

Transposition of the great arteries

Damien Bonnet

Unité médico-chirurgicale de Cardiologie Congénitale et Pédiatrique Hôpital Universitaire Necker Enfants malades – APHP, Université Paris Descartes, Sorbonne Paris Cité IcarP Cardiology, Institut Hospitalo-Universitaire IMAGINE

> Centre de Référence Maladies Rares Malformations Cardiaques Congénitales Complexes-M3C

> > Centre de Référence Maladies Rares Maladies Cardiaques Héréditaires- CARDIOGEN

for rare or low prevalence complex diseases

@ Network

Respiratory Diseases (ERN-LUNG)

European Reference Network for rare or low prevalence complex diseases

Network Heart Diseases (ERN GUARD-HEART)

Malpositions of the great arteries 4 categories

- Transposition of the great arteries
- Double outlet right ventricle
- Double outlet left ventricle
- Anatomically corrected malposition of the great arteries

ANATOMY OF THE HEART WITH TGA

Normal heart

Other complexe malpositions of the GA

1000

TGA-VSD-PS

TGA-VSD-Coa

00

00

VD.

DORV-Sub aortic VSD-SP

Anatomy of transpositions of the great arteries

TGA or Ventricle-Arterial Discordance

- Great vessels have parallel course
- Sub-aortic conus
- Fibrous continuity mitral and pulmonary valve
- D-transposition with Aorta anterior and right
- Segment analysis
 - most frequently {S,D,D}
 - sometimes {I,L,L} (mirror image)
 - rarely exception to the looping rule {S,D,L} or {I,L,D}

TGA with bilateral conus

TGA {S,D,D}

Right ventricle

Left ventricle

TGA with bilateral conus

Sub-aortic conus

Sub-pulmonary conus

TGA {S,D,L}

Houyel L, Van Praagh R. et al. Circulation 1995;110:613-24.

TGV {S,D,L} : pas seulement une variante anatomique de TGV mais une entité anatomique distincte

Implique non seulement le conus mais aussi les ventricules

Left juxtaposition of the atrial appendages

- 2 to 5% of cases
- Frequently associated with other anomalies : dextrocardia, hypoplasia of right ventricle, bilateral conus

Coronary arteries in TGA

Type B Type C

Type A

Type D

Type E

Yacoub and Radley-Smith classification

What causes transposition of the great arteries ?

96-16 provides direct evidence for rotation of outflow tract myocardium

E9.5

E11.5

E12.5

96-16 expression in Pitx2 δ c heart with TGA

Transposition of the great arteries with a rotation defect Normal septation and normal neural crest cell migration Defect of left-right signaling

The French system during pregnancy

3 systematic foetal echographies - Level 1

11 Weeks 18-22 Weeks

32-34 Weeks

In case of anomaly or difficulty in assessing normality

> Expert foetal echography

Level 2

If heart anomaly is confirmed Level 3

Fetal echocardiography by expert

Prenatal diagnosis of TGA

TGA

Preoperative mortality in TGA = 4-6% (vs./+) Surgical mortality = 1-2%

	reduce tring	Printle Doug
Insided TVA	318	-M
Associated detects	-	19
WW0	- BF	
MIEH+ CloA		
CitA		
Api al addresses, tr		22/38
Monitorial analitation		10.07-8
Decisionic address - MUT	140	
PLE, Infame		
BAD .		- 14
Property working		
Colorada grants patient	210.400	40.002
Text Inc.		47
America		1.89
Protoporative montants		
respiration of the	3010	20111
V20 editates vertexant takan PCC, produganda petiti specific, Values at	NUMBER SOURCE (COA) (L. MAIL INNER AND (A 1960)	concludes, whire

TGA situs & 4 chamber view

TGA LVOT view

TGA Complex forms

TGA-membranous VSD

TGA Complex forms

TGA-VSD-PS

TGA Complex forms

TGA-VSD-Coa

Chromosomal anomalies in fetal CHD 548 CHD-18.5%

PA-IVS and PS Left heart obstruction 6 XO; 3 T18; 3 translocations **Conotruncal defects** 20 del22q11; 1 T21; 2 translocation AVSD 28 T21; 3 T18; 1 XXX VSD 9 trisomies, 2 del22q11, 1 del5 Transposition of the great ve DORV Univentricular heart 2 T18

	0 12/130	0 9.2%
ons	23/91	25%
	32/68	47%
	12/74	16%
essels	0	0
	7/38	18%
	2/24	8%

Physiology of TGA

Morphological and physiological consequences of the fetal circulation in TGA

Sun L et al. Circulation. 2015;131:1313-1323.

Morphological and physiological consequences of the fetal circulation in TGA

Prenatal white matter MRI anomalies in children with cyanotic congenital heart diseases

•White matter lesions in 30 to 40% of

newborns with TGA (Miller et al., 2004; Licht et al., 2009)

•Same type of anomalies but more severe in complex CHDs such as HLHS (Mahle et al., 2002).

Periventricular white matter lesions in a child with TGA **before** the arterial swicth. Petit et al., 2009 in Circulation

TGA Foramen Ovale

TGA Foramen Ovale

-Floppy Mb -Small FO -Small septal length -pulmonary veins velocity > 0,41 m/s

TGA Foramen Ovale

TGA Arterial duct

Neonatal management of TGA

Prevention of early neonatal demise

Abnormal Prenatal Shunts and Neonatal Condition						
	Abnormal (N=24)					
	FO and DA	FD or DA*	Normal (N=95)			
N total	4	20 (19 FO; 1 DA)	95			
Critical condition (n=7)	4	3 (2 FO; 1 DA)	6			
Stable condition (n=17)	0	17	89			

FO indicates toramen ovale; DA, ductus arteriosus.

*This subgroup included 1 fetus in whom the FO was restrictive but the DA could not be analyzed.

Additional criteria²

A hypermobile septum and reverse diastolic patent ductus arteriosus

Finally, we do not care All TGA are delivered on site with the same protocol

> Maeno YV et al. Circulation 1999 Jouannic JM et al. Circulation 2004;110:1743-6 2-Punn R, Silvermann N. JASE 2011;24:425-30 Mary T. Donofrio Circulation. 2002;105:e65-e66

Prenatal diagnosis of transposition of the great arteries Perinatal organization in Paris

- Organisation of foetal cardiac growth surveillance
 - Foramen ovale and arterial duct
- In utero transfer organisation
- Organisation of perinatal management
- Prevention of early neonatal demise
- Prepare the parents to the future even
- Post-natal management and follow-up

Bonnet et al. Circulation 1997; Maeno YV et al. Circulation 1999; Jouannic et al. Circulation 2004; Van Velzen C et al. Ultrasound Obstet Gynecol 2015; 45: 320–325 Escobar-Diaz MC et al. Ultrasound Obstet Gynecol. 2015 June ; 45(6): 678–682.

Prenatal diagnosis of transposition of the great arteries Perinatal organization

From 1992 to 217

- 717 prenatally diagnosed TGA (IVS or complex)
- 6 had congenitally corrected TGA
- 3 deaths immediately after birth in the delivery room 3 additional preoperative deaths
- extra cardiac malformation in a CHARGE syndrome,
- 1 necrotizing enterocolitis
- 1 during the Rashkind procedure (perforation of the left atrium in left juxtaposition of the atrial appendages)

Surgical mortality 1.7 % : 693 survivors at discharge

Neonatal diagnosis of TGA Isolated cyanosis

Parallel course of great vessels

Pulmonary artery from LV

TGA Rapid diagnosis

TGA Rapid diagnosis

TGA Rapid diagnosis

TGA D-TGA

D-TGA

TGA with heart failure and restrictive PFO

Creation of an Atrial Septal Defect Without Thoracotomy

A Palliative Approach to Complete Transposition of the Creat Arteries William J. Rashkind, MD, and William W. Miller, MD

reseposition of the great vessels (TGV) occurs in approximately 20% of children who die with componital heart disease.' With nare enceptions, pasents with this lesion die in the first 6 months of life (50%, within the first month). Approximately P% of patients with TGY have an otherwise nor nal heart. In recent years, various types of c derive constructioners for emptied. Muntard et all has simplified and has reduced mortality methy. Dead pressible are obtained in children beyond 6 months of age. Therefore, it is imperative to provide early pallistion that is effective until the optimal age for complete correction and that does not interfere significantly with subsequent surgery.

William Rashkind

TGA Rashkind

40.00

It is a challenging procedure that needs trained interventional/congenital cardiologists and a well prepared catheterization laboratory, with the possibility for surgical or circulatory back-up ¹

Balloon atrial septostomy performed out-of-hours produced higher complication rates as opposed to balloon atrial septostomy performed during routine hours. Only essential cases should be undertaken at night, and all other cases should be deferred to the daytime to limit unnecessary adverse complication ³

Rashkind procedure was not associated with increased risk of necrotising enterocolitis, but was associated with nearly twice the risk of clinically recognised stroke (1% versus 0%, p = 0.046)²

1-Cinteza, Maedica (Buchar). 2013;8:280-284.2-Mukherjee D Cardiol Young. 2010;20:373-80.3-Vimalesmaran. Cardiol Young. 2013;23:61-7.

PGE1 and arterial duct

Echographic evaluation in TGA

Echocardiographic evaluation of TGA

- 1. Foramen ovale and arterial duct
- 2. Size of the ventriclesSmall RV : check aortaSmall LV : check pulmonary artery
- 3. Atrioventricular valves anomalies
- 4. Coronary arteries

Peroperative analysis Anything different from the basic form

- « Abnormal » coronaries
- Hypoplastic aortic arch/coarctation
- VSD
- Difficult LV to PA routing
- Side by side vessels
- Aorto-pulmonary discrepancy
- Commissural mal-alignement

Expected surgical difficulties

Subarterial conus Anterior (sub-aortic) deviation

TGA VSD Coarctation

Aortic arch hypoplasia and coarctation

Localization and extension of the narrowed portion

2 techniques: enlargement and extended end to end => Discrepancy between aortic and pulmonary roots

Aorto pulmonary discrepancy

Impact for the type of repair

1.1

Subarterial conus Posterior (sub-pulmonary) deviation

VSD: localization and size

1 214

Inlet VSD

Outlet VSD

VSD: localization and size

Muscular VSD

Perimembranous VSD

Unbalanced ventricles

« Small » RV

« Small » LV

AV valves abnormalities Straddling and over-riding

AV valves abnormalities Mitral cleft and subpulmonary obstruction

AV valves abnormalities Mitral cleft

Mitral cleft

TGA left outflow tract obstruction

Accessory tissue on mitral valve

Bicuspid pulmonary valve

Coronary evaluation

Anterior course

Ao

PA

The arterial switch operation

Adib Domingo Jatene

1975

Yves Lecompte

Outflow tracts after the arterial switch for TGA

Outflow tracts after the arterial switch for TGA

Outflow tracts after the arterial switch for TGA The Lecompte manoeuver

Outflow tracts after the arterial switch for TGA The Lecompte manoeuver

Long term outcomes after the arterial switch operation

Cardiovascular events in the long term

Cumulative probability of arrhythmia or sudden death

Cumulative probability of the combined cardiovascular outcome

Khairy P et al. *Circulation*. 2013;127:331–339.

Life-long management of the ASO population poses several challenges

and modality for surveillance imaging;

2) there is no defined management strategy when subclinical anatomic or physiologic abnormalities are identified;

vigilant for classic and atypical presentations;

manipulated coronary arteries remain unknown.

- 1) absence of current consensus regarding the appropriate interval
- 3) symptoms attributable to potential complications, especially coronary obstruction, are rare and therefore practitioners must be
- 4) the effects of acquired coronary artery disease superimposed on

Pulmonary artery stenosis

TGA VSD Coarctation

Coronary artery obstruction

Big variations in coronary anatomy (origin, loops, epicardial, intramural)

Coronary artery anatomy as a risk factor for early events

Single coronary artery

Intramural course

Pasquali, 2002

Outcomes and predictors of early mortality of the ASO for TGA with IVS

if for mbill, %	Coronary Analuma Hish Factors	Other Phedictors of Early Montality
85.21	Not a risk failtur for early montably	Technical problems with coronary transfer
92	Not a risk factor for early mortality	Weight <2.5 kg ECMD
92.31	Single right coronary artery	Post-operative heart failure
M	Nore identified	No predictors of early mortality, but earlier repair <4 days of ap was associated with decreased records utilization
M	Nore identified	No predictors of early mortality, but earlier repair -:4 days of ap was associated with decreased resource utilization

Myocardial ischemia after the arterial switch for TGA

Type D coronary arteries after the arterial switch for TGA

Coronary arteries after the arterial switch for TGA High irradiation CT

Coronary arteries after the arterial switch for TGA Very low dose CT

Coronary arteries after the arterial switch for TGA High reimplantation of left CA

Coronary arteries after the arterial switch for TGA Intervascular course fo left CA

I

Sudden death due to coronary artery lesions long-term after the arterial switch operation: a systematic review

- 52 studies : sudden death because of coronary complications in survivors after 5 years
- 8798 patients: 27 deaths > 5 years post-ASO (0.3%)
 - 10 were known with relevant residual lesions
 - 5 sudden death possibly from cardiac cause, no late death confirmed to be coronary related
- \bullet not justified

Routine coronary imaging of asymptomatic single-stage ASO patients is

van Wijk SWH et al. Can J Cardiol 2017 33;1180-87

Pontage mammaire interne-IVA post-switch

Aortic valve regurgitation

Aortic valve repair for AR after ASO ?

Imamura M. et al. Ann Thorac Surg 2000;69:607-608

Freedom from aortic root dilation over time since ASO 3 time periods : 1981 to 1988, 1989 to 1992, and 1993 to 2000 (P<0.001)

Schwartz, M. L. et al. Circulation 2004;110:II-128-II-132

Development of Aortic Insufficiency over time

Lange R. et al.; Eur J Cardiothorac Surg 2008;34:711-717

Freedom from neo-aortic root dilation (neo-aortic root z-score >=3.0) and probability from at least moderate neo-aortic regurgitation

Schwartz, M. L. et al. Circulation 2004;110:II-128-II-132

Pulmonary arterial hypertension

Pulmonary circulation in fetal TGA

Initial increase in PBF due to vasodilatation with increased oxygen **Increased pulmonary venous return Reduced size of the FO Ductal constriction due to oxygen Isolation of Pulmonary circulation Increased PVR Development of aorta-pulmonary collaterals**

PAH characteristics after ASO for TGA

	Valu
Age first PAH detection (months)	
PAH detection within one year after ASO	
Age first detection (months)	
PAH detection more than one year after	
Age first detection (months)	
Age first RHC (months)	
mPAP (mmHg)	
mSAP (mmHg)	
mPAP/mSAP	0.8
mPCWP (mmHg)	
PVRi (WU.m²)	1
PAH therapy at endpoint	
CCB monotherapy	
PAH-targeted mono therapy	
PAH-targeted dual therapy	
PAH-targeted triple therapy	

Ziljstra W et al. Heart 2017

Survival in PAH after ASO for TGA

Neurodevelopmental outcomes

Cognitive domain	Test	TGA (n=45)	Controls (n=45)	Ø
IQ	CMMS	113 (8.3)	116 (8.85)	ns
Receptive Language	NEPSY - Comprehension	12.4 (0.80)	12.5 (0.81)	ns
Motor Inhibition	NEPSY – Knock and tap	24.25 (3.81)	25.97 (2.12)	0.01
Cognitive Inhibition	Stroop test (errors)	3.08 (3.02)	1.42 (1.48)	0.001
	Stroop test (Reaction time)	82.42 (31.61)	61.03 (20.53)	0.0002
Verbal working memory	Digit span WISC IV	2.84 (2.49)	3.64 (2.55)	ns
Spatial working memory	BEM-144 blocks	3.06 (2.12)	4 (2.03)	0.03
Cognitive flexibility	DCST	7.28 (2.86)	8.66 (2.09)	0.01
Social cognition	Theory of mind tests	0.95 (1.27)	2.15 (1.24)	0.0009

ToM tests in TGA vs controls

TATC

Calderon J et al. J Pediatr 2012

ToM tests in TGA vs controls role of prenatal diagnosis

Cognitive Domain	Test	Prenatal (n=29)	Postnatal (n=16)	p
IQ	CMMS	114.5 (8.50)	112.4 (8.06)	0.4
Receptive Language	NEPSY - Comprehension	12.65 (0.55)	12.25 (1.12)	0.11
Response motor control	NEPSY – Knock and tap	24.31 (2.46)	24.14 (5.82)	0.89
Cognitive control	Stroop test (Number of errors)	2.41 (2.48)	4.31 (3.59)	0.04
	Stroop test (Reaction Time)	77.82 (28.05)	90.74 (36.71)	0.19
Verbal working memory	Digit span WISC IV	2.96 (2.48)	2.62 (2.57)	0.66
Spatial working memory	BEM-144 blocks	3.62 (2.0)	2.06 (2.01)	0.01
Cognitive flexibility	DCST	8.10 (2.65)	5.64 (2.61)	0.006
Social cognition	Theory of mind	1.31 (1.33)	0.31 (0.87)	0.01

TATO

Calderon J et al. J Pediatr 2012

Kasmi L et al. J Thorac Cardiovasc Surg 2017; Ann Thorac Surg 2017

Atrial repair of TGA The Senning and Mustard operations

Baffes operation

Atrial correction of TGA

Ake Senning

William Thornton Mustard

Mustard operation

Survival of all patients, separate diagnostic groups, and general population

Nieminen et al, Circulation 2001

Outcomes after the Mustard, Senning and arterial switch operation for treatment of transposition of the great arteries in Finland: a nationwide 4-decade perspective

Years after procedure

Eur J Cardiothorac Surg. 2017;52(3):573-580.

Echocardiogram long axis view

Long axis view after atrial correction of TGA

Flattened LV posterior from systemic RV

Short axis view after atrial correction of TGA

Flattened LV posterior from systemic RV

Right ventricle after atrial correction of TGA

2D echo: apical 4Ch view

Right ventricle

Right atrium

Left ventricle

Left atrium

pulmonary venous atrium

Caval baffle

CT Scanner after Senning operation for TGA

1.2.2.1

MRI senning

Arterial and atrial pathways in Mustard

Johansson et al, Cardiol Young, 2010

MRI senning

Mortality after atrial switch

- Late yearly mortality 0.5%, due to arrhythmias and heart failure
- Sudden death (42%) most common mode of death
- Independent predictors for mortality:
 - (Atrial) Tachyarrhythmias
 - Advanced functional class

Kammeraad, et al, JACC 2004

ECG after atrial switch

Only 40% of patients has SR at age 20

Right heart axis Junctional rhythm

20% of young adults with atrial switch needs PM for sick sinus syndrome

Be aware of altered venous connection:

Ventricular lead will end up,

after some unusual loops,

in a smooth-walled LV

Atrial flutter after atrial switch

Atrial arrhythmias may lead to hemodynamic instability and sudden death

Exercise capacity in CHD

5

N=933

Mean ± SD

Peak VO₂ (ml/kg/min)

Decline of RV function after atrial switch

Milane et al., JACC 2000.

Late complications atrial switch

- Early death
- Arrhythmias
- Exercise capacity
- RV dysfunction
- Tricuspid regurgitation

Abnormal septal configuration **RV** dilation

Late complications atrial switch

- Early death
- Arrhythmias
- Exercise capacity
- RV dysfunction
- Tricuspid regurgitation
- Baffle obstructions

Baffle obstruction with increased azygos flow

Superior baffle-limb stenosis in TGA after atrial switch and following PM implantation

obstruction

Radiofrequency

Stent

Love BA et al., Nat Clin Pract Cardiovasc Med 2008

TGA-VSD and Pulmonary stenosis
TGA - VSD - Pulmonary stenosis

TGA TGA - VSD - Pulmonary stenosis

TGA - VSD - Pulmonary stenosis

TGA - VSD - Pulmonary stenosis

The Rastelli operation

Rastelli procedure

CT after Rastelli operation

ì

- 10 C - 10 C

REV operation (Réparation à l'Etage Ventriculaire)

TGA - VSD - Pulmonary stenosis: tunnel from LV to aorta

TGA Sub-aortic obstruction after tunnel from LV to aorta

Rastelli/REV procedure Sub aortic stenosis

Anatomically corrected TGA

Continuing Medical Education What is anatomically corrected malposition? Alessandra Bermasconi, ' Tiscar Cavalle-Garrido,' Don G. Perrin,' Robert H. Anderson'

Distainen of Cardinlegy, 'Division of Pathology, Department of Pauliatvics, The Neipital for Sick Children, The University of Toronio, Toronio, Ontario, Canada; "Cardia: Unit. Institute of Child Health, University College London, United Kingdon

«It remains a fact, nonetheless, that many paediatric cardiologists and surgeons remain unaware of the significance of the malformation»

Anatomically corrected malposition of the great arteries

Pediatr Cardiol (2010) 31:562-563 DOI 10.1007/s00246-009-9618-8

IMAGES IN PEDIATRIC CARDIOLOGY

Anatomically Corrected Malposition of the Great Arteries

Christopher J. Clarke • K. Anitha Jayakumar • Andrew W. Hoyer

Fediatr Cardiol (2008) 29:467-468 DOI 10.1007/s00246-007-9080-4

IMAGES IN PEDIATRIC CARDIOLOGY

Anatomically Corrected Malposition of the Great Arteries

Ming-Ren Chen

Anatomically Corrected Malposition of the Great Arteries

Anatomically corrected malposition of the great arteries

Anatomically corrected malposition of the great arteries

