HeBee

TGA Complex forms

TGA-VSD-Coa

Chromosomal anomalies in fetal CHD 548 CHD-18.5%

PA-IVS and PS Left heart obstruction 6 XO; 3 T18; 3 translocations **Conotruncal defects** 20 del22q11; 1 T21; 2 translocation AVSD 28 T21; 3 T18; 1 XXX VSD 9 trisomies, 2 del22q11, 1 del5 Transposition of the great ve DORV Univentricular heart 2 T18

	0 12/130	0 9.2%
ons	23/91	25%
	32/68	47%
	12/74	16%
essels	0	0
	7/38	18%
	2/24	8%

Prenatal diagnosis of transposition of the great arteries Perinatal organization in Paris

- Organisation of foetal cardiac growth surveillance
 - Foramen ovale and arterial duct
- In utero transfer organisation
- Organisation of perinatal management
- Prevention of early neonatal demise
- Prepare the parents to the future even
- Post-natal management and follow-up

Bonnet et al. Circulation 1997; Maeno YV et al. Circulation 1999; Jouannic et al. Circulation 2004; Van Velzen C et al. Ultrasound Obstet Gynecol 2015; 45: 320–325 Escobar-Diaz MC et al. Ultrasound Obstet Gynecol. 2015 June ; 45(6): 678–682.

Physiology of TGA

Morphological and physiological consequences of the fetal circulation in TGA

Sun L et al. Circulation. 2015;131:1313-1323.

Morphological and physiological consequences of the fetal circulation in TGA

Prenatal white matter MRI anomalies in children with cyanotic congenital heart diseases

•White matter lesions in 30 to 40% of

newborns with TGA (Miller et al., 2004; Licht et al., 2009)

•Same type of anomalies but more severe in complex CHDs such as HLHS (Mahle et al., 2002).

Periventricular white matter lesions in a child with TGA **before** the arterial swicth. Petit et al., 2009 in Circulation

Type of CHD and prenatal brain perfusion

Mechanisms for reduced cerebral oxygenation and impaired brain growth in fetuses with CHD

1-In TGA, streaming results in well oxygenated blood being directed to the pulmonary circulation, whereas the blood supplied to brain is derived largely from more deoxygenated blood returning from the caval veins. 2-Reduction in Umbilical Vein Sao2, which is suggestive of abnormal placental function and results in lower fetal O2 delivery even in the setting of normal CVO and UV flow.

Sun L et al. Circulation. 2015;131:1313-1323.

Brain dysmaturation observed in CHD appears to confer increased susceptibility to white matter injury in the perioperative period and neurodevelopmental deficits at 2 years.

The identification of fetal hypoxia as a potentially modifiable cause of delayed fetal brain development may be clinically significant.

Oxygen saturations in the fetal sheep and human fetuses circulation can be augmented through increases in the oxygen concentration of maternal inhaled air.

Maternal hyperoxygenation could be a method to improve brain development in utero

IGURE 1. A-D, Qualitative scoring abnormalities. A, T₁-weighted image with abnormalities that included focal signal abnormality, delayed myelination posterior limb of the internal capsule, increased extra-axial space, and delayed gyrification. B, T₁-weighted image with bilateral focal signal abnormalities nd delayed gyrification. C, T₂-weighed image with ventriculomegaly, diffuse excessive high-signal intensity (DEHSI), increased extra-axial space, and noderate-to-severe delay in gyrification. D, T₂-weighted image with DEHSI. E-H, Subset of brain metrics. 1, Bifrontal diameter; 2a, right frontal height; b, left frontal height; 3a, brain biparietal diameter; 3b, bone biparietal diameter; 4, interhemispheric distance; 5, transverse cerebellar diameter; 6a, right entricular diameter; 6b, left ventricular diameter; and 7, brainstem area. I-K, Diffusion imaging: I, mean diffusivity; J, fractional anisotropy; K, red, green, lue color plot. Regions of interest were the same for each image (from top to bottom): left and right frontal white matter, genu of the corpus collosum, left nd right posterior limb of the internal capsule, splenium of the corpus collosum, left and right subcortical white matter, and left and right optic radiation.

Morphological and physiological consequences of the fetal circulation in TGA

TGA Foramen Ovale

TGA Foramen Ovale

-Floppy Mb -Small FO -Small septal length -pulmonary veins velocity > 0,41 m/s

TGA Arterial duct

Neonatal management of TGA

Prevention of early neonatal demise

Abnormal Prenatal Shunts and Neonatal Condition					
	Abnormal (N=24)				
	FO and DA	FO or DA*	Normal (N=95)		
N total	4	20 (19 FD; 1 DA)	96		
Critical condition (n=7)	4	3 (2 FD; 1 DA)	6		
Stable condition (n=17)	0	17	89		

FO Indicates toramen ovale; DA, ductus arteriosus.

"This subgroup included 1 fetus in whom the FO was restrictive but the DA could not be analyzed.

Additional criteria²

A hypermobile septum and reverse diastolic patent ductus arteriosus

Finally, we do not care All TGA are delivered on site with the same protocol

> Maeno YV et al. Circulation 1999 Jouannic JM et al. Circulation 2004;110:1743-6 2-Punn R, Silvermann N. JASE 2011;24:425-30 Mary T. Donofrio Circulation. 2002;105:e65-e66

Prenatal diagnosis of transposition of the great arteries **Perinatal organization**

From 1992 to 217

- 717 prenatally diagnosed TGA (IVS or complex)
- 6 had congenitally corrected TGA
- 3 deaths immediately after birth in the delivery room 3 additional preoperative deaths
- extra cardiac malformation in a CHARGE syndrome,
- 1 necrotizing enterocolitis
- 1 during the Rashkind procedure (perforation of the left atrium in left juxtaposition of the atrial appendages)

Surgical mortality 1.7 % : 693 survivors at discharge

Neonatal diagnosis of TGA Isolated cyanosis

Parallel course of great vessels

Pulmonary artery from LV

TGA Rapid diagnosis

TGA Rapid diagnosis

TGA Rapid diagnosis

D-TGA

TGA with heart failure and restrictive PFO

William Rashkind

© Images Paediatr Cardiol

TGA Rashkind

PGE1 and arterial duct

Echographic evaluation in TGA

Echocardiographic evaluation of TGA

- 1. Foramen ovale and arterial duct
- Size of the ventricles
 Small RV : check aorta
 Small LV : check pulmonary artery
- 3. Atrioventricular valves anomalies
- 4. Coronary arteries

Peroperative analysis Anything different from the basic form

- « Abnormal » coronaries
- Hypoplastic aortic arch/coarctation
- VSD
- Difficult LV to PA routing
- Side by side vessels
- Aorto-pulmonary discrepancy
- Commissural mal-alignement

Expected surgical difficulties

Subarterial conus Anterior (sub-aortic) deviation

TGA VSD Coarctation

Aorto pulmonary discrepancy

Impact for the type of repair

÷ ÷

Subarterial conus Posterior (sub-pulmonary) deviation

VSD: localization and size

1:216

Inlet VSD

Outlet VSD

*** bpm

Unbalanced ventricles

« Small » RV

« Small » LV

AV valves abnormalities Straddling and over-riding

AV valves abnormalities Mitral cleft

Mitral cleft

TGA left outflow tract obstruction

Accessory tissue on mitral valve

Bicuspid pulmonary valve

Coronary evaluation

Anterior course

Ao

PA

The arterial switch operation

Adib Domingo Jatene

1975

Yves Lecompte

Outflow tracts after the arterial switch for TGA

Outflow tracts after the arterial switch for TGA

Outflow tracts after the arterial switch for TGA The Lecompte manoeuver

Outflow tracts after the arterial switch for TGA The Lecompte manoeuver

Long term outcomes after the arterial switch operation

Cardiovascular events in the long term

Cumulative probability of arrhythmia or sudden death

Cumulative probability of the combined cardiovascular outcome

Pulmonary artery stenosis

Coronary artery obstruction

Big variations in coronary anatomy (origin, loops, epicardial, intramural)

Coronary	Setup 1	Setup 2	Setup 3	Setup 4	Setup 5
	(n=83)	(n=246)	(n=263)	(n=58)	(n=65)
usual	65	198	178	21	14
(n=474)	(78.3%)	(80.5%)	(67.7%)	(36.2%)	(21.5%)
anomalies	18	48	85	37	51
(n=241)	(21.7%)	(19.5%)	(32.3%)	(63.8%)	(78.5%)

Outcomes and predictors of early mortality of the ASO for TGA with IVS

First Author (Ref. #), Year	Inclusive Years	N	% IVS	Early Survival for TGA IVS, %	5-Year Survival, %	10-Year Survival, %	Coronary Anatomic Risk Factors	Other Predictors of Early Mortalit
Sarris (43), 2006*	1998-2000	613	70	97	NA	NA	Single coronary (univariate analysis only)	Open sternum
Lalezari (51), 2011	1977-2007	332	60.8	88.6	85.8†	85.2†	Not a risk factor for early mortality	Technical problems with coronary transfer
Fricke (85), 2012	1983-2009	618	64	98.2	98	97	Not a risk factor for early mortality	Weight <2.5 kg ECMO
Khairy (41), 2013	1983-1999	400	59.5	93.5†	NA	92.7†	Single right coronary artery	Post-operative heart failure
Cain (52), 2014	2000-2011	70	100	98.6	NA	NA	None identified	No predictors of early mortality, but earlier repair <4 days of a was associated with decreased resource utilization
Anderson (24), 2014	2003-2012	140	75	98.6	NA	NA	None identified	No predictors of early mortality, but earlier repair <4 days of a was associated with decreased resource utilization

Myocardial ischemia after the arterial switch for TGA

Type D coronary arteries after the arterial switch for TGA

Coronary arteries after the arterial switch for TGA High irradiation CT

.4mm/rot isp LPS

Coronary arteries after the arterial switch for TGA Very low dose CT

lmm/rot isp

124

Coronary arteries after the arterial switch for TGA Intervascular course fo left CA

.6mm/rot .6sp

048

Pontage mammaire interne-IVA post-switch

Aortic valve regurgitation

Freedom from neo-aortic root dilation (neo-aortic root z-score >=3.0) and probability from at least moderate neo-aortic regurgitation

Schwartz, M. L. et al. Circulation 2004;110:II-128-II-132

Pulmonary arterial hypertension

PAH characteristics after ASO for TGA

	Valu
Age first PAH detection (months)	
PAH detection within one year after ASO	
Age first detection (months)	
PAH detection more than one year after	
Age first detection (months)	
Age first RHC (months)	
mPAP (mmHg)	
mSAP (mmHg)	
mPAP/mSAP	3.0
mPCWP (mmHg)	
PVRi (WU.m²)	1
PAH therapy at endpoint	
CCB monotherapy	
PAH-targeted mono therapy	
PAH-targeted dual therapy	
PAH-targeted triple therapy	

Ziljstra W et al. Heart 2017

Survival in PAH after ASO for TGA

Neurodevelopmental outcomes

Cognitive domain	Test	TGA (n=45)	Controls (n=45)	p
IQ	CMMS	113 (8.3)	116 (8.85)	ns
Receptive Language	NEPSY - Comprehension	12.4 (0.80)	12.5 (0.81)	ns
Motor Inhibition	NEPSY – Knock and tap	24.25 (3.81)	25.97 (2.12)	0.01
Cognitive Inhibition	Stroop test (errors)	3.08 (3.02)	1.42 (1.48)	0.001
	Stroop test (Reaction time)	82.42 (31.61)	61.03 (20.53)	0.0002
Verbal working memory	Digit span WISC IV	2.84 (2.49)	3.64 (2.55)	ns
Spatial working memory	BEM-144 blocks	3.06 (2.12)	4 (2.03)	0.03
Cognitive flexibility	DCST	7.28 (2.86)	8.66 (2.09)	0.01
Social cognition	Theory of mind tests	0.95 (1.27)	2.15 (1.24)	0.0009

ToM tests in TGA vs controls

TATC

Calderon J et al. J Pediatr 2012

ToM tests in TGA vs controls role of prenatal diagnosis

Cognitive Domain	Test	Prenatal (n=29)	Postnatal (n=16)	p
IQ	CMMS	114.5 (8.50)	112.4 (8.06)	0.4
Receptive Language	NEPSY - Comprehension	12.65 (0.55)	12.25 (1.12)	0.11
Response motor control	NEPSY – Knock and tap	24.31 (2.46)	24.14 (5.82)	0.89
Cognitive control	Stroop test (Number of errors)	2.41 (2.48)	4.31 (3.59)	0.04
Cognitive control	Stroop test (Reaction Time)	77.82 (28.05)	90.74 (36.71)	0.19
Verbal working memory	Digit span WISC IV	2.96 (2.48)	2.62 (2.57)	0.66
Spatial working memory	BEM-144 blocks	3.62 (2.0)	2.06 (2.01)	0.01
Cognitive flexibility	DCST	8.10 (2.65)	5.64 (2.61)	0.006
Social cognition	Theory of mind	1.31 (1.33)	0.31 (0.87)	0.01

TATOC

Calderon J et al. J Pediatr 2012

Neurodevelopmental outcomes after ASO in adults

Proportion of adults with a repaired transposition of the great arteries who present

Kasmi L et al. J Thorac Cardiovasc Surg 2017; Ann Thorac Surg 2017

Atrial repair of TGA The Senning and Mustard operations

Atrial correction of TGA

Ake Senning

William Thornton Mustard

Mustard operation

Survival of all patients, separate diagnostic groups, and general population

Nieminen et al, Circulation 2001

Outcomes after the Mustard, Senning and arterial switch operation for treatment of transposition of the great arteries in Finland: a nationwide 4-decade perspective

Eur J Cardiothorac Surg. 2017;52(3):573-580.

Echocardiogram long axis view

Long axis view after atrial correction of TGA

Flattened LV posterior from systemic RV

Short axis view after atrial correction of TGA

Flattened LV posterior from systemic RV

58 6:65 HR

Right ventricle after atrial correction of TGA

2D echo : apical 4Ch view

2D 30% C 50 P Low HPen

FR 37Hz 19cm

Right ventricle

Right atrium

pulmonary veins

Left ventricle

Left atrium

M3

pulmonary venous atrium

JPEG

65 bpm

Caval baffle

Pulmonary veins baffle

Mortality after atrial switch

- Sudden death (42%) most common mode of death
- Independent predictors for mortality: - (Atrial) Tachyarrhythmias - Advanced functional class

• Late yearly mortality 0.5%, due to arrhythmias and heart failure

Kammeraad, et al, JACC 2004

ECG after atrial switch

Only 40% of patients has SR at age 20

Right heart axis Junctional rhythm

20% of young adults with atrial switch needs PM for sick sinus syndrome

Be aware of altered venous connection:

Ventricular lead will end up,

after some unusual loops,

in a smooth-walled LV

Atrial flutter after atrial switch

Atrial arrhythmias may lead to hemodynamic instability and sudden death

Exercise capacity in CHD

Normal controls Aortic coarctation Tetralogy of Fallot VSD VSD **Mustard-operation** Valvular disease Ebsteins anomaly Pulmonary atresia Fontan-operation ASD (late closure) ccTGA Complex anatomy Eisenmenger

N=933

Mean ± SD

Peak VO₂ (ml/kg/min)

Diller GP, et al. Circulation 2005;

Decline of RV function after atrial switch

Milane et al., JACC 2000.

Late complications atrial switch

- Early death
- Arrhythmias
- Exercise capacity
- RV dysfunction
- Tricuspid regurgitation

Abnormal septal configuration RV dilation

Late complications atrial switch

- Early death
- Arrhythmias
- Exercise capacity
- RV dysfunction
- Tricuspid regurgitation
- Baffle obstructions

Baffle obstruction with increased azygos flow

Superior baffle-limb stenosis in TGA after atrial switch and following PM implantation

obstruction

Stent Radiofrequency

Love BA et al., Nat Clin Pract Cardiovasc Med 2008

TGA-VSD and Pulmonary stenosis

TGA TGA - VSD - Pulmonary stenosis

ToF

TGA-VSD-PS

TGA TGA - VSD - Pulmonary stenosis

TGA TGA - VSD - Pulmonary stenosis

The Rastelli operation

Rastelli procedure

CT after Rastelli operation

No VOI kv 100 mA Mod. Rot 0.35s/CH 8.0mm/rot 0.6mm 0.2:1/0.6sp Tilt: 0.0 10:01:45 AM W = 992 L = 132

R

A,

REV operation (Réparation à l'Etage Ventriculaire)

TGA - VSD - Pulmonary stenosis: tunnel from LV to aorta

TGA Sub-aortic obstruction after tunnel from LV to aorta

Rastelli/REV procedure Sub aortic stenosis

No VOI kv 100 mA Mod. Rot 0.35s/CH 8.0mm/rot 0.6mm 0.2:1/0.6sp Tilt: 0.0 10:01:45 AM W = 4095 L = 2048

Axial_phase 0% Ex: 3536 Se: 502 I: 48.0 Im: 33

DFOV 14.2cm STND Ph:0% (No Filt.)

BPM:69 SSEG 227ms

1 0 3

R

3.1/MP kv 100 mA 487 Rot 0.35s/CH 8.8mm/rot 0.6mm 0.22:1/0.6sp Tilt: 0.0 03:50:10 PM W = 855 L = 82

A 56

HOPITAL NECKER ENFANT

м 6 0799031947 Jan 18 2006

