Consultation familiale et conseil génétique après Mort Subite

Dr Isabelle Denjoy

Hôpital Bichat, Paris
Hôpital Robert Debré, Paris
Centre de Référence
Maladies Cardiaques Héréditaires

Causes de mort subite

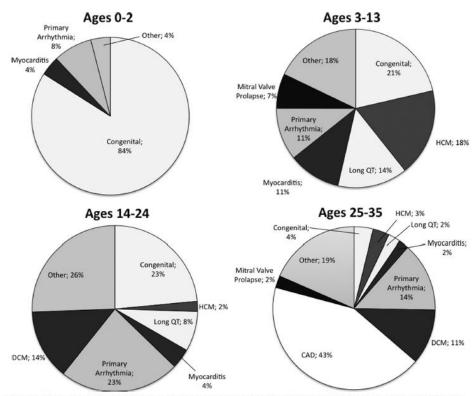
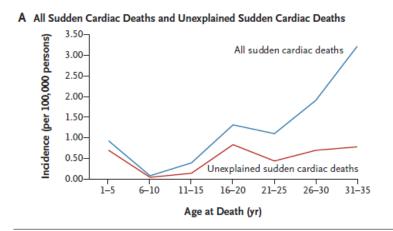
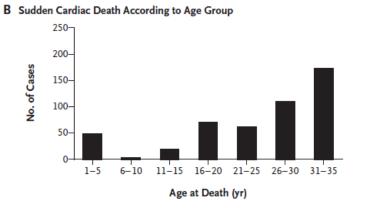
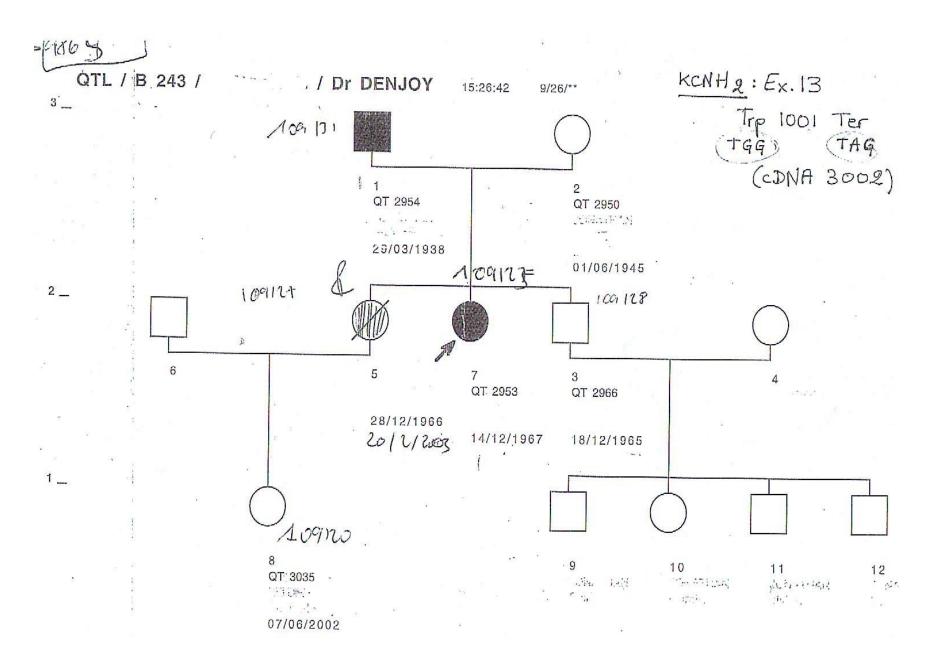
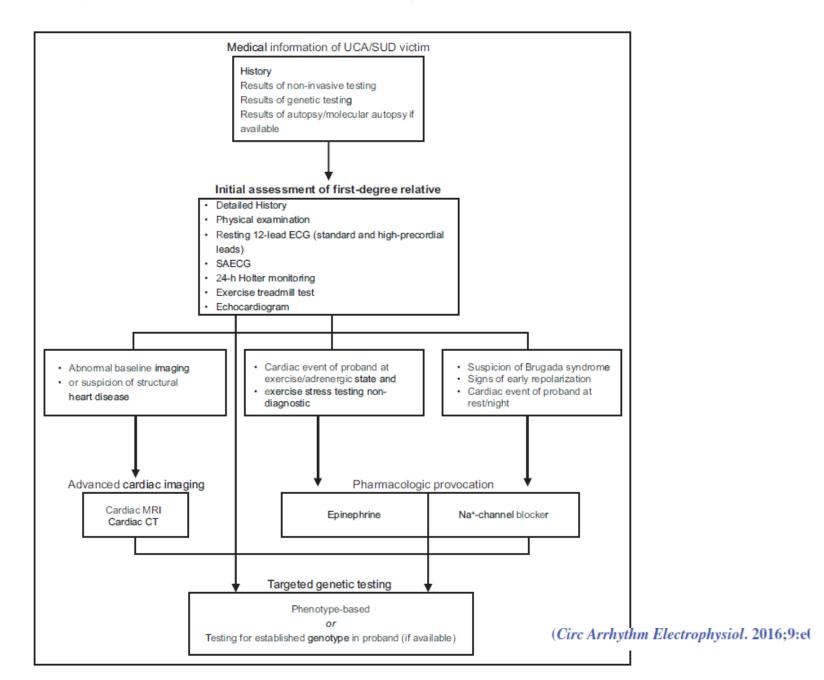




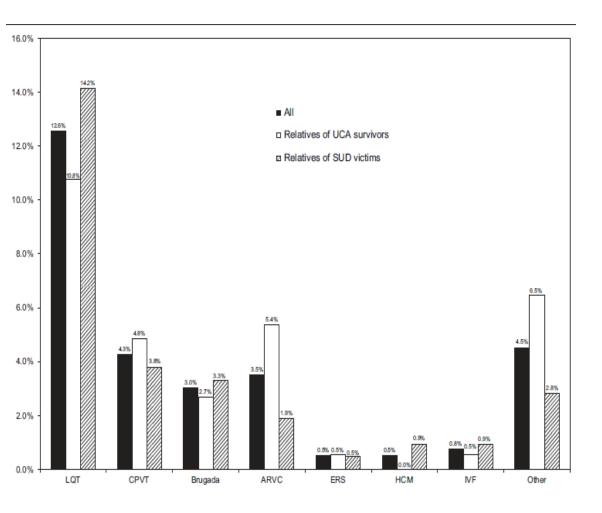
Figure 2. Detailed causes of arrest by age group. HCM indicates hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; and CAD, coronary artery disease. Other corresponds to all other causes.

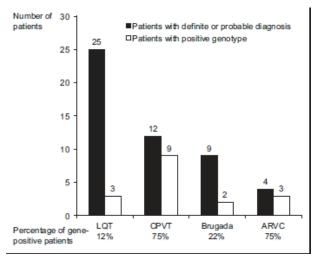
N ENGL J MED 374;25 NEJM.ORG JUNE 23, 2016

Maladies cardiaques héréditaires

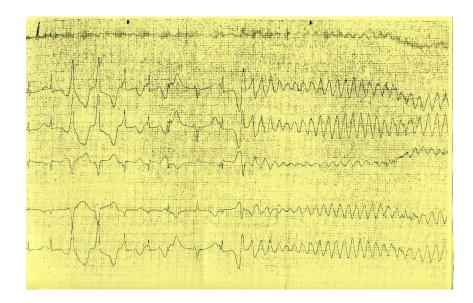

- Risque de troubles du rythme ventriculaire +/coeur « sain » avec pronostic vital en jeu
- Origine génétique => maladie familiale transmissible, autosomique dominant avec mutation privée
- Pénétrance variable
- Expression clinique variable
- Traitement +++


Consultation familiale: pourquoi?

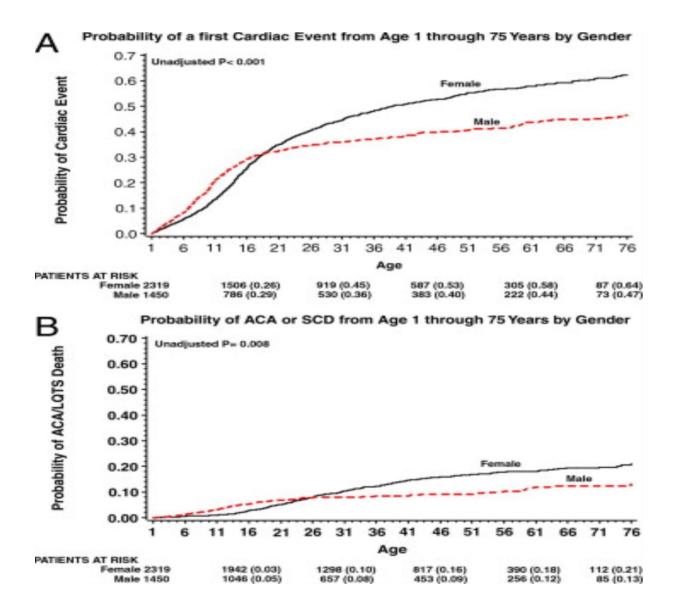

- Préciser la cause de la MS /MSR
- Dépister les sujets à risques
- Bilan spécifique
- Enquête génétique


Bilan familial : chez qui ?

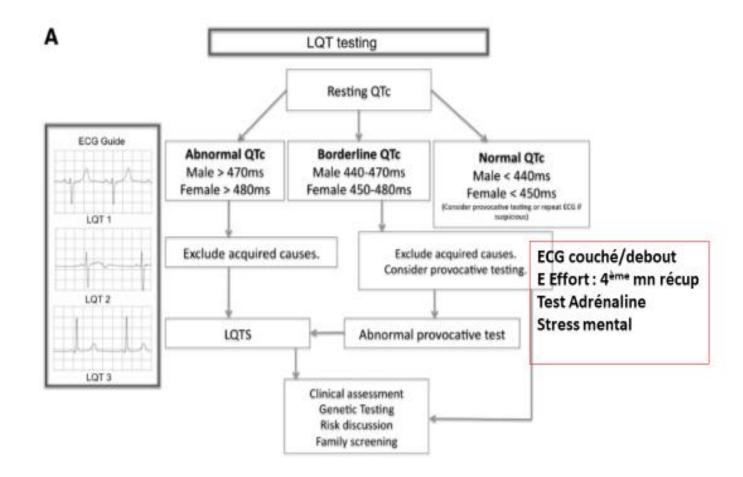
- Cas index
- Apparentés du 1^{er} degré du cas index
 - Ses 2 parents
 - Ses frères et sœurs
 - Tous ses enfants
- Age : dépend de la cause suspectée


Syndromes en cause

- Syndrome du QT Long congénital
- Tachycardies Ventriculaires Catécholergiques
- Syndrome de Brugada


Syndrome du QT Long

- Maladie génétique (1/2500) : 16 gènes connus
- Transmission autosomale dominante (95%)
- Pénétrance 70 % (7 à 90%)
- ECG: intervalle QTc allongé (> 440 ms)
- Torsade de pointes, TV
- Syncope, Arrêt cardiaque/ MS chez enfants et adultes jeunes (30%)
- Facteurs favorisants : stimulation adrénergique (effort, émotions), médicaments QT


Recommendations	Classa	Levelb	Ref.c
LQTS is diagnosed with either — QTc ≥480 ms in repeated 12-lead ECGs or — LQTS risk score > 3.431	ı	С	This panel of experts
LQTS is diagnosed in the presence of a confirmed pathogenic LQTS mutation, irrespective of the QT duration.	ı	C	This panel of experts
ECG diagnosis of LQTS should be considered in the presence of a QTc ≥ 460 ms in repeated 12-lead ECGs in patients with an unexplained syncopal episode in the absence of secondary causes for QT prolongation.	lla	С	This panel of experts

LQTS Type	Gene	Protein	Current	Frequency
LQT1	KCNQ1	Kv7.1	lKs↓	40%-45%
LQT2	KCNH2	KV11.1 IKr↓		30%-35%
LQT3	SCN5A	Nav1.5	INa↑	10%
LQT4	ANK2	Ankyrin-B	Na+/K+↓	1%
LQT5	KCNE1	MinK	lKs↓	1%
LQT6	KCNE2	MiRP1	lKr↓	Rare
LQT7	KCNJ2	Kir2.1	IK1↓	Rare
LQT8	CACNA1C	CaV1.2	ICa-L↑	Rare
LQT9	CAV3	Caveolin 3	INa↑	Rare
LQT10	SCN4B	SCNβ4 subunit	INa↑	Rare
LQT11	AKAP9	Yotiao	IKs↓	Rare
LQT12	SNTA1	Syntrophin-α1	INa↓	Rare
LQT13	KCNJ5	Kir3.4	IKACHĮ	Rare
LQT14	CALM1	Calmodulin 1	Calcium signalling	Rare
LQT15	CALM2	Calmodulin 2	Calcium signalling	Rare
LQT16	TRDN	Triadin	ICa-L↑	Rare
Jervell a	nd Lange-Niels	sen syndrome (auto	somal recessive)	
JLN1	KCNQ1	Kv7.1	lKs↓	Rare
JLN2	KCNE1	MinK	lKs↓	Rare

J Am Coll Cardiol. 2008;51(24):2291-2300.

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies

This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA)

STATE OF GENETIC TESTING FOR LONG QT SYNDROME (LQTS)

Class I (is recommended)

Comprehensive or LQT1-3 (KCNQ1, KCNH2, and SCN5A) targeted LQTS genetic testing is recommended for any patient in whom a cardiologist has established a strong clinical index of suspicion for LQTS based on examination of the patient's clinical history, family history, and expressed electrocardiographic (resting 12-lead ECGs and/or provocative stress testing with exercise or catecholamine infusion) phenotype.

Comprehensive or LQT1-3 (KCNQ1, KCNH2, and SCN5A) targeted LQTS genetic testing **is recommended** for any asymptomatic patient with QT prolongation in the absence of other clinical conditions that might prolong the QT interval (such as electrolyte abnormalities, hypertrophy, bundle branch block, etc., i.e., otherwise idiopathic) on serial 12-lead ECGs defined as QTc >480 ms (prepuberty) or >500 ms (adults).

Mutation-specific genetic testing **is recommended** for family members and other appropriate relatives subsequently following the identification of the LQTS-causative mutation in an index case.

Class IIb (may be considered)

Comprehensive or LQT1-3 (KCNQ1, KCNH2, and SCN5A) targeted LQTS genetic testing may be considered for any asymptomatic patient with otherwise idiopathic QTc values >460 ms (prepuberty) or >480 ms (adults) on serial 12-lead ECGs.

KEYWORDS Genetics; Cardiomyopathies; Channelopathies (Heart Rhythm 2011; 8:1308 – 1339)

Bilan familial: Syndrome du QT long

• Diagnostic:

- ECG: QTc 个, morphologie
- Holter: QTc ↑, morphologie, pente QT/RR
- (adrénaline : QTc 个, ESV)
- Epreuve d'effort > 10 ans : QTc ↑ 4ème mn récupération
- Tests génétiques (panel 16 gènes) : les apparentés 1^{er} degré au moment du bilan familial + enfants

- Traitement : dès le diagnostic clinique
 - Béta-bloquants :
 - Liste médicaments
 - Activité sportive restreinte

Tachycardie ventriculaire catécholergique

- ECG de base souvent normal (QTc normal)
- Enfants avec syncopes/mort subite à l'EFFORT
 - A partir de 2 ans, rare après 40 ans
- Prévalence :1/10 000
- Génétique : RyR2, CASQ2, Triadin (calcium)
- Pénétrance 65 à 80% (variable avec l'âge)

Name	Gene	Protein	Frequency
CPVT1	RYR2	Cardiac ryanodine receptor 2	50%-60%
CPVT2	CASQ2	Cardiac calsequestrin	≈5%
CPVT3	TECLR	Originally mapped to chromosome 7 p14-p22, now reallocated to chromosome 4	Rare
CPVT4	CALM1	Calmodulin	Rare
CPVT5	TRDN	Triadin	Rare
? LQT4 overlap	ANK2	Ankyrin B	Rare
? LQT7 overlap	KCNJ2	Potassium inwardly rectifying channel Kir2.1	Rare

Tachycardie Ventriculaire Polymorphe

- Syncopes ± arrêt cardiaque (emotion, exercice, noyade) vers 10 ans (exceptionnel < 2 ans)
- Syncope + convulsions => **Attention Dic** ≠ **épilepsie**
- ESV polymorphes à l'effort-bigéminisme-salves polymorphes : reproductibles
 - Holter, Epreuve d'effort, adrénaline
- Mortalité élevée en l'absence de traitement (30 % à l'âge de 20-30 ans)
- Béta-bloquants : Nadolol : (50 75 mg/m² : 1-2 mg/j en 2 prises chez l'enfant)

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies

This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA)

STATE OF GENETIC TESTING FOR CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CPVT)

Class I (is recommended)

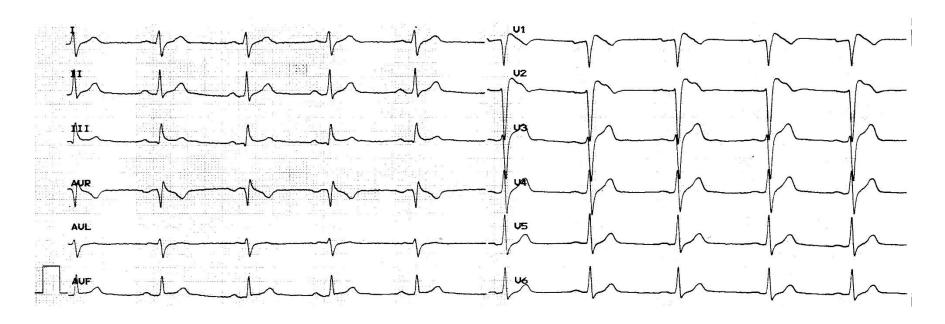
Comprehensive or CPVT1 and CVPT2 (RYR2 and CASQ2) targeted CPVT genetic testing is recommended for any patient in whom a cardiologist has established a clinical index of suspicion for CPVT based on examination of the patient's clinical history, family history, and expressed electrocardiographic phenotype during provocative stress testing with cycle, treadmill, or catecholamine infusion.

Mutation-specific genetic testing **is recommended** for family members and appropriate relatives following the identification of the CPVT-causative mutation in an index case.

Positif 70%

KEYWORDS Genetics; Cardiomyopathies; Channelopathies (Heart Rhythm 2011; 8:1308-1339)

Tachycardie ventriculaire catécholergique Bilan familial > âge 2 ans

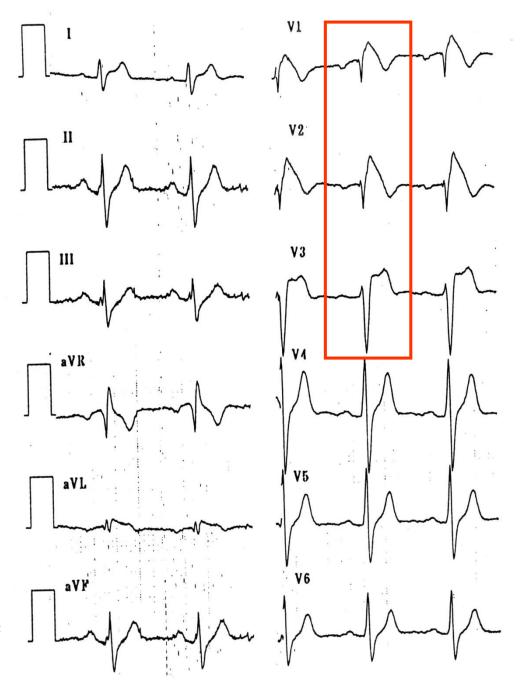

Diagnostic :

- Holter + effort : > 2 ans
- Adrénaline > 2 ans
- Epreuve d'effort > 10 ans
- Tests génétiques (RyR2, CASQ2, Triadin, Calmoduline): les apparentés du 1^{er} degré au moment du bilan familial + enfants (> 2 ans)

• Traitement :

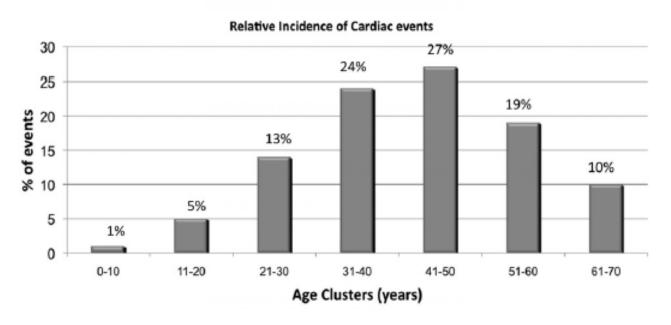
- Béta-bloquant : dès le diagnostic
- Activité sportive interdite même sous BB

Syndrome de Brugada



- Retard de conduction intra-ventriculaire droite avec susdécalage segment ST V1-V2-V3 (surélévation J ≥ 0.2 mV)
- Tachycardie ventriculaire polymorphe/FV => syncopes ou mort subite. 4% du total des MS, 20 % des MS sur cœur sain.
- Prévalence 20 / 100 000 (Orphanet 2011) Formes familiales
- Génétique : 10 gènes (SCN5A)
- Pénétrance 30% (variable ++)

ECG dans le syndrome de Brugada : type 1


- PR allongé
- Retard droit
- Segment ST \uparrow surélévation $J \ge 0.2 \text{ mV}$

Sensibilisation par Ajmaline

Evènements cardiaques (âge)

Symptoms by age cluster in Brugada syndrome

N = 1057 patients - 269 events

Figure 4. Relative percentage of symptomatic Brugada syndrome patients by age clusters showing a peak of incidence in the third and fourth decades of life (data from the Pavia Brugada syndrome registry).

Syndrome de Brugada et mort subite de l'enfant

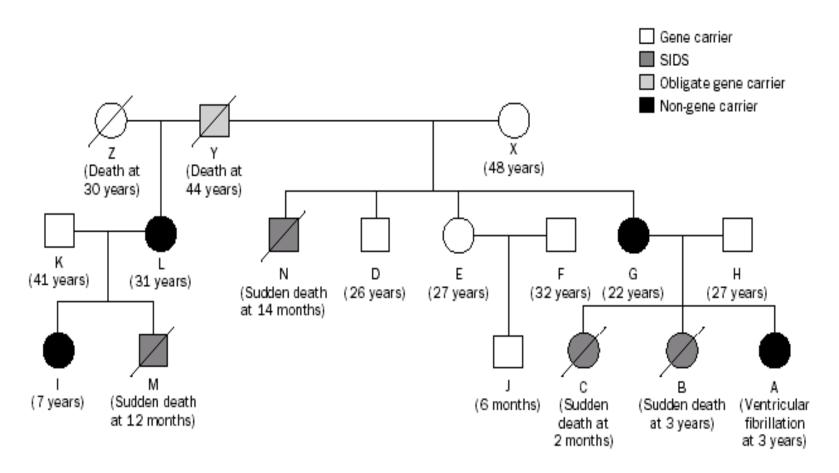
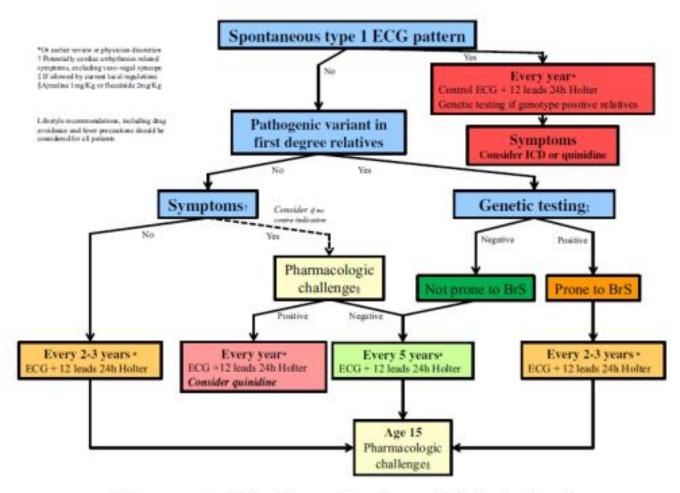



Figure 1: Family pedigree

Squares indicate males, circles indicate females. Ages and age at death/event in brackets.

Management of the Young with a known BrS in the Family

Particularités pédiatriques

- Syncope/Arrêt Cardiaque/Mort Subite fébrile
- 2 périodes à risque : 0-3 ans et > 15 ans
- FDR : ECG type 1 spontané + PC
- Traitement : Hydroquinidine / DAI
- Liste de médicaments contre indiqués (brugada.org)
- Génétique
- Famille : ECG ; Test Ajamaline

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies

This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA)

STATE OF GENETIC TESTING FOR BRUGADA SYNDROME (BrS)

Class I (is recommended)

Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of the BrS-causative mutation in an index case.

Class IIa (can be useful)

Comprehensive or BrS1 (SCN5A) targeted BrS genetic testing can be useful for any patient in whom a cardiologist has established a clinical index of suspicion for BrS based on examination of the patient's clinical history, family history, and expressed electrocardiographic (resting 12-lead ECGs and/or provocative drug challenge testing) phenotype.

Class III (is not indicated/recommended)

Genetic testing is not indicated in the setting of an isolated type 2 or type 3 Brugada ECG pattern.

Positif 20%

KEYWORDS Genetics; Cardiomyopathies; Channelopathies (Heart Rhythm 2011; 8:1308-1339)

Brugada et bilan familial

- ECG:
 - parents, frères et soeurs, enfants > 15 ans et < 3 ans</p>
- Test pharmacologique Ajmaline :
 - si ECG base normal (> 15 ans)
- SVP?: stratification du risque
 - si test pharmacologique anormal
- Tests ADN:
 - si mutation cas index connue, > 15 ans
 - recherche

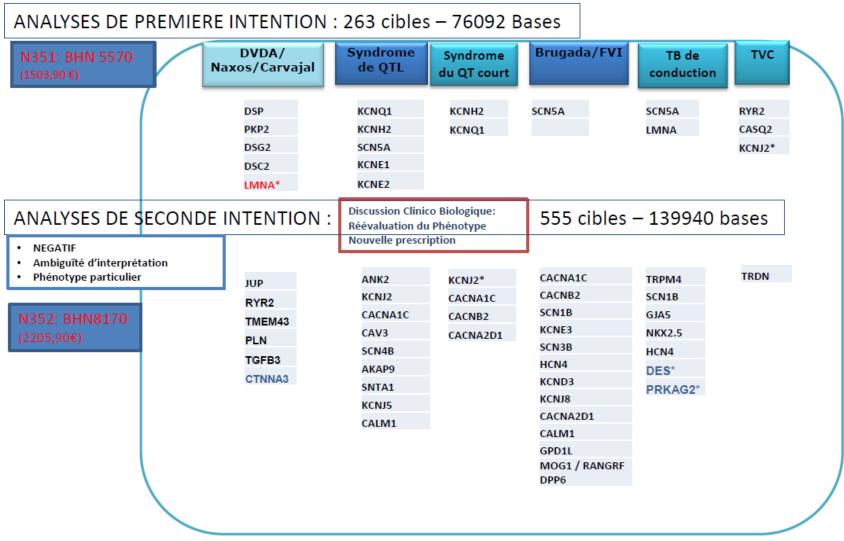
Intérêt clinique du diagnostique génétique

TABLE 1. Criteria to Define Applicability of Genetic Testing in Clinical Practice

Criteria	Points
Technical aspects	
Percentage of genotyped patients	
≥50	3
30 to 49	2
10 to 29	1
Unknown or ≤10	0
Size of the genomic region to screen, kb	
≤1	1
>1 to 3	0
>3 to 8	-0.5
>8 to 13	-1
≥13	-1.5
Clinical aspects	
A, Presymptomatic diagnosis is clinically relevant	0.5
B, Identification of silent carriers is clinically relevant	0.5
C, Results influence risk stratification	0.5
D, Results influence therapy/lifestyle	0.5
E, Reproductive counseling is clinically justified	0.5

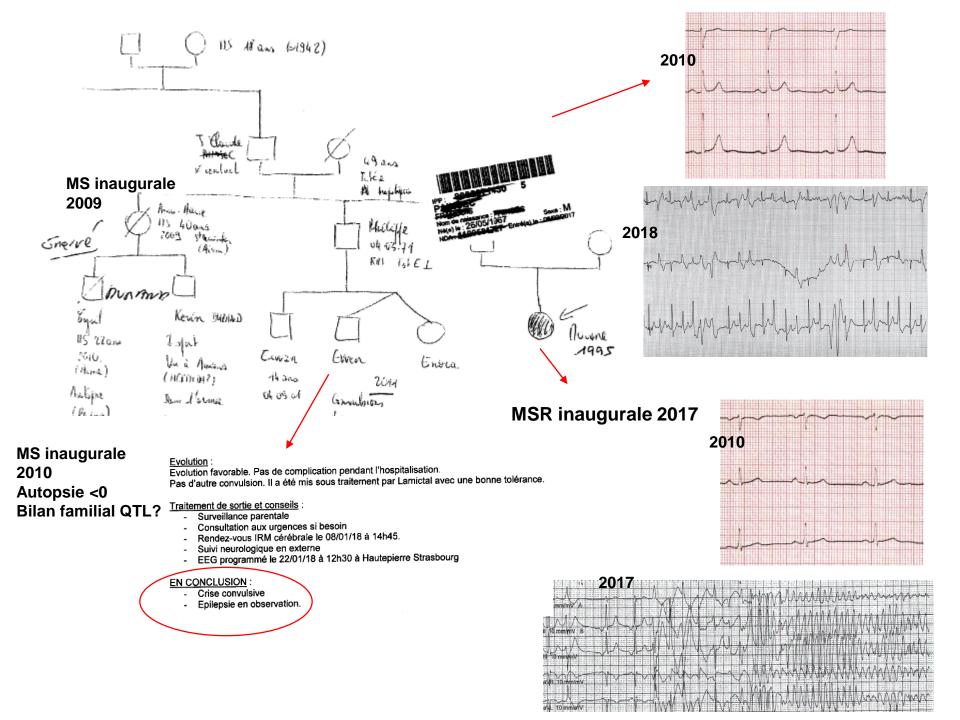
Intérêt clinique du diagnostique génétique

TABLE 2. Disease-Specific Quantification of Clinical Applicability of Genetic Testing


		Tecl	hnical Score		C	Clinical Sco	re		
Disease	Gene(s)	Genotyped (%)	Size of Screening (kb)	Α	В	С	D	Е	Total
TS	CACNA1c (3)	3 (≈100)	1 (<1)	0.5	0.5			0.5	5.5
RW LQTS*	KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2 (6–8)	3 (≥50)	-1 (8-13)	0.5	0.5	0.5	0.5	0.5	4.5
JLN LQTS	KCNQ1, KCNE1	3 (≥50)	0 (1-3)	0.5	0.5			0.5	4.5
AS	KCNJ2 (13)	3 (50)	0 (1-3)	0.5	0.5			0.5	4.5
DCM- CB	LMNA/C (21)	2 (30-50)	0 (1-3)	0.5	0.5			0.5	3.5
HCM†	MYH7, MYL3, MYL2, ACTC, TNNT2, TPM1, TNNI3, MYBPC3, TTNC (14)	3 (≥50)	-1.5 (>13)	0.5	0.5		•••	0.5	3
CPVT	RyR2, CASQ2 (19)	3 (≥50)	-1.5 (>13)	0.5	0.5			0.5	3
ARVC‡	PKP2, DSP, JUP	2 (30-50)	-1.5 (>13)	0.5	0.5			0.5	2
BrS	SCN5A (24)	1 (≤30)	-0.5 (3-8)	0.5	0.5				1.5
DCM§	MYH7, TNNT2, TNNI3, TPM1 (34)	0 (≤10)	-1.0 (8-13)	0.5	0.5		•••	0.5	0.5
SQTS	KCNQ1, KCNH2, KCNJ2	0 (0)	-0.5 (3-8)	0.5				0.5	0.5
PCCD	SCN5A	0 (0)	-0.5 (3-8)	0.5				0.5	0.5
FAF	KCNQ1, KCNE2	0 (0)	0 (1-3)	0.5					0.5
SSS	HCN4, SCN5A	0 (0)	-0.5 (3-8)	0.5					0.5
LVNC	Cypher/ZASP	0 (0)	0 (1-3)	0.5					0.5

TS indicates Timothy syndrome (LQT8); RW, Romano-Ward; JNL, Jervell-Lange-Nielsen; AS, Andersen Syndrome (LQT7); CB, conduction block; BrS, Brugada syndrome; SQTS, short-QT syndrome; PCCD, progressive cardiac conduction defect; FAF, familial atrial fibrillation; and SSS, sick sinus syndrome.

^{*}LQTS without extracardiac involvement. ANK2 (LQT4) was excluded because only anecdotal cases have been reported.


⁺MYBPC3 and MYH7 screening alone identifies >50% of genotype patients (14). In such instances, score is 4. Only sarcomeric protein with isolated cardiac

ARBRES DECISIONNELS d'analyse Génétique Moléculaire TROUBLES DU RYTHME

^{*} Gènes pouvant être demandés individuellement devant un phénotype évocateur

DEMANDE DE DIAGNOSTIC MOLECULAIRE DE PATHOLOGIE RYTHMOLOGIQUE					
Syndrome de QTL, QT court, Syndrome de Brugada, Dysplasie arythmogène du ventricule droit, trouble de					
conduction, Fibrillation, Flutter atriale					
Renseignements cliniques ; A remplir obligatoirement sauf pour les diagnostics présymptomatiques Syndrome du QTL ou QT court Valeur du QTc : Asymptomatique Symptomatique :					
Syndrome du QTL ou QT court Valeur du QTc : ☐ Asymptomatique ☐ Symptomatique : Syncopes ☐ OUI ☐ NON Circonstances de la syncope : Mort Subite ☐ OUI ☐ NON					
Syndrome de Brugada					
ECG au repos : Sus décalage du segment ST>2 mm □OUI □NON Test à l'Ajmaline □ Positif (sus décalage sup à 2mm) □Négatif					
Dysplasie arythmogène du VDt □ Asymptomatique □ Symptomatique : Nombre de critères mineurs : Nombre de critères majeurs : Anomalie du VDt à l'Echographie cardiaque, à l'angiographie, à l'IRM □OUI □NON Présence d'anomalie à l'ECG ; ondes T négatives en V,2,3 □OUI □NON Présence d'une onde epsilon □OUI □NON Autres pathologies rythmiques:					
ANALYSE(S) MOLECULAIRE(S) DEMANDEE(S)					
□ ANALYSE(S) DE NIVEAU 1 : SCREENING DE GENES MAJEURS PAR SEQUENCAGE A HAUT DEBIT 16 gènes majeurs : KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, PKP2, DSQ2, DSC2, DSP, LMNA,RYR2, CASQ2, TRDN, CALM1, NKX2.5					
(Cotation: N351; RIHN 5570)					
□ ANALYSE(S) DE NIVEAU 2 : SCREENING PAR NGS d'un panel élargi de gènes (50 gènes) (Après confirmation de l'hypothèse diagnostique et précisions phénotypiques indispensables à l'interprétation) (Cotation : N352 ; RIHN 8170) RECHERCHE DIRECTE DE MUTATION(s) CHEZ UN APPARENTE (A REMPLIR)					
Symptomatique □ non symptomatique □ 1er prélèvement □ 2ème prélèvement □					
Gène					

Bilan familial de MS (canalopathies) chez les apparentés 1^{er} degré : parents, fratrie, enfants

Examens	QTL	TVC	Brugada
Quand?	Naissance	> 2 ans	> 15 ans
ECG	QTc ↑, morpho, debout	QTc normal	Type 1 (< 3 ans)
Holter	QTc ↑, morpho, pente	ESV poly, salves	12 d, charge type1
E Effort	QTc ↑ 4mn	ESV, salves	Type 1↓
Test	Adrénaline	Adrénaline	Ajmaline
Pharmaco			
SVP	Non	Non	Non?
Génétique	Oui +++	Oui +++	Recherche directe

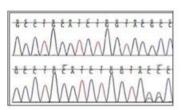
Le bilan familial des canalopathies

- Potentiellement 50% d'atteints => apparentés 1^{er} degré
- Consultation spécialisée multidisciplinaire (centre de référence/compétence) www.cardiogen.aphp.fr
 - Test génétique
 - Bilan cardiologique spécifique : ECG et Holter, Epreuve d'effort, tests pharmocologiques
- Traitement, sport
- SQTL et Brugada => liste des médicaments contreindiqués: crediblemeds.org, www.brugadadrugs.org

Conclusions

- Faire le diagnostic de la cause de MS: ECG, EE, tests pharmacologiques et screening familial
- Evaluer le risque rythmique : sexe, âge, mutation, arythmies, type de canalopathie
- Réaliser les tests génétiques : intérêts diagnostique, pronostique et orientation thérapeutique.
- Privilégier une approche multi-disciplinaire : prise en compte des différentes dimensions de l'impact d'un test génétique et du diagnostic de la canalopathie.
- La mise en place de centres nationaux de référence et régionaux de compétence pour les maladies rythmiques héréditaires a permis d'améliorer la prise en charge cardiologique et génétique de ces pathologies.

Autopsie moléculaire



KCNQ1- KvLQT1 11p15.5— Extracellular

Pathogenic (disease-causing) mutation

Genetic analysis

- Sanger sequencing
- Cardiac gene panels
- Whole exome / genomes